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COMMENTAIRES SUR LE PLAN

Le changement essentiel de la présente rédaction par rapport au texte publié est l’accent
mis sur les algèbres, partout où il n’y avait pas lieu de se limiter à des extensions seulement,
et sur le procédé de changement du corps de base, qui rend ce point de vue nécessaire,
puisque une extension ne reste plus une extension après changement du corps de base.

La définition des algèbres séparables est donnée dans cet esprit au §7, où on traite
surtout des phénomènes spéciaux au cas des algèbres séparables entières (comprenant
les extensions algébriques séparables), qui sont mis en relation avec les notions d’algèbre
diagonalisable, et d’algèbre étale (=qui devient diagonalisable après changement de base).
Le §7 contient également la suite des corps parfaits et des extensions radicielles, et les
notions de clôture parfaite et de clôture séparable, bien utiles et qui ne figuraient pas
dans Bourbaki.

Dans la théorie de Galois proprement dite, au §8, n◦ 1 à 3, on a pratiquement suivi le
texte publié, en augmentant simplement de quelques détails (notamment sur le cas quasi-
galoisien). Comme innovation, on introduit la notion d’algèbre à groupes d’opérateurs
galoisienne, pour pouvoir définir l’objet H1(k,G), qui est un groupe commutatif si G
l’est, qu’onutilisera pourdonnerune formulationplus satisfaisante de la théorie deKum-
mer au §10. On a étoffé un peu le n◦ des groupes de Galois topologiques (qui passe dans
le texte du §) par des suites sur les groupes profinis, et on a introduit la notion de groupe
fondamental d’un corps (= groupe de Galois topologique d’une clôture séparable), dont
l’importance n’est apparue que dans les dernières années, ce qui explique son absence
dans le texte publié.

Les normes et traces sont disjointes du § de Galois et forment un paragraphe à part



(§9) ; il a paru antibourbachique, en effet, de définir des notions aussi générales en com-
mençant par le cas étriqué des extensions séparables finies, sous prétexte que dans ce
cas le norme et la trace s’expriment en termes des isomorphismes de l’extension dans
une clôture algébrique. Pratiquement, ce changement de plan consiste à remonter au
Chap. V le par. 12, n◦ 1 et 2, du Chap. VIII. Une autre possibilité serait de remonter la
suite des normes et traces au Chap. III ou IV (leur place semble en effet plutôt dans un
Chapitre consacré à des algèbres générales, plutôt que dans un Chapitre sur les algèbres
semi-simples). Si cette solution était adoptée, le §9 de la présente rédaction disparaîtrait,
et serait remplacé par un nouveau n◦ au §7, indiquant le calcul de la norme et de la trace
d’une algèbre étale aumoyendes homomorphismes dans une clôture algébrique du corps
de base, et le critère d’étalité par la forme trace.

Le paragraphe des corps finis, racines de l’unité, extensions cycliques, reste inchangé,
sauf que la théorie de Kummer est réécrite dans l’esprit du H1, et le théorème 90 énoncé
dans le cas général, pas seulement cyclique. De plus, les théorèmes de l’élément primitif
et de la base normale sont reportés à ce paragraphe. L’ordre des paragraphes a été pris de
telle façon que les §7, 8, 9, 10 forment un “bloc galoisien” qui soit indépendant des §11,
12, 13 concernant des algèbres et extensions pas nécessairement entières séparables (voir
le Leitfaden).

Le par. 11 est nouveau, et consiste à magnifier le fait que les extensions radicielles
d’un corps k sont telles qui donnent des anneaux locaux (à idéal maximal un nilidéal)
par toute extension du corps de base. Il peut être dégonflé à volonté, à l’exception de ce
dernier résultat.

Le par. 12 contient le critère deMac-Lane et ses variantes, et les propriétés essentielles
des produits tensoriels de corps, traités très imparfaitement par Bourbaki. Le critère de
Mac-Lane s’énonce ici en disant qu’une algèbre commutative A sur un corps k est sé-
parable si et seulement siA⊗k k

p−1 est réduite.

Enfin, le par. 13, en plus du critère différentiel de séparabilité d’une extension et
du théorème sur les bases de transcendance séparantes, est étoffé par l’introduction des
modules d’imperfection d’une algèbre et par l’égalité deCartier sur les extensions de type
fini, ainsi que par la suite des p-bases.

Le plan adopté, consistant à faire passer le bloc galoisien avant l’étude générale de la
séparabilité et les questions différentielles, a pour conséquence que les résultats sur les
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extensions séparables, et en particulier les critères de séparabilité, sont répartis dans trois
paragraphes : par. 8 (cas des algèbres entières, i.e. des extensions algébriques), par. 12
(critère de Mac-Lane et variantes), par. 13 (critère différentiel, bases de transcendance
séparantes). Cela était également le cas dans le texte publié, et ne me semble offrir aucun
inconvénient sérieux.
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COMMENTAIRES DEDÉTAIL

Le texte publié sera changé entièrement à partir du paragraphe 7. Pour les par. 1 à 6,
nous signalons plus bas les modifications de détail qui semblent nécessaires. Nous avons
groupé dans un appendice quelques résultats épars de théorie des anneaux, dont la place
naturelle pour la plupart semblerait aux Chapitres I et IV, mais dont certains pourraient
être insérés peut-être au cours du Chap. V. Bourbaki décidera. On référera aux énoncés
de l’Appendice par des sigles tels que App 3.27.

Par 1.

N◦ 1. La notion de caractéristique introduite auChap. I, à laquelle on réfère haut de
p. 71, est canularesque et sera vidée dans la prochaine édition. Il faut donc rédiger sans
utiliser cette terminologie. Dégager le raisonnement “deux cas peuvent se présenter” en
un.

Lemme. — Soit n un entier ≥ 0. Alors Z/nZ est intègre sss on a n = 0 ou n est un
nombre premier ; dans ce deuxième cas (et seulement dans celui-là) Z/nZ est un corps.

Énoncer le théorème 1 sans terminologie de caractéristique, en disant que les corps
premiers sont ceux isomorphes aux corps Q ou Fp (p premier), ces corps-types étant
d’ailleurs deux à deux non isomorphes. Les remarques 2 et 3 tombent ou sont reportées
après la notion de caractéristique, que je propose d’introduire dans le même n◦ ainsi :

Proposition A.— SoitA un anneau (pas nécessairement commutatif, mais associatif
et unitaire comme il se doit), et soit p un nombre premier. Les conditions suivantes sont



équivalentes :

(i) p · 1A = 0A (où 1A et 0A sont resp. les élément unité et nul deA).

(ii) pA = 0 , i.e. pour tout x ∈ A , on a px = 0 .

(iii) A peut être muni d’une structure de Fp-algèbre compatible avec sa structure
d’anneau.

De plus, si ces conditions sont vérifiées, la structure d’algèbre mentionnée dans (iii) est
uniquement déterminée.

Proposition B. — Soit A un anneau (pas néc comm). Les conditions suivantes sont
équivalentes :

(i) Pour tout entier n > 0, l’application x⇝ nx dansA est bijective.

(iii) A peut être muni d’une structure de Q-algèbre compatible avec sa structure
d’anneau.

De plus, si ces conditions sont vérifiées, la structure d’algèbre envisagée dans (iii) est
uniquement déterminée.

DéfinitionC.— Soit p un entier≥ 0 , qui est soit nul, soit un nombre premier. On dit
qu’un anneau A est de caractéristique p, si A satisfait aux conditions de la prop. A dans
le cas où p est premier, resp. à celles de prop. B si p est nul.

Proposition D. — Un anneau A non nul a au plus une caractéristique, qui est aussi
l’entier n ≥ 0 caractérisée par la relation J = nZ, où J est l’idéal annulateur de
l’homomorphisme n ⇝ n.1A de Z dans A. L’anneau nul admet comme caractéristique
tout entier premier ou nul.

Proposition E.—Un corps a une caractéristique bien déterminée, égale à celle de tout
sous-corps et de tout sur-corps. Pour tout entier p comme dans déf. C, il existe des corps (en
fait des corps premiers) de caractéristique p. Pour deux corps premiers de caractéristique p,
il existe un isomorphisme unique de l’un sur l’autre.
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Remarque F. — Soit p comme dans déf. C, et soit P le corps premier type de car-
actéristique p (donc égal à Fp si p 6= 0 , àQ si p = 0). Alors un anneau A est de carac-
téristique p si et seulement si il peut être muni d’une structure de P -algèbre compatible
avec sa structure d’anneau, et alors cette structure de P -algèbre est unique. LaMémère-
catégorie des anneaux de caractéristique p est donc isomorphe, si on ose ainsi s’exprimer, à
la Pépère-catégorie des P -algèbres associatives et unitaires.

Remarque F’.— SiA est un anneau non nul de caractéristique p, il contient un sous-
corps isomorphe au corps premier P . Si p = 0, donc P = Q, alors P est infini, donc
un anneau non nul de caractéristique nulle est infini. En particulier, tout corps fini est
de caractéristique p > 0.

N◦ 2. Prendre des anneaux au lieu de corps.

Par 2.

Dans l’introductionde la notiond’extension, il faut dire qu’une extensiond’un corps
K est uneK-algèbreLqui se trouve être un corps. En effet, il est contraire auxbons yogas
de structure, et aussi à l’usage que Bourbaki lui-même fait de ce terme, de se borner au
cas oùL est vraiment un sur-corps deK , i.e. K une partie deL. Définir aussi l’extension
triviale : K −→ L est un isomorphisme (pas nécessairement une identité !).

N◦ 1. Il n’y a aucune raison de ne donner un sens au symbole [E : K] que lorsqu’il
est fini, au contraire il est parfois commode d’utiliser la notation en tous les cas. Ligne 12,
la référence est canularesque, ligne suivante référence changée en Chap. II, par. 1, prop.
25. Dans le théorème 1, supprimer le passage “si l’un des nombres…est défini, il en est de
même de l’autre”, tout est toujours défini. On aura remarqué que pour des extensions
de corps, le degré est un entier≥ 1 ou+∞, donc les deux membres de l’égalité du th. 1
sont toujours bien définis.

Dans la proposition 1, on peut supprimer les hypothèses de commutativité. Dans
le corollaire de la proposition 1, supprimer l’assertion sur l’égalité des éléments unités,
qui est canularesque. Demême, le passage “nous ne considérons que des représentations
non nulles, c’est-à-dire telles que f(1) = 1”…Il doit être entendu une bonne fois (au
besoin dans le chapeau du chapitre) que les algèbres sont associatives et unitaires, les ho-
momorphismes d’anneaux et d’algèbres respectent les unités. Il y a aussi deux références
au Chap. II qui doivent être changées.

N◦ 2. Page 77, dans la note de bas de page, “les axiomes…ne font intervenir que des
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parties finies…” ne veut rien dire. On aurait intérêt à vider cette brillante note. Page 78,
5ème ligne avant la fin du n◦, lire “réunion filtrante”.

N◦ 3. Référence au Chap. III changée. Page 79, ligne 1, supprimer “(par exemple)”.
Dans le texte précédant prop. 5, prendre pourA etB des parties (pas nécessairement des
sous-anneaux) engendrant les extensionsE resp. F .

Par 3.

Il faudrait rédiger systématiquement en termes d’algèbres entières (ou algébriques, si
Bourbaki préfère — le rédacteur ne préfère pas), au lieu d’extensions algébriques. Ainsi,
dès la définition 1, prendre pour E une algèbre (qu’on noterait plutôt A), pas même
commutative, et introduire la notion “transcendant” et “entier = algébrique”, (la formu-
lation de cette deuxième notion devrait être changée si on commence par ne pas sup-
poser non plus que k soit un corps). Kif-kif pour définition 2, pour le théorème 1 (re-
formulé en conséquence, en supprimant le mot “corps” où il le faut) etc. Dans la re-
marque à la fin du n◦ 1, 4ème ligne avant la fin, lire “et si f est 6= 0 et qu’on désigne
par n son degré”. Dans prop. 1, ajouter qu’alors toutes les racines de f sont simples, et
f(X) = (X − x1) . . . (X − xn) , où les xi sont les conjugués de x.

Par 4.

Remplacer le titre par : “Isomorphismes et automorphismes de corps. Extensions
quasi-galoisiennes”.

N◦ 1. Remplacer l’exemple 2 en petits caractères, par une proposition en forme, sous
la forme suivante : Un corps algébriquement clos est infini.

N◦ 2. Dans le th. 1 et son corollaire, lire “extension algébriquement close” au lieu de
“clôture algébrique”. La démonstration du corollaire est amoureuse, et ce corollaire ne
doit sa raison d’être qu’à la définition amoureuse adoptée par Bourbaki pour la notion
d’extension.

Par 5.

Page 95, fin de la remarque, référence au Chap. II changée ; ligne - 13, au lieu de
“algébriquement indépendants” il faudrait lire “mutuellement algébriquement indépen-
dants”, ou ne rien dire du tout.

Page 98, supprimer la note en petits caractères après le th. 2.
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N◦ 3. Énoncer le th. 3 et la déf. 4 sans hypothèse de finitude. Dans définition
4, supprimer la terminologie “dimension algébrique” et la notation dim alKE, que per-
sonne n’a jamais employée, et la notation dimK E, terriblement ambiguë ; introduire
deg. trKL. Vider le noble laïus en petits caractères après déf. 4. Dans le théorème 4,
supprimer “si l’un des nombres…est défini, il en est de même de l’autre”.

Par 6.

N◦ 1. Page 109, lignes 7 et 8, la notion d’extension universelle, introduite fort légère-
ment et par la bande, est bonne pour le vidage. Dans le cor. à prop. 1, lire “degré de
transcendance” ; le corollaire semble d’ailleurs bon à vider. Vider la remarque en petits
caractères à la fin du n◦ 1.

N◦ 2. Dans déf. 1, prendre pour E et F des parties quelconques. Dans la note en
petits caractères au bas de p. 110, vider la première phrase, et remplacer le mot “classes
d’intransitivité” par “orbites”. Dire que lamême remarque s’applique pour la relation de
conjugaison entre parties. Page 111, petits caractères, après “intrinsèque” ajouter “àK
etE”.

N◦ 3. Le titre devient : Extensions quasi-galoisiennes. Remplacer l’ensemble des
propositions 5 et 6, qui font un bonnet blanc-blanc bonnet bien désagréable, par la

Proposition5. —SoientK un corps,E une extensionalgébriquedeK ,Ωune extension
algébriquement close deE. Les conditions suivantes sont équivalentes :

(i) ToutK-homomorphisme deE dansΩ appliqueE dans lui-même.

(ii) ToutK-automorphisme deΩ appliqueE dans lui-même (donc, en vertu de prop. 4,
induit unK-automorphisme deE).

(iii) Pour tout élément x de E, tous les conjugués de x surK (dans Ω) appartiennent à
E.

(iv) Tout polynôme irréductible de K[X], ayant une racine dans E, se décompose en
facteurs linéaires (distincts ou non) dansE[X].

Comme tout K-homomorphisme de E dans Ω ne prolonge unK-automorphisme de
Ω (prop. 2, cor. 2), l’équivalence de (i) et (ii) est claire. D’autre part, les polynômes
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irréductibles f de K[X], ayant une racine dans E, sont exactement (à des constantes
multiplicatives près) les polynômesminimaux des éléments x deE, les racines de f étant
justement les conjugués de x (prop. 3). Comme f se décompose dansE[X] en produit
de facteurs linéaires si et seulement si toutes les racines dans Ω se trouvent dans E, cela
montre l’équivalence de (iii) et (iv). Comme par définition les conjugués surK (dansΩ)
d’un élément x deE sont précisément les transformés par lesK-automorphismes deΩ,
l’équivalence de (ii) et (iii) est également claire, ce qui prouve la proposition.

Définition 2. — SoientK un corps,E une extension deK . On dit queE est une exten-
sion quasi-galoisienne deK si elle est algébrique, et si elle satisfait à la condition (iv) de la
prop. 5 (équivalente, une fois choisie une clôture algébriqueΩ deE, aux autres conditions
(i) à (iii) de la prop. 5).

On peut encore dire qu’une sous-extensionE d’une extension algébriquement close
Ω deK est quasi-galoisienne si et seulement si elle est algébrique, et identique à toutes les
extensions conjuguées (définition 1) deE dansΩ. Par exemple, toute clôture algébrique
deK est une extension quasi-galoisienne deK .

Je ne pense pas qu’il y ait lieu de garder la prop. 7, qui constitue une simple redite. Il y
a lieu par contre d’étoffer le corollaire des extensions quasi-galoisiennes. On peut garder
les prop. 8 et 9 actuelles (elles deviennent 7 et 8), et les corollaires de cette dernière, tels
quels, sauf qu’il faut remplacer partout “normale” par “quasi-galoisienne”. Il faut enfin
ajouter deux propositions.

Proposition 9. — Soient K un corps, Ω une extension de K , E et K ′ deux sous-
extensions deΩ. SiE est quasi-galoisienne surK , alorsE ′ = K(E ′) est quasi-galoisienne
surK ′.

En effet, en vertu du théorème de Steinitz on peut supposerΩ algébriquement close,
et comme tout K-automorphisme de Ω est un K-automorphisme, il applique E dans
lui-même, donc E ′ = K ′(E) dans lui-même, ce qui prouve que E ′ est une extension
quasi-galoisienne de K ′, compte tenu qu’elle est algébrique en vertu de par. 3, n◦ 2,
prop. 7.

Proposition 10. — SoientK un corps, E une extension deK ,K ′ une sous-extension
deE. SiE est quasi-galoisienne surK , elle est quasi-galoisienne surK ′.
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En effet, soit Ω une extension algébriquement close de E, alors tout K ′-
automorphisme de Ω est un K-automorphisme, donc applique E dans lui-même, ce
qui prouve que E est une extension quasi-galoisienne de K ′ (compte tenu qu’elle est
algébrique surK ′, l’étant surK).

Pour d’autres commentaires au n◦ 3, cf. §6, n◦ 1, le N. B.
Je suggère de faire du th. d’Artin un n◦ 4 au §6 :
N◦ 4. Le théorème d’Artin.
Le résultat du présent numéro, de nature surtout technique, nous servira au §8 à

prouver un résultat clef de la théorie de Galois, et au par. 12 à démontrer le critère de
séparabilité deMac Lane. Il ne sera pas utilisé directement à d’autres endroits du présent
livre.

Théorème 1 (Artin). — SoientK un corps,G un ensemble d’automorphismes deK ,
stable parmultiplication et contenant l’automorphisme identique, k le corps des invariants
deG,V une partie deK ,nun entier≥ 0. MunissonsK comme structure d’espace vectoriel
sur k, et l’ensemble des applications deV dansK de sa structure naturelle d’espace vectoriel
surK . Pour que l’ensemble des restrictions à V des u ∈ G soit de rang n surK , il faut et
il suffit que la partie V deK soit de rang n sur k.

N. B. — La démonstration est celle de la présente édition, où il faut simplement
changer la référence à l’ancienne édition du Chap. II. On pourrait aussi, tant qu’à faire,
mettre tout de suite la version non commutative, qui ne coûte pas plus cher. Le rédacteur
pense qu’il ne faut pas expliciter ici la prop. 1 page 117 de la présente édition du Chap.
V, trop triviale pourmériter un tel honneur. Je pense qu’il faut garder les quatre lignes de
laïus préliminaires ci-dessus, qui seront bien utiles au lecteur pour l’encourager à oublier
le théorème d’Artin. Vérifier s’il y a quelque part la justification du terme “corps des
invariants”, je ne l’ai trouvée nulle part.

Enfin, je suggère de faire un
N◦ 5. Théorèmes d’indépendance linéaire et algébrique d’isomorphismes de corps.
Le premier de ces deux théorèmes me semble sans doute qu’un rappel d’un énoncé

plus général figurant au Chap. IV (cf. App. 5,6), il sera utilisé au §8 pour la théorie de
Galois. Le théorème d’indépendance algébrique ne servira plus dans le livre d’Algèbre, et
le rédacteur avait qu’il n’en est encore jamais servi lui-même. Aussi il propose de mettre
ce théorème en petits caractères.
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§ 7. —ALGÈBRES ENTIÈRES SÉPARABLES SURUNCORPS.
CLÔTURE SÉPARABLE ET CLÔTURE PARFAITE D’UN

CORPS

1. — Algèbres diagonalisables

Définition 1. — Soient k un anneau (le chapeau du Chapitre impliquera qu’il est com-
mutatif),A une k-algèbre. On dit queA est diagonalisable s’il existe un entier n ≥ 0 tel
queA soit isomorphe à l’algèbre produit kn.

Par exemple, l’algèbre 0, ainsi que k muni de sa structure canonique de k-algèbre,
sont diagonalisables ; tout produit fini d’algèbres diagonalisables est diagonalisable. Une
algèbre diagonalisable sur k est de degré fini sur k.

Proposition 1. — Soient k un corps,A une k-algèbre de degré finin,P (A) l’ensemble
des k-homomorphismes de A dans k, Ω une extension algébriquement close de k. Les con-
ditions suivantes sont équivalentes :

(i) A est diagonalisable (déf. 1).

(ii) A est réduit, et pour tout k-homomorphisme u : A −→ Ω, on a u(A) ⊂ k.

(ii bis) A est réduit et ses extensions résiduelles (App. n◦ 5) sont triviales.

(iii) card(P (A)) = n.

(iv) A a exactement n idéaux maximaux.



Ce n’est autre que App. 5.7.

Proposition 2. — Soit k un corps.

(i) SoitA une k-algèbre. SiA est diagonalisable, il en est demême de toute sous-algèbre
et de toute algèbre quotient deA.

(ii) Soit (Ai)i∈I une famille finie de k-algèbres. Pour que le produitA de cette famille
soit diagonalisable, il faut et il suffit que chacune desAi le soit.

(iii) Soient A et B deux k-algèbres. Si A et B sont diagonalisables, il en est de même
de A ⊗k B. Inversement, si A ⊗k B est diagonalisable et A 6= 0, alors B est
diagonalisable.

(iv) SoitA une k-algèbre, engendrée par une famille de sous-algèbresAi (i ∈ I). Pour
queA soit diagonalisable, il faut et il suffit qu’elle soit commutative et de degré fini,
et que chacune desAi soit diagonalisable.

(v) SoitA une k-algèbre diagonalisable, alors pour toute extension k′ de k,A⊗k k
′ est

une k′-algèbre diagonalisable.

Démonstration.

(i) Si A est diagonalisable, il résulte aussitôt du critère (ii bis) de prop. 1 que toute
sous-algèbre l’est également. D’ailleurs la connaissance des idéaux d’un produit de
corps (App. 1.14)montre aussitôt que toute algèbre quotient de kn est isomorphe
à une algèbre km (m ≤ n), ce qui prouve que si A est diagonalisable, il en est de
même de toute algèbre quotient.

(ii) Si les Ai sont diagonalisables, il en est de même de leur produit, comme il ré-
sulte trivialement de la définition. Inversement, si le produitA est diagonalisable,
comme lesAi sont isomorphes à des algèbres quotients deA, elles sont diagonal-
isables en vertu de (i).

(iii) Si A et B sont diagonalisables, il en est de même de A ⊗k B, comme il résulte
trivialement de la définition et du calcul du produit tensoriel d’algèbres produits.
Inversement, si A ⊗k B est diagonalisable et A 6= 0, alors B est diagonalisable
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en vertu de (i), car isomorphe à une sous-algèbre 1A ⊗k B de A ⊗k B, qui est
diagonalisable.

(iv) La nécessité de la condition résulte aussitôt de (i). Inversement, supposons lesAi

diagonalisables et A commutative et de degré fini sur k, alors il existe une sous-
famille finie de (Ai)i∈I qui engendre déjàA, doncA est isomorphe à une algèbre
quotient duproduit tensoriel d’une sous-famille finie de (Ai), doncdiagonalisable
en vertu de (iii), en utilisant une récurrence sur le cardinal de l’ensemble d’indices
de cette sous-famille.

(v) Est triviale sur la définition.

Proposition 3. — Soient k un corps, f ∈ k[X] un polynôme en une indéterminée X , à
coefficients dansk, non identiquement nul,A = k[X]/fk[X]. AlorsA est diagonalisable
si et seulement si f se décompose en facteurs linéaires tous distincts, i.e. peut s’écrire sous la
forme

f = c
∏

1≤i≤n

(X − ai),

où n est le degré de f , c et les ai (1 ≤ i ≤ n) sont dans k, et les ai sont tous distincts.

Cela résulte en effet aussitôt de App. 5.8, compte tenu que pour un polynôme uni-
taire irréductible fi, le corps k[X]/fk[X] est une extension triviale de k si et seulement
si fi est de la formeX−ai, et que deux polynômes de la formeX−a,X− b sont égaux
si et seulement si a et b le sont.

Corollaire. — Soient A une algèbre sur un corps k, (xi)i∈I une famille génératrice
d’éléments deA. Pour queA soit diagonalisable, il faut et il suffit queA soit de degré fini,
et que pour tout i ∈ I , le polynôme minimal fi de xi sur k (§3, n◦1, déf. 3) se décompose
en facteurs linéaires tous distincts.

En effet, A est engendré par ses sous-algèbres Ai = k[xi], isomorphes aux
k[X]/fik[X], et on conclut par Proposition 2 (iv) et Proposition 3.

Corollaire. — Soient k un corps, V un espace vectoriel de dimension finie sur k. Soit
u un endomorphisme de V ; on dit que u est diagonal par rapport à une base (es)s∈S de
V , si sa matrice par rapport à cette base est diagonale, i.e. si pour tout s ∈ S, il existe un
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λs ∈ k tel que u(es) = λses ; on dit que u est diagonalisable si on peut trouver une base
de V par rapport à laquelle u soit diagonal. Une famille (ui)i∈I d’endomorphismes de V
est dite diagonalisable si on peut trouver une base (es)s∈S de V telle que pour tout i ∈ I ,
ui soit diagonal par rapport à cette base.

On notera que siA est une partie de Endk(V ), considérantA comme définissant la
famille des endomorphismes u ∈ A de V , la définition précédente donne un sens à la
locution : “A est diagonalisable”. Nous allons voir que lorsqueA est une sous-algèbre de
Endk(V ), cette dernière définition est compatible avec la définition 1, i.e. A est diago-
nalisable, en tant que partie de Endk(V ), si et seulement si elle est diagonalisable en tant
que k-algèbre :

Proposition 4. — Soient k un corps, V un espace vectoriel de dimension finie sur k,
(ui)i∈I une famille d’endomorphismes de V ,A la sous-algèbre de Endk(V ) qu’elle engen-
dre. Les conditions suivantes sont équivalentes :

(i) La k-algèbreA est diagonalisable (cf. déf. 1).

(ii) La partieA de Endk(V ) est diagonalisable (cf. déf. 2).

(iii) La famille (ui)i∈I est diagonalisable (cf. déf. 2).

(iv) Les ui sont diagonalisables et commutent deux à deux.

(v) Les ui commutent deux à deux, et pour tout i ∈ I le polynôme minimal (§3, n◦1,
déf. 3) de ui se décompose en facteurs linéaires tous distincts.

Comme A est commutative si et seulement si les ui commutent deux à deux,
l’équivalence de (i) et (v) est un cas particulier du corollaire à la prop. 3. D’autre part
(i) implique (ii) en vertu de App. 1.24, et (ii) implique queA est isomorphe à une sous-
algèbre d’une algèbre diagonalisable (l’algèbre des matrices diagonales, qu’on aurait pu
donner en exemple dès après la définition 1), donc est diagonalisable en vertu de prop.
2 (i). Donc (i), (ii), (v) sont équivalentes. Appliquant ceci au cas d’une famille réduite à
un seul élément, on conclut que si u est un endomorphisme de V , alors u est diagonal-
isable si et seulement si son polynôme minimal se décompose en facteurs linéaires tous
distincts, ce qui prouve que (iv) équivalait à (v). L’équivalence de (ii) et (iii) est claire, car
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pour une base donnée de V , les matrices des ui sont toutes diagonales si et seulement si
il en est ainsi des matrices de tous les u ∈ A. Cela achève la démonstration de prop. 4.

Corollaire. — Soit A une algèbre sur un corps k. Pour que A soit diagonalisable, il
faut et il suffit que pour toute représentation linéaire de A par des endomorphismes d’un
espace vectoriel V de dimension finie sur k, la famille correspondante (indexée par A)
d’endomorphismes de V soit diagonalisable, et il faut et suffit qu’on puisse trouver une
représentation linéaire fidèle deA ayant cette propriété.

Si A est diagonalisable, donc isomorphe à une algèbre kn, alors la connaissance ex-
plicite de ses représentations linéaires (App. 1.24) montre la nécessité de la condition
énoncée dans le corollaire. Inversement, si A admet une représentation linéaire fidèle
satisfaisant à la condition de diagonalisabilité du corollaire, alors A est une algèbre di-
agonalisable en vertu de prop. 4, (ii)⇒ (i). Notant que toute algèbre de degré fini sur
k admet une représentation linéaire fidèle (par exemple la représentation régulière), on
achève la démonstration du corollaire.

Remarque. —On fera attention que sous les conditions préliminaires de la prop. 4,
il est possible que tout élément de A soit un endomorphisme diagonalisable de V , sans
queA soit commutatif, donc sans queA soit diagonalisable, cf. exerc….

2. — Algèbres étales sur un corps

Proposition 5. — Soient k un corps,A une algèbre commutative de degré fini sur k,Ω une
extension algébriquement close de k. Alors les deux conditions sont équivalentes :

(i) A⊗k Ω est une algèbre diagonalisable surΩ (cf. déf. 1).

(ii) A⊗k Ω est un anneau réduit.

De plus, ces conditions sont indépendantes de l’extension algébriquement closeΩ envisagée
de k. SiK est une sous-extension deΩ telle que pour tout k-homomorphisme u : A −→ Ω,
on ait u(A) ⊂ K , alors les conditions (i) et (ii) sont équivalentes aux conditions qu’on en
déduit en y remplaçantΩ parK .

Notons que la condition envisagée surK s’exprime en termes de laK-algèbreB =

A ⊗k K par le fait que pour tout K-homomorphisme v : B −→ Ω, on a v(B) =
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K , ce qui en vertu de App. 5.4 et de §4, n◦2, th. 1 équivaut au fait que les extensions
résiduelles de laK-algèbreB sont triviales. D’après la prop. 1, on sait bien qu’alorsB est
diagonalisable si et seulement si elle est réduite ; en vertu de prop. 2 (v) laΩ-algèbreB⊗K

Ω, isomorphe àA⊗kΩ, sera alors diagonalisable, et l’inverse est vrai, carB est isomorphe
à un sous-anneau de B ⊗K Ω, donc réduit si ce dernier l’est. Il reste à prouver que les
conditions (i) et (ii) ne dépendent pas de l’extension algébriquement close Ω choisie de
k. Or si Ω′ est une autre telle extension, on peut trouver une extension algébriquement
close Ω′′ de k et des k-isomorphismes de Ω,Ω′ sur des sous-extensions de Ω′′ (§4, prop.
2 et th. 2) ; il résulte alors de ce qui précède que les conditions envisagées pour Ω,Ω′

sont équivalentes séparément aux conditions analogues pourΩ′′, donc équivalentes entre
elles. Cela achève la démonstration de la proposition.

Définition 3.— Soient k un corps,A une algèbre sur k. On dit queA est étale (ou étale
sur k, si une confusion est à craindre sur le corps de base), si A est commutative, de degré
fini, et si elle satisfait aux conditions équivalentes de la prop. 5.

Cette définition a un sens grâce au théorème de Steinitz, (§4, th. 2), assurant que k
admet bien une extension algébriquement close.

Proposition 6.— Soit A une algèbre commutative de degré fini sur le corps k. Pour
queA soit étale, il faut et il suffit que pour toute extensionK de k,A⊗kK soit un anneau
réduit. En particulier, siA est étale,A est un anneau réduit.

C’est trivialement suffisant sur la forme (ii) des conditions de prop. 5. Inversement,
si A est étale, prouvons que A ⊗k K est réduit pour toute extensionK de k. En effet,
prenons pourΩ une extension algébriquement close deK , alors par hypothèseA⊗k Ω

est réduit, donc aussiA⊗k K qui est isomorphe à un sous-anneau de celui-ci.

Proposition 7. — Avec les notations de la prop. 5, les conditions (i) et (ii) équivalent
aussi à la condition suivante :

(iii) Le cardinal de l’ensemble des k-homomorphismes de A dans Ω est égal au degré n
deA.

Quitte à remplacer A par la Ω-algèbre A ⊗k Ω, on peut supposer que Ω = k, et on
conclut par la prop. 1.
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Proposition 8. — Soit k un corps.

(i) SoitA une k-algèbre. SiA est étale, il en est demême de toute sous-algèbre et de toute
algèbre quotient deA.

(ii) Soit (Ai)i∈I une famille finie de k-algèbres. Pour que le produitA de cette famille
soit étale, il faut et il suffit que chacun desAi le soit.

(iii) SoientA etB des k-algèbres. SiA etB sont étales, il en est deA⊗kB. Inversement,
siA⊗k B est étale et siA 6= 0,B est étale.

(iv) SoitA une k-algèbre, engendrée par une famille (Ai) de sous-algèbres. Pour queA
soit étale, il faut et il suffit qu’elle soit commutative, de degré fini, et que lesAi soient
étales.

(v) SoitA une k-algèbre, k′ une extension de k,A′ = A⊗k k
′ la k′-algèbre déduite par

changement du corps de base. Pour queA soit étale, il faut et il suffit queA′ le soit.

Démonstration. — Tout d’abord, (v) est immédiat sur le critère de la prop. 5, comme
on voit en choisissant une extension algébriquement close Ω deK , et en la considérant
également comme une extension de k. Ceci noté, pour prouver les énoncés (i) à (iv), on
choisit une extension algébriquement closeΩ de k, et on est ramené par changement de
base à prouver lesmêmes assertions sur un corps algébriquement clos. Or dans ce cas, une
algèbre sur k est étale si et seulement si elle est diagonalisable, et nos assertions résultent
des assertions analogues de la prop. 2.

Corollaire 1. — Soit A une algèbre sur le corps k. Pour que A soit étale, il faut et il
suffit queA soit isomorphe au produit d’une famille finie d’extensions étales de k.

La suffisance résulte de (ii), et la nécessité également, compte tenu du fait qu’une
algèbre commutative de degré fini sur k est isomorphe au produit d’une famille finie
d’algèbres locales de degré fini sur k (App. 3.5), et que si ces dernières sont étales, elles
sont réduites (prop. 6) donc des corps (App. 3.7).

Corollaire 2. — SoientK une extension du corps k,A uneK-algèbre. Pour queA soit
étale en tant que k-algèbre, il suffit que l’extensionK soit étale et que laK-algèbreA soit
étale, et ces conditions sont également nécessaires lorsqueA 6= 0.
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Supposons K étale sur k et A étale sur K , et prouvons que A est étale sur k. Soit
k′ une clôture algébrique de k, alors par hypothèse K ′ = K ⊗k k

′ est isomorphe au
produit d’une famille finie de k′-algèbresK ′

i isomorphes à k′. L’algèbre A′ = A ⊗k k
′

surK ′ se décompose alors en produit d’algèbres A′
i sur les facteursK ′

i (App. 1.25), ces
dernières n’étant autres d’ailleurs queA′

i = A ⊗K K ′
i, donc diagonalisables puisqueA

est étale surK et queK ′
i est une extension algébriquement close deK . Il en résulte que

A′, en tant que k′-algèbre, est un produit fini d’algèbres diagonalisablesA′
i sur k′, donc

diagonalisable, ce qui prouve que A est une k-algèbre étale. Inversement, supposons A
étale sur k et A 6= 0. Comme alorsK est isomorphe à une sous-algèbre de A, il résulte
de prop. 8 (i) queK est étale sur k. Reste à prouver que A est étale surK . Or si k′ est
une extension algébriquement close de k, alors A ⊗K K ′ est isomorphe à une algèbre
quotient deA⊗K K

′, et cette dernière est diagonalisable puisqueA est étale sur k, donc
il en est de même deA ⊗K K ′ en vertu de prop. 2 (i), ce qui prouve queA est étale sur
K .

Remarque. — Le corollaire 1 montre que la classification des algèbres étales sur un
corps donné k se ramène complètement à celle des extensions étales de k. Nous mon-
trerons au §8 comment on peut effectuer cette classification en termes d’ensembles à
groupes d’opérateurs, grâce à la théorie de Galois.

Proposition 9. — Soient k un corps, f ∈ k[X] un polynôme à une indéterminéeX à
coefficients dansK , non identiquement nul. Pour que l’algèbreA = k[X]/(fk[X]) sur
k soit étale, il faut et il suffit que les racines de f (dans une extension algébriquement close
donnéeΩdek) soient simples (réf.), ou encore quef se décompose enunproduit de polynômes
irréductibles distincts dont chacun n’a que des racines simples (réf.) dansΩ. Lorsque f est
irréductible, ces conditions signifient aussi que l’on ait f /∈ k[Xp] (où p désigne l’exposant
caractéristique de k).

Le premier critère, qui s’énonce aussi en disant que f , considéré comme polynôme
à coefficients dans Ω, se décompose en facteurs linéaires distincts, est une conséquence
immédiate de la déf. 3 et de la prop. 3. Le deuxième critère résulte du premier, compte
tenu de la décomposition de A en facteurs locaux correspondants à la décomposition
de f en produit de puissances de polynômes irréductibles (App. 5.8) du fait que A est
réduit si et seulement si les exposants dans la décomposition de f en facteurs sont tous
égaux à 1 (App. 5.9), et queA étale impliqueA réduit (proposition 6). Enfin, lorsque f
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est irréductible, ces conditions équivalent à f /∈ k[Xp] en vertu de §3, prop. 1.

Définition 4. — Soit k un corps. On dit qu’un polynôme f , à coefficients dans k, est
étale, ou encore séparable, s’il est non nul et s’il satisfait aux conditions équivalentes de la
proposition 9. Un élément x d’une algèbreA sur k est dit étale sur k, si la sous-algèbre k[x]
deA engendrée par x est étale sur k.

On notera que siK est une extension de k, alors pour que f soit étale en tant que
polynôme à coefficients dans k, il faut et il suffit qu’il le soit en tant que polynôme à
coefficients dansK , comme il résulte par exemple de prop. 8 (v). C’est pourquoi il est
inutile dans la première partie de la définition 4 de préciser “étale sur k”, comme il est
parfois prudent de le faire pour la notion d’algèbre ou d’élément étale.

Corollaire 1. — Soient k un corps, A une k-algèbre, (xi)i∈I une famille génératrice
d’éléments deA. Pour queA soit étale, il faut et il suffit qu’elle soit de degré fini, commu-
tative (i.e. que les xi commutent deux à deux), et que pour tout i ∈ I , xi soit étale sur k.
Pour qu’un élément x deA soit étale sur k, il faut et il suffit qu’il soit algébrique sur k (§3,
n◦1, déf. 1) et que son polynôme minimal (§3, n◦1, déf. 3) soit séparable.

La première assertion n’est autre que prop. 8 (iv), la deuxième n’est autre que la
prop. 9, compte tenude l’isomorphismek[x] ' k[X]/fk[X], oùf désigne le polynôme
minimal de x sur k (§3, n◦1, th. 1).

Corollaire 2. — Soient k un corps,K une extension de k, x un élément deK qui est
racine simple d’un polynôme f ∈ k[X], alors x est étale sur k.

En effet, le polynôme minimal g de x divise f (§3, th. 1) donc x est racine simple de
g, donc les racines de g dans une clôture algébrique deK (qui sont conjuguées dex) sont
toutes simples, donc en vertu du corollaire 1, x est séparable sur k.

Corollaire 3. — Soient k un corps, Ω une extension de k,K une sous-extension de Ω.
Tout élément x deΩ qui est étale sur k est étale surK .

En effet, si f est le polynômeminimal de x sur k, les racines de f (dans une extension
algébriquement close de Ω) sont simples, et on a f(x) = 0, d’où la conclusion en vertu
du corollaire 2.
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Proposition 10. — Soient k un corps, V un espace vectoriel de dimension finie sur k,
(ui)i∈I une famille d’endomorphismes de V ,A la sous-algèbre de Endk(V ) qu’elle engen-
dre,Ω une extension algébriquement close de k. Alors les conditions suivantes sont équiva-
lentes :

(i) La famille des endomorphismes ui⊗kΩ (i ∈ I) de V ⊗kΩ est diagonalisable (déf.
2).

(ii) L’algèbreA est étale.

Comme par définition,A est étale si et seulement siA⊗k Ω est diagonalisable surΩ, et
que cette dernière algèbre n’est autre que la sous-algèbre de EndΩ(V ⊗k Ω) engendrée
par lesui⊗kΩ, la prop. 10 est un cas particulier de l’équivalence des conditions (i) et (iii)
dans la prop. 4. —Lorsque les conditions équivalentes de prop. 10 sont vérifiées, on dira
parfois que la famille (ui)i∈I est absolument diagonalisable ; on fera attention qu’une
famille diagonalisable est manifestement absolument diagonalisable, mais que l’inverse
n’est pas vrai en général, cf. exerc. . . .Avec la terminologie qu’on vient d’introduire, on
prouve comme pour le corollaire à prop. 4 :

Corollaire. — Soient k un corps, A une algèbre sur k. Pour que A soit étale, il faut
et il suffit que pour toute représentation linéaire de A par des endomorphismes d’un es-
pace vectoriel de dimension finie V sur k, la famille correspondante (indexée par A)
d’endomorphismes de V soit absolument diagonalisable, et il faut et il suffit qu’on puisse
trouver une représentation linéaire fidèle deA ayant cette propriété.

3. — Algèbres séparables sur un corps k

Définition 5. — SoitAune algèbre commutative sur un corpsk. Ondit queA est séparable
(ou séparable sur k, si une confusion sur le corps de base est à craindre) si pour toute extension
K de k,A⊗k K est réduit.

Proposition 11. — Soit A une algèbre sur un corps k. Pour que A soit séparable, il
faut et il suffit que pour toute algèbre réduiteB sur k, le produit tensorielA⊗k B soit un
anneau réduit.
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La condition est manifestement suffisante, prouvons qu’elle est nécessaire, i.e. sup-
posonsA séparable, et prouvons que siB est une algèbre réduite sur k,A⊗kB est réduit.
En vertu de App. 2.12, dire que B est réduit signifie que l’intersection des idéaux pre-
miers p de B est réduite à zéro, ou encore, introduisant les corps des fractions K des
anneaux intègres A/p, que B se plonge dans un produit de corps, soit P =

∏
i∈I Ki.

Par suite,A⊗kB se plonge dansA⊗k P = A⊗k

(∏
i∈I Ki

)
, donc en vertu du Lemme

1 ci-dessous, il se plonge dans l’algèbre produit
∏

i∈I(A⊗k Ki). L’hypothèse surA im-
plique que lesA⊗k Ki sont réduits, donc il en est de même de leur produit (App. 2.11,
remords), donc aussi deA⊗k B. Il reste à prouver le

Lemme 1. — Soient k un anneau,A un k-module, (Ki)i∈I une famille de k-modules,
considérons l’homomorphisme canonique (réf. ?)

A⊗k

∏
i∈I

Ki −→
∏
i∈I

A⊗k Ki.

SiA est libre, cet homomorphisme est injectif.

(N. B.—Devrait figurer auChap. II, par exemple en respect avec l’hypothèse “I fini”
au lieu de “A libre”). En effet, choisissant une base (aj)j∈J dansA, la source de la flèche
envisagée s’identifie à

(∏
i∈I Ki

)(J), donc se plonge dans (∏i∈I Ki

)J '∏
i∈I K

J
i , tan-

dis que le but s’identifie à
∏

i∈I(Ki)
(J) ; or le terme général de ce produit se plonge dans

KJ
i , donc le produit lui-même se plonge dans

∏
i∈I K

J
i (réf.). Avec ces identifications,

on vérifie immédiatement que l’homomorphisme envisagé dans le lemme est induit par
l’application identique de

∏
i∈I K

J
i , ce qui prouve qu’il est injectif.

Proposition 12. — Soit k un corps.

(i) Soit A une k-algèbre commutative. Si A est séparable, il en est de même de toute
sous-algèbre. Inversement, si A est réunion filtrante croissante de sous-algèbres qui
sont séparables, alorsA est séparable.

(ii) Soit (Ai)i∈I une famille de k-algèbres commutatives. Pour que l’algèbre produitA
soit séparable, il faut et il suffit que chacune desAi le soit.

(iii) SoientA etB deux k-algèbres commutatives. SiA etB sont séparables, il en est de
même de A ⊗k B. Inversement, si A 6= 0 et si A ⊗k B est séparable, alors B est
séparable.
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(iv) SoientA une k-algèbre, k′ une extension de k. Pour queA soit une k-algèbre sépara-
ble, il faut et il suffit queA′ = A⊗k k

′ soit une k′-algèbre séparable.

(v) Soient E une extension de k, et A une E-algèbre. Si E est séparable sur k, et A
séparable surE, alorsA est séparable sur k.

Démonstration. —

(i) La première assertion résulte de ce que pour toute sous-algèbre B de A, et toute
extension K de k, B ⊗k K s’identifie à une sous-algèbre de A ⊗k K , donc est
réduite si cette dernière l’est. De même, si A est réunion filtrante croissante de
sous-algèbres Bi, alors A ⊗k K est réunion filtrante croissante de sous-algèbres
isomorphes aux Bi ⊗k K (réf.), donc est réduite si ces dernières le sont, ce qui
prouve la deuxième assertion de (i).

(ii) Utilisant le lemme 1 ci-dessus, on voit que pour toute extensionK de k,A⊗k K

s’identifie à une sous-algèbre de
∏

i∈I(Ai ⊗k K); donc si les Ai sont séparables,
donc les Ai ⊗k K réduits, il en est de même de leur produit (App. 2.11), donc
A⊗kK est également réduit, ce qui prouve queA est séparable. Inversement, siA
est séparable, lesAi qui sont isomorphes à des sous-algèbres deA, sont séparables
en vertu de (i).

(iv) Pour toute extensionK ′ de k′,A′⊗k′ K
′ est k′-isomorphe àA⊗kK

′ (réf.), donc
est réduite siA est séparable, ce qui implique qu’alorsA′ est séparable. Pour prou-
ver l’inverse, il suffit de noter que toute extensionK de k se plonge dans une ex-
tension convenableK ′ de k′ (§4, n◦ 2, prop. 2), or A ⊗k K ' A′ ⊗k′ K

′ étant
réduit, il en est de même deA ⊗k K , isomorphe à un sous-anneau de celui-ci, ce
qui prouve queA est séparable.

(iii) Supposons A et B séparables, prouvons que A ⊗k B l’est, i.e. que pour toute
extensionK de k, (A⊗kB)⊗kK est réduit. Or cette algèbre est canoniquement
isomorphe àAK ⊗K BK , oùAK = A⊗k K ,BK = B ⊗k K (réf.), or en vertu
de (iv) déjà prouvé, AK est uneK-algèbre séparable, d’autre partBK est uneK-
algèbre réduite, doncAK ⊗K BK est réduite en vertu de prop. 11.
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(v) SoitK une extensiondek, alors on aun isomorphismeA⊗kK ' A⊗E(E⊗kK)

(réf.), or d’après l’hypothèse sur E, E ⊗k K est réduit, ce qui implique, grâce à
prop. 11 qu’il en est de même de son produit tensoriel avec l’algèbre séparableA,
doncA⊗k K est réduit. Cela prouve queA est séparable sur k.

Corollaire. — SoitA une algèbre commutative sur un corps k. Pour queA soit séparable,
il faut et il suffit que toute sous-algèbre de type fini le soit. Lorsque A est une extension de
k, pour queA soit séparable, il faut et il suffit que toute sous-extension de type fini le soit.

Cela résulte aussitôt de prop. 12 (ii).

Proposition 13. — Soientk un corps,Aunek-algèbre intègre,E son corps des fractions.
Pour queA soit séparable sur k, il faut et il suffit queE le soit.

Si E est séparable, il en est de même de A en vertu de prop. 12 (i). Inversement,
supposons queA soit séparable, et prouvons que E l’est. Compte tenu de la définition
deE, c’est un cas particulier du résultat plus général suivant (N. B. qu’on pourrait élever
au rang de proposition, prop. 13 devenant corollaire) :

Corollaire 1. — Soit A une algèbre séparable sur un corps k, alors pour toute par-
tie multiplicativement stable S de A, l’anneau des fractions AS−1 de A par rapport à S
(Chap. I …) est séparable sur k.

Cela résulte aussitôt de la définition, et des deux lemmes suivants :

Lemme 2. — Soient k un anneau commutatif,A une k-algèbre commutative, S une
partie multiplicativement stable deA, k′ une k-algèbre commutative, A′ = A ⊗k k

′, S ′

l’image de S par l’homomorphisme canonique A −→ A′. Alors on a un isomorphisme
canonique de k′-algèbres :

(AS−1)⊗k k
′ ' A′S ′−1.

C’est un remords au Chap. II, dont je laisse la démonstration au rédacteur définitif.

Lemme 3. — SoientA un anneau, S une partie multiplicativement stable deA. SiA
est réduit, il en est de même de l’anneau des fractionsAS−1.

En effet, tout élément x de AS−1 s’écrivant sous la forme φ(y)φ(s)−1 avec y ∈
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A, s ∈ S, où φ : A −→ AS−1 est l’homomorphisme canonique, si x est nilpotent on
doit avoirφ(yn)φ(sn)−1 = 0 pour un entier n > 0 convenable, donc il existe un t ∈ S
tel que tyn = 0 et a fortiori tnyn = (ty)n = 0, ce qui implique φ(y) = 0 et a fortiori
x = 0.

Corollaire 2. — Soient k un corps, (Xi)i∈I une famille d’indéterminées. Alors
l’anneau des polynômes k[(Xi)i∈I ], et le corps des fractions rationnelles k((Xi)i∈I), sont
séparables sur k. En particulier toute extension transcendante pure de k est séparable.

En vertu de prop. 13, il suffit de prouver que l’algèbre de polynômesA = k[(Xi)i∈I ]

est séparable, or pour toute extensionK de k, A ⊗k K est canoniquement isomorphe
à l’algèbre de polynômesK[(Xi)i∈I ] (réf.), qui est intègre (réf.), et a fortiori réduite, ce
qui prouve queA est séparable sur k.

Remarque. — En plus des résultats du présent numéro, et du numéro suivant (ces
derniers relatifs aux algèbres séparables entières), le lecteur trouvera des compléments im-
portants sur les algèbres séparables aux §11 (critère de Mac-Lane et ses conséquences) et
12 (critères différentiels de séparabilité, et étude des bases de transcendance séparables).

N. B.—La prop. 13 est bien éculée, la forme satisfaisante est celle-ci : A est séparable
sur k si et seulement siA est réduite, et pour tout idéal premierminimal p deA, le corps
des fractions deA/p est une extension séparable de k.

Si on le veut ici, on doit pouvoir l’avoir sans mal ; si on juge que le lieu serait plutôt
en Géométrie Algébrique, on peut du moins inclure ce résultat en exercice.

4. — Algèbres entières séparables sur un corps

N. B.—Conformément à ce qui a été dit dans les “commentaires”, le sorite des algèbres
entières est supposé fait au §3, n◦1.

Proposition 14. — Soientk un corps,Aune algèbre commutative entière surk, (xi)i∈I
une famille génératrice d’éléments de A, Ω une extension algébriquement close de k. Les
conditions suivantes sont équivalentes :

(i) A est séparable.

(i bis) L’anneauA⊗k Ω est réduit.
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(ii) Toute sous-algèbreB deA qui est de degré fini sur k est étale.

(iii) Pour tout i ∈ I , xi est étale sur k, i.e. la sous-algèbre k[xi] de A engendrée par xi
est étale, ou encore (cor. de la prop. 9) les racines du polynôme minimal de xi sur k
sont simples.

Notons que dire que A est entière sur k revient à dire que la famille filtrante croissante
des sous-algèbres Bj de A de degré fini sur k a pour réunion A, qui s’identifie par suite
à leur limite inductive (§3, n◦1 !). Donc pour toute extension K de k, A ⊗k K est la
réunion de la famille filtrante croissante de sous-algèbresBj ⊗k K , d’où on conclut que
A ⊗k K est réduit si et seulement si il en est de même des Bj ⊗k K . Cela montre que
pour que A satisfasse la condition (i) (resp. (i bis)), il faut et il suffit que chacun des
Bj la satisfasse. En vertu de la déf. 3 (resp. de la prop. 6), cela signifie que les Bj sont
étales, ce qui prouve que chacune des conditions (i), (i bis) est équivalente à (ii). Dans ce
raisonnement, il est d’ailleurs loisible de remplacer la famille desBj par n’importe quelle
famille cofinale de sous-algèbres de degré fini de A. Désignant, pour toute partie finie
J de I , par AJ la sous-algèbre de A engendrée par les xi pour i ∈ J , et appliquant la
remarque précédente, on voit que les conditions envisagées équivalent aussi à dire que
lesAJ sont des algèbres étales sur k. En vertu de prop. 8 (iv) appliqué à chacun desAJ ,
cela signifie aussi que les xi sont étales sur k, i.e. équivaut à (iii).

Corollaire 1. — Soient k un corps,A une algèbre commutative entière sur k. SiA est
séparable, il en est de même de toute sous-algèbre et de toute algèbre quotient deA.

Le cas d’une sous-algèbre n’a étémis que pourmémoire, étant déjà donné dans prop.
12 (i). Soit donc B une algèbre quotient de A. On sait déjà que, puisque A est entière,
il en est de même de B (§3, n◦1). Supposons de plus A séparable, donc (prop. 14) réu-
nion filtrante croissante de sous-algèbres étalesAi. Alors l’algèbreB est réunion filtrante
croissante des sous-algèbresBi images desAi, qui sont étales en vertu de prop. 8 (i), donc
B est séparable en vertu de prop. 14 (ou de prop. 12 (i), au choix).

Corollaire 2. — Soient k un corps,A une k-algèbre commutative entière, (Ai)i∈I une
famille de sous-algèbres deA engendrantA. Pour queA soit séparable, il faut et il suffit
que lesAi le soient.
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Appliquant prop. 14 en prenant comme famille génératrice deA celle définie par la
réunion desAi, la conclusion résulte aussitôt du critère (iii) de la prop. 14.

Corollaire 3. — Soient k un corps, E une extension de k,K et L deux sous-extensions
de E. SiK est algébrique séparable sur k, alors L(K) est algébrique séparable sur L ; la
réciproque est vraie siK et L sont linéairement disjointes sur k.

CommeK est algébrique sur k, il s’ensuit que L(K) est la sous-L-algèbre de E en-
gendrée parK , (§3, n◦2, prop. 7). Donc L(K) est isomorphe à une algèbre quotient de
la L-algèbreK ⊗k L, donc est séparable sur L en vertu de prop. 12 (iv) et du corollaire
précédent. La réciproque résulte de même de prop. 12 (iv).

Corollaire 4. — Soient k un corps,E une extension de k, (Ki)i∈I une famille de sous-
extensions algébriques de E, K l’extension engendrée par cette famille. Pour que K soit
séparable sur k, il faut et il suffit que lesKi le soient.

C’est un cas particulier du corollaire 2, compte tenu que K est aussi la k-algèbre
engendrée par lesKi, puisque ces dernières sont algébriques sur k.

Corollaire 5. — Soit A une algèbre entière sur un corps k. Alors il existe une plus
grande sous-algèbre A0 de A séparable sur k, et A0 est formée des éléments de A qui sont
séparables sur k.

Nous appelleronsA0 la fermeture séparable de k dansA.

Corollaire 6. — SoientA une algèbre entière séparable sur un corps k,Ω une extension
algébriquement close de k,P (A) l’ensemble des homomorphismes de k-algèbres deA dans
Ω. Alors on a

[A : k] = cardP (A),

en particulier, pour queA soit de degré fini sur k, il faut et suffit que P (A) soit fini.

Compte tenu de la prop. 7, on est ramené à prouver la dernière assertion, et plus
précisément le fait suivant : si A est de degré infini sur k, alors P (A) est infini. Or A
est réunion filtrante croissante de ses sous-algèbres de degré finiAi, qui sont étales sur k,
donc on a une bijection canonique

P (A) −→ lim←−P (Ai),
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où dans le système projectif formé des P (Ai), les applications de transition sont sur-
jectives, et les P (Ai) sont finis. Il s’ensuit que les applications canoniques P (A) −→
P (Ai) sont surjectives (Top. Gén.!!), donc que cardP (A) ≥ cardP (Ai), or commeA
est de degré infini sur k, on aura évidemment cardP (Ai) −→ +∞, d’où cardP (A) =
∞. (N. B. - Le rédacteur s’aperçoit qu’il vient d’utiliser la notation card dans un sens peu
orthodoxe savoir en lui attribuant une valeur unique∞ pour un ensemble infini, et qu’il
utilise Top. Gén. qui vient après. Next Redactor !).

Proposition 15. — Soientk un corps,Aune algèbre entière surk, etK une sous-algèbre
deAqui soit un corps. Pour queA soit séparable surk, il faut et il suffit queK soit séparable
sur k, et queA soit séparable surK .

SiA est séparable sur k, il en est demême de la sous-algèbreK (prop. 12, (i)), d’autre
part, pour tout élément x de A, x est étale sur k (prop. 14 appliqué à la k-algèbre A),
i.e. la sous-k-algèbre k[x] de A engendrée par x est étale ; or la sous-K-algèbre K[x]

de A engendrée par x est isomorphe à uneK-algèbre quotient de k[x] ⊗k K , donc est
étale (prop. 8, (v) et (i)), ce qui en vertu de prop. 14 prouve que A est étale surK . La
réciproque est un cas particulier de prop. 12 (v).

Remarque. — Nous prouverons au §11 que prop. 15 reste vraie lorsqu’on sup-
pose seulement queK (mais pas nécessairementA) est entière sur k. Sans cette dernière
restriction, nous verrons cependant que la réciproque devient inexacte (réf. exerc. au
§11…).

5. — Extensions radicielles

Proposition 16. — Soient k un corps, d’exposant caractéristique p,K une extension de k,
x un élément deK , f ∈ k[X] son polynôme minimal, e le plus grand des entiers h tels
que f ∈ k[Xph ].

(i) On a f(X) = g(Xpe), où g ∈ k[X] est un polynôme uniquement déterminé, et où
g /∈ k[Xp], g est irréductible, et identique au polynôme minimal de y = xp

e .

(ii) L’élément y = xp
e est étale sur k, et e est le plus petit des entiers h tels que xph soit

étale sur k.
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(iii) L’application z ⇝ zp
e induit une bijection de l’ensemble des conjugués de x (dans

une extension algébriquement close fixéeΩ de k) sur l’ensemble des conjugués de y.

Démonstration. — Les assertions de (i) sont triviales, le fait que g est le polynôme min-
imal de y provenant (en vertu du § 3, th. 1) du fait qu’il est unitaire (comme on vérifie
aussitôt), irréductible, et satisfait g(y) = 0. Plus généralement, pour tout entier h ≤ e,
on aura f(X) = gh(X

ph), où gh ∈ k[X], gh est irréductible, et de façon précise est le
polynôme minimal de xph . En vertu de prop. 9 et son corollaire 1, il s’ensuit que xph

est étale sur k si et seulement si gh /∈ k[Xp], ce qui équivaut manifestement à h = e.
Cela prouve (ii). Enfin (iii) résulte aussitôt de la définition et du fait que l’application
z ⇝ zp

e est une application bijective de Ω dans elle-même, commutant à tous les k-
automorphismes deΩ.

Définition 6. — SoitK une extension d’un corps k d’exposant caractéristique p. Un
élément x deK est dit radiciel sur k s’il existe un entier n ≥ 0 tel que xpn ∈ k. On dit
queK est une extension radicielle de k, si tous ses éléments sont radiciels sur k.

Corollaire 1. — Sous les conditions de la définition 6, siK est algébriquement clos, un
élément x deK est radiciel si et seulement si il est invariant par tous les k-automorphismes
deK . En tous cas, si x est un élément deK radiciel sur k, et si e est le plus petit des entiers
h tels que xph ∈ k, alors le polynôme minimal de x sur k estXpe − a, où a = xp

e ∈ k.

En effet, dire que x est invariant par tous les k-automorphismes de l’extension al-
gébriquement closeK de k, revient à dire que x est algébrique sur k et que le nombre de
ses conjugués est égal à 1, ou encore que son polynôme minimal n’a qu’une seule racine
(§6, n◦ 2, prop. 3 et cor. à prop. 3). Avec les notations de la prop. 16, cela signifie
donc que y n’a qu’un seul conjugué (prop. 16, (iii)), i.e. que son polynôme minimal g
n’a qu’une seule racine. Comme ces racines sont simples, cela signifie que g est de de-
gré 1, i.e. de la forme X − a, ce qui prouve que f est de la forme Xpe − a, donc on
a xpe = a ∈ k. Inversement, s’il existe un entier n ≥ 0 tel que xpn ∈ k, alors pour
tout k-automorphisme u deK , on a u(xpn) = xp

n i.e. u(x)pn = xp
n , ce qui implique

u(x) = x (§1, prop. 1, cor. 1) donc x est invariant par tout k-automorphisme deK .
Cela prouve la première assertion du corollaire. Pour prouver la seconde, on peut sup-
poser queK est algébriquement clos (quitte à le remplacer par une clôture algébrique),
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et il reste à prouver, avec les notations de la démonstration qui précède, que xpn ∈ k

implique n ≥ e. Or cela résulte évidemment de la partie (ii) de la prop. 16.

Corollaire 2. — Une extensionK d’un corps k qui est radicielle et séparable est triv-
iale.

En effet, il revient aumême de dire que tout élément d’une extensionK de k, qui est
radiciel et étale sur k, est dans k. Or avec les notations du corollaire 1, cela signifie que
e = 0, et résulte en effet du fait que dans une clôture algébrique Ω de k, le polynôme
Xpe−a doit avoir des racines simples, et qu’il s’écrit d’autre part sous la forme (X−b)pe ,
où b ∈ Ω est tel que bpe = a.

Corollaire 3. — Soient k un corps,K une extension de k,K ′ une sous-extension deK
telle queK soit radicielle surK ′, enfin L une sous-extension deK algébrique et séparable
sur k. Alors L est contenue dansK ′.

En effet, il est immédiat par définition queK étant radiciel surK ′,L est radiciel sur
L ∩K ′, d’autre part il est séparable sur L ∩K ′ (prop. 15) donc identique à L ∩K ′ en
vertu du cor. 2, ce qui prouve que L ⊂ K ′.

Corollaire 4. — Soient k un corps,K une extension algébrique de k,K0 la fermeture
séparable de k dansK (prop. 14, cor. 5). AlorsK est une extension radicielle deK0, de
façon plus précise,K0 est la plus petite sous-extension deK sur laquelleK soit radicielle, et
la seule sous-extension séparable deK sur laquelleK soit radicielle.

Si p est l’exposant caractéristique de k, dire queK est radiciel surK0 signifie en effet
que pour tout x ∈ K , existe un entier n ≥ 0 tel que xpn ∈ K0 i.e. tel que xp

n soit étale
sur k, ce qui résulte de prop. 16 (ii). Soit L une sous-extension de K telle que K soit
radiciel sur L, alors en vertu du cor. 3 on aK0 ⊂ L. Si de plus L est séparable sur k, i.e.
L ⊂ K0, on aura donc L = K0. Cela prouve le corollaire.

Corollaire 5. — SoitK une extension radicielle de degré fini d’un corps k, d’exposant
caractéristique p. Alors le degré deK sur k est une puissance de p.

Par récurrence sur le degré deK sur k et utilisant la formule de transitivité des degrés,
on est ramené au cas oùK est une extensionmonogène k(z) de k, donc son degré est égal
au degré du polynômeminimal de x sur k. Comme ce polynôme est de la formeXpe−a
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en vertu du cor. 1, donc de degré pe, cela prouve le corollaire.
Remarque 11. — Au §11, nous généraliserons la notion d’extension radicielle en la

notion d’algèbre radicielle sur un anneau, et donnerons diverses autres caractérisations
des extensions radicielles d’un corps, ainsi qu’une généralisation du cor. 4 ci-dessus au
cas oùK est une algèbre entière sur un corps k.

6. — Corps parfaits. Clôture parfaite d’un corps

Proposition 17. — Soit k un corps. Les conditions suivantes sont équivalentes :

(i) Toute extension de degré fini de k est étale.

(ii) Toute algèbre réduite de degré fini sur k est étale.

(iii) Toute extension algébrique de k est séparable.

(iv) Toute algèbre entière réduite sur k est séparable.

(v) La clôture algébriqueΩ de k est séparable sur k.

En effet, on a d’abord trivialement les implications

(iv) (iii) (v)

(ii) (i),

d’autre part (i) implique (ii) puisque toute algèbre réduite de degré fini sur k est isomor-
phe à un produit fini d’extensions de degré fini de k, de sorte qu’on peut appliquer la
prop. 8 (ii). D’autre part (ii) implique (iv) par le critère de la prop. 14 (ii). Enfin (v)⇒
(iii) puisque toute extension algébrique de k est isomorphe à une sous-extension deΩ.

Définition 7. — On dit qu’un corps k est parfait s’il satisfait aux conditions équiva-
lentes de la prop. 17.

Remarque. —Nous verrons au §12 que si k est un corps parfait, alors toute algèbre
réduite sur k (pas nécessairement entière), en particulier toute extension de k (pas néces-
sairement algébrique), est séparable.
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Signalons tout de suite qu’un corps algébriquement clos est évidemment parfait.
Pour d’autres exemples, cf. cor. 1 du th. 1 ci-dessous.

Proposition 18. — Toute extension algébrique K d’un corps parfait k est un corps
parfait.

En effet, siK ′ est une extension algébrique deK , c’est une extension algébrique de
k, donc séparable sur k puisque k est parfait, donc séparable surK en vertu de prop. 15.

On notera que la proposition précédente ne s’étend pas au cas où K n’est pas une
extension algébrique de k, cf. cor. 2 au th. 1 ci-dessous.

Théorème 1. — Soient k un corps, p son exposant caractéristique, Ω une extension
algébriquement close de k. Les conditions suivantes sont équivalentes :

(i) Le corps k est parfait.

(ii) On a k = kp.

(iii) Le corps k est identique au corps des invariants du groupe des k-automorphismes de
Ω.

La condition (ii) signifie que pour x ∈ Ω, la relation xp ∈ k implique x ∈ k ; par
suite, pour tout entier n ≥ 0, la relation xpn ∈ k implique x ∈ k, comme on voit par
récurrence sur n. Ainsi (ii) signifie que tout élément deΩ radiciel sur k est dans k, ce qui
équivaut à (iii) en vertu de prop. 16, cor. 1.

D’ailleurs comme la sous-extension kp−∞ de Ω formée des éléments radiciels sur k
est radicielle sur k, elle ne peut être séparable sur k que si elle est triviale (prop. 16, cor.
2), ce qui prouve que (i)⇒ (iii). Reste à prouver que (ii)⇒ (i).

Or supposons k = kp, et soit E une extension de degré fini de k, prouvons que E
est étale, ou encore que pour tout x ∈ E, le polynôme minimal f de x sur k admet x
comme racine simple (prop. 9, cor. 2). En vertu de §3,n◦ 1, prop. 1, il suffit pour cela de
vérifier que f n’appartient pas à k[Xp], i.e. ne s’écrit pas sous la forme

∑
i aiX

ip. Or un
polynôme g de cette forme ne peut être irréductible, car par l’hypothèse k = kp, chaque
ai s’écrit sous la forme bpi , avec bi ∈ k, donc on a

∑
aiX

ip = (
∑
biX

i)p. Comme f est
irréductible, cela achève la démonstration.
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Corollaire 1. — Tout corps de caractéristique nulle est parfait. Tout corps fini est par-
fait. Tout corps premier est parfait.

La première assertion résulte trivialement du critère (ii) ci-dessus. Pour la deuxième,
on note que l’application x 7→ xp de k dans lui-même est injective ; elle est bijective
si k est fini, ce qui prouve l’assertion. La dernière assertion en résulte, compte tenu du
théorème 1 et du fait qu’un corps premier est fini ou de caractéristique nulle (§1, n◦ 1).

Corollaire 2. — Soit k un corps. Les conditions suivantes sont équivalentes :

(i) Le corps k est de caractéristique nulle.

(ii) Toute extension de k est parfaite.

(iii) L’extension transcendante pure k(X) de k est parfaite.

Ona (i)⇒ (ii) en vertu du théorème 1, puisque toute extension dek est de caractéristique
nulle si k l’est. L’implication (ii)⇒ (iii) est triviale, il reste à prouver que (iii)⇒ (i), donc
que si k est de caractéristique p > 0, alors k(X) n’est pas parfait. En effet notez queX
n’est pas dans k(X)p, i.e. ne peut s’écrire sous la forme (f/g)p avec f, g ∈ k[X], g 6= 0,
car autrement on aurait une identité

f(X)p = Xg(X)p,

ce qui est impossible, car le premier (resp. le deuxième) membre ne fait intervenir que
des puissances deX d’exposant congru à 0 (resp. à 1) (mod p), donc l’égalité ne peut
avoir lieu que si les deux membres sont nuls, ce qui contredit l’hypothèse g 6= 0.

Remarque. —Onverra au §13, que les conditions du corollaire 2 équivalent encore à
l’existence d’une extensionde type fini non algébrique qui soit parfaite, en d’autres termes
: si k est de caractéristique non nulle, alors toute extension de type fini non algébrique est
non parfaite. Celamontre que sur un corps de base k de caractéristique non nulle (même
sik est parfait, oumême algébriquement clos), les “corps de fonctions”qui s’introduisent
le plus fréquemment en Géométrie Algébrique sont non parfaits.

Corollaire 3. — SoientK un corps, (Ki)i∈I une famille de sous-corps, k son intersec-
tion. Si lesKi sont parfaits, il en est de même de k.
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En effet, Ω étant une clôture algébrique de K , il suffit de noter que si les Ki sont
stables par l’application x 7→ xp

−1 de Ω dans lui-même, il en est de même de leur inter-
section.

Définition 8. — Soit k un corps. Une extension k′ de k est appelée une clôture parfaite
de k si c’est une extension parfaite de k, et si tout sous-extension parfait de k′ est identique
à k′.

Proposition 19. — Soit k un corps. Il existe une clôture parfaite de k, et étant donné
deux clôtures parfaites de k, il existe un unique k-isomorphisme de l’une sur l’autre. Si Ω
est une extension parfaite de k, alors la sous-extension kp−∞ formée des x ∈ Ω radiciels sur
k est une clôture parfaite de k.

SiK est une sous-extension parfaite de Ω, on aK = Kp, donc par récurrence sur
n, on a K = Kpn pour n ≥ 0, d’où évidemment kp−∞ ⊂ K . D’autre part, on a
évidemment k′p = k′ (posant k′ = kp

−∞), donc k′ est une extension parfaite de k.
C’est donc la plus petite sous-extension parfaite deΩ, donc c’est une clôture parfaite de
k. Soientmaintenant k′, k′′ deux clôtures parfaites de k, prouvons qu’il existe un unique
k-isomorphisme de k′ sur k′′. En vertu de §4,n◦ 2, prop. 2 on peut supposer que k′ et k′′

sont des sous-extensions d’une même extension Ω de k, qu’on peut d’ailleurs supposer
algébriquement close, donc parfaite. Mais alors k′ et k′′ sont identiques d’après ce qui
précède. Il reste à prouver seulement que tout k-automorphisme u de k′ est l’identité.
Or pour tout x ∈ k′, il existe un entier n ≥ 0 tel que a = xp

n ∈ k, donc on aura
u(x)p

n
= a, i.e. u(x)pn = xp

n , ce qui implique u(x) = x, donc u est bien l’identité.
Cela achève la démonstration.

Compte tenu de la prop. 19, il n’y a pas d’inconvénient à identifier canoniquement
les diverses clôtures parfaites du corps k, et nous désignerons généralement cette clôture
parfaite par le symbole kp−∞ , où p désigne l’exposant caractéristique de k. Bien entendu,
si p = 1 i.e. k est de caractéristique nulle, on a kp−∞

= k. Notons aussi la caractérisation
suivante des clôtures parfaites :

Proposition 20. — Soient k un corps, K une extension de k. Pour que K soit une
clôture parfaite de k, il faut et il suffit qu’elle soit radicielle, et que pour toute extension
radicielle k′ de k, il existe un k-homomorphisme de k′ dansK .
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Soit en effet Ω une extension algébriquement close deK ; alors la première condi-
tion exprime que K est contenue dans la sous-k-extension kp−∞ de Ω, la seconde que
toute sous-k-extension radicielle de Ω, ou encore, la plus grande sous-k-extension radi-
cielle kp−∞ de Ω, est contenue dans K (compte tenu qu’une extension radicielle k′ de
k, étant algébrique sur k, est isomorphe à une sous-extension deΩ). La conjonction des
deux conditions signifie donc queK = kp

−∞ i.e. queK est une clôture parfaite de k.

7. — Clôture séparable d’un corps

Proposition 21. — Soit k un corps. Les conditions suivantes sont équivalentes :

(i) Toute extension étale de k est triviale.

(ii) Toute extension algébrique séparable de k est triviale.

(iii) Toute algèbre étale sur k est diagonalisable.

(iv) La clôture algébrique de k est radicielle sur k.

(v) La clôture parfaite de k est algébriquement close.

On a évidemment (ii) ⇒ (i) et (iii) ⇒ (i), d’autre part (i) ⇒ (ii) puisque
toute extension algébrique séparable de k est réunion de ses sous-extensions étales, et
(i)⇒ (iii)puisque toute algèbre étale surk est isomorphe au produit d’une famille finie
d’extensions étales. L’équivalence des conditions (iv) et (v) résulte aussitôt de la con-
struction de la clôture parfaite kp−∞ de k en termes d’une clôture algébrique Ω, (prop.
17). D’autre part (ii) ⇒ (iv) en vertu du corollaire 4 à prop. 16, et (iv) ⇒ (ii) en
vertu du cor. 2 à prop. 16.

Définition 9. —Un corps est dit séparablement clos s’il satisfait aux conditions équiv-
alentes de la prop. 21.

Par exemple, un corps algébriquement clos est évidemment séparablement close.

Corollaire. — Soient k un corps, Ω une extension séparablement close de k, K une
extension algébrique séparable de k. AlorsK est isomorphe à une sous-extension deΩ.
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En effet, si Ω′ est une clôture algébrique de Ω, on sait que Ω′ est radicielle sur Ω, et
queK est isomorphe à une sous-extensionK ′ de Ω′. En vertu de prop. 16, cor. 3 on a
K ′ ⊂ Ω ; ce qui prouve notre assertion.

Proposition 22. — Soient k un corps,K une extension de k, Ω une extension sépara-
blement close de k. Les conditions suivantes sont équivalentes :

(i) K est une extension algébrique séparable et un corps séparablement clos.

(ii) K est une extension algébrique séparable, et toute extension algébrique séparable k′

de k est isomorphe à une sous-extension deK .

(iii) K est k-isomorphe à la fermeture algébrique séparable ks (prop. 14, cor. 5) de k
dansΩ.

Les implications (i) ⇒ (ii) et (iii) ⇒ (ii) résultent aussitôt du corollaire précédent.
Il suffit donc de prouver que deux extensionsK,K ′ de k satisfaisant à (ii) sont isomor-
phes. Or soient u : K −→ K ′ et u′ : K ′ −→ K des k-homomorphismes, alors
uu′ et u′u sont des k-endomorphismes deK ′ resp. K , donc des automorphismes de ces
extensions (§6, prop. 4), donc u et u′ sont des isomorphismes, ce qui prouve notre as-
sertion. (N. B. — Il y aurait lieu, après §6, prop. 6, de signaler en corollaire que deux
extensions algébriques dont chacune est isomorphe à une sous-extension de l’autre sont
isomorphes).

Définition 10. — Une extensionK de k, satisfaisant aux conditions équivalentes de
la prop. 22, est appelée une clôture séparable de k.

On conclut aussitôt de cette définition :

Définition 10. — Soit k un corps. Il existe une clôture séparable de k, et deux clôtures
séparables sont isomorphes. SiΩ est une extension séparablement close dek, la sous-extension
ks, fermeture séparable de k dansΩ, est une clôture séparable de k.

Par abus de langage, on désigne souvent par ks une clôture séparable quelconque de
k. On fera attention cependant qu’en général, étant données deux clôtures séparables du
corpsk, il peut exister plusieursk-isomorphismesdistincts de l’une sur l’autre, end’autres
termes, le groupe des k-automorphismes de ks n’est pas en général réduit à l’élément
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neutre. De façon précise, comme ks est une extension quasi-galoisienne de k, on conclut
de prop. 16, cor. 1 et cor. 2, que le groupe des k-automorphismes de ks n’est réduit au
groupe unité que si ks est radiciel sur k, donc égal à k, i.e. si et seulement si k est déjà
séparablement clos.

Proposition 23. — Soit k un corps. Pour que k soit algébriquement clos, il faut et il
suffit qu’il soit parfait et séparablement clos.

Il est trivial qu’un corps algébriquement clos est parfait et séparablement clos. In-
versement, si k est séparablement clos (i.e. sa clôture algébriqueΩ est radicielle sur k) et
parfait (donc Ω est séparable sur k), il s’ensuit par la prop. 16, cor. 2 que k = Ω donc
que k est algébriquement clos.

Corollaire. — Soit k un corps. Pour que k soit parfait, il faut et il suffit que sa clôture
séparable ks soit algébriquement close.

Si k est parfait, il en est de même de ks en vertu de prop. 18, donc ks est algébrique-
ment clos en vertu de prop. 23. Réciproquement, si ks est algébriquement clos i.e. la
clôture algébrique de k est une extension algébriquement close de k, k est parfait.
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§ 8. — EXTENSIONS GALOISIENNES ET THÉORIE DEGALOIS

1. — Extensions galoisiennes

Proposition 1. — SoientK un corps, E une extension algébrique deK , G le groupe des
K-automorphismes deE. Les conditions suivantes sont équivalentes :

(i) Le corps des invariants deG dansE est identique àK .

(ii) E est quasi-galoisienne et séparable.

(iii) Pour tout x ∈ E, le polynôme minimal de x surK a toutes ses racines (dans une
clôture algébrique donnéeΩ deE) simples et contenues dansE.

La condition (ii) équivaut à (iii) en vertu du critère §6, n◦ 3, prop. 5 (iv) (cf. com-
mentaires à la rédaction), suivant lequel E est quasi-galoisienne si et seulement si les
polynômes minimaux de ses éléments ont toutes leurs racines dans E, et du critère §7,
n◦ 3, prop. 11 (iii), suivant lequelE est séparable surK si et seulement si ces racines sont
toutes simples. Montrons que (i) implique (iii).

En effet, soit x ∈ E et soient xi (1 ≤ i ≤ n) les éléments distincts de l’ensemble des
conjugués de x contenus dans E. Tout K-automorphisme u de E permute entre eux
les xi, donc le polynôme g(X) =

∏
1≤i≤n(x− xi) ∈ E[X] est invariant parG, i.e. ses

coefficients sont invariants par G, donc en vertu de l’hypothèse (i) appartiennent àK .
Comme g(x) = 0, g est un multiple du polynôme minimal f de x sur K (§3, th. 1),
ce qui montre que f a toutes ses racines simples et contenues dans E. Prouvons enfin
que (iii) implique (i). Soit en effet x un élément deE non dansK ; comme le polynôme



minimal f de x sur K a toutes ses racines simples et contenues dans E, et qu’il est de
degré> 1, il s’ensuit qu’il existe aumoins un élément y deE conjugué de x et distinct de
x. Comme nous savons déjà queE est une extension quasi-galoisienne deK , donc que
toutK-automorphisme de Ω induit unK-automorphisme de E, il s’ensuit qu’il existe
un u ∈ G tel que u(x) = y, ce qui prouve que le corps des invariants deG dans E est
réduit àK , et achève la démonstration de la proposition.

Corollaire. — Supposons que E soit de degré fini n surK , et soit G le groupe desK-
automorphismes deE. Alors les conditions précédentes équivalent aussi à la condition :

(iv) On a card(G) = n (ou seulement : card(G) ≥ n).

En effet, en vertu de §7, prop. 7, dire que E est séparable (i.e. ici étale) sur K re-
vient à dire qu’il y a exactement n K-homomorphismes de E dans Ω, et dire que E
est quasi-galoisienne revient à dire que ces K-homomorphismes sont en fait des K-
automorphismes deE, d’où l’équivalence de (ii) et (iv).

Définition 1. — Soient K un corps, E une extension de K . On dit que E est ga-
loisienne si elle est quasi-galoisienne et séparable, c’est-à-dire si elle satisfait les conditions
équivalentes de la prop. 1. Le groupe desK-automorphismes deE s’appelle alors le groupe
de Galois de E (ou le groupe de Galois de E surK , si une ambiguïté est à craindre sur le
corps de base). Il sera notéGal(E/K).

Proposition 2. — Soit E une extension d’un corpsK ,K ′ une sous-extension de E. Si
E est galoisienne sur K , elle est galoisienne sur K ′, et Gal(E/K ′) est un sous-groupe de
Gal(E/K).

La première assertion résulte de la définition et des assertions analogues relatives aux
extensions quasi-galoisiennes resp. séparables (§6, n◦ 3, prop. 10— cf. “commentaires”
— et §7,n◦ 3, prop. 14). Le fait queGal(E/K ′) soit alors un sous-groupe deGal(E/K)

est trivial sur les définitions.

Corollaire 1. — Sous les conditions de la prop. 2, soit u ∈ Gal(E/K), alors le groupe
de Galois deE sur u(K ′) est le conjugué par u du groupe de Galois deE surK ′ :

Gal(E/u(K ′)) = uGal(E/K ′)u−1.
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C’est évident par transport de structure.

Corollaire 2. — Sous les conditions de la prop. 2, pour queK ′ soit une extension ga-
loisienne deK , il faut et il suffit que le sous-groupeGal(E/K ′) deGal(E/K) soit un sous-
groupe distingué de ce dernier. Dans ce cas, l’homomorphisme u ⇝ u|K ′ de Gal(E/K)

dansGal(K ′/K) est surjectif de noyauGal(E/K ′), donc fournit un isomorphisme canon-
ique

Gal(K ′/K) ' Gal(E/K)/Gal(E/K ′).

La première assertion résulte aussitôt du corollaire 1. Lorsque K ′ est galoisienne,
toutK-automorphisme de E induit bien unK-automorphisme deK ′, et d’autre part
toutK-automorphisme deK ′ peut se prolonger en unK-automorphisme deE (§6, n◦

3), ce qui prouve la deuxième assertion.
N. B. — Le rédacteur s’aperçoit qu’il serait commode de disposer de la terminolo-

gie “groupe de Galois” également dans le cas quasi-galoisien, et qu’il serait commode de
donner également dans ce cas la proposition 2 et les deux corollaires précédents, de nature
purement soritale. Il laisse au rédacteur définitif le petit réajustage à faire au §6, n◦3.

On dit qu’une extensionE d’un corpsK est abélienne si elle est galoisienne et si son
groupe de Galois est abélien. On déduit donc de la proposition 2 de son corollaire 2 :

Corollaire 3. — SoitE une extension d’un corpsK ,K ′ une sous-extension deE. SiE
est abélienne, il en est de même deK ′, etE est abélienne surK ′.

Proposition 3. — SoientK un corps, Ω une extension deK , (Ei)i∈I une famille de
sous-extensions deΩ. Si lesEi sont galoisiennes, il en est de même de leur intersection, et de
l’extension engendrée par lesEi.

Cela résulte des énoncés analogues concernant les extensions quasi-galoisiennes resp.
les extensions entières séparables, (§6, n◦ 3, prop. 7 — cf. commentaires — et §7, prop.
13 (i) et (iii)).

Corollaire 1. — SoientK un corps,Ω une extension algébriquement close deK , S une
partie deΩ, etE la sous-extension quasi-galoisienne deΩ engendrée parS (§3,n◦ 3). Alors
E est galoisienne si et seulement si les éléments de S sont séparables surK .

En effet, siG est le groupe desK-automorphismes deΩ,E est l’extension engendrée
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par la réunion T des u(S), pour u ∈ G. Comme cette extension est quasi-galoisienne,
il reste à prouver qu’elle est séparable, ce qui revient à dire que les éléments de T sont
séparables surK (§7, n◦ 3, prop. 11). Comme un élément y conjugué d’un élément x
algébrique surK est évidemment séparable surK si et seulement si x l’est, la condition
obtenue équivaut aussi à dire que les éléments de S sont séparables surK , ce qui prouve
notre affirmation.

Corollaire 2. — Soit (fi)i∈I une famille de polynômes séparables deK[X] (§7, n◦ 2,
déf. 4). À l’ensemble de leurs racines dans l’extension algébriquement close Ω deK , alors
K(A) est une extension galoisienne deK .

N.B.—Onpeut, si on le juge bon, recopier ici le laïus de l’édition actuelle fin de §10,
n◦ 3, page 149. Le rédacteur n’y tient pas particulièrement. Il propose aussi de laisser
tomber le corollaire qu’une extension composée d’extensions abéliennes est abélienne
(qu’on peut néanmoins, si on y tient, rajouter en un corollaire 3 ici même).

Théorème 1. — SoientK un corps,Ωune extension deK ,E etK ′ deux sous-extensions
deΩ,E ′ = K ′(E) l’extension composée et L = E ∩K ′. SupposonsE galoisienne surK .
Alors E ′ est galoisienne sur K ′, et K ′ et E sont linéairement disjointes sur L. De plus,
toutK ′-automorphisme deE ′ induit un L-automorphisme deE, et l’homomorphisme de
restriction u⇝ u|E ainsi obtenu est un isomorphisme :

Gal(E ′/K ′)
∼−−→ Gal(E/L).

Corollaire 1. — Pour toute sous-extensionF ′ de laK ′-extensionE ′, posantF = F ′ ∩
E, on a F ′ = K ′(F ).

En effet, en vertu de prop. 2 E ′ est galoisienne sur F ′, et son groupe de Galois sur
F ′ est un sous-groupe H ′ du groupe de Galois Gal(E ′/K ′). Soit H l’image de H ′ par
l’isomorphisme Gal(E ′/K ′) −→ Gal(E/L) du th. 1, alors le corps des invariants de
H n’est autre que F = E ∩ F ′, compte tenu que F ′ est le corps des invariants deH ′.
Identifiant alors, grâce au th. 1,K ′(E) àE⊗KK

′ et les opérations deH ′ aux opérations
u⊗K idK′ , (u ∈ H), on constate aussitôt que l’ensemble des invariants deH ′ n’est autre
que F ⊗K K ′, ce qui signifie aussi que F ′ = K ′(F ).

Le Corollaire ne se généralise pas au cas où E et K ′ sont deux extensions
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linéairement disjointes deK , mais où on ne suppose pasE galoisienne (ex-
erc.…).

Corollaire 2. — SoientE1 etE2 deux extensions galoisiennes d’un corpsK , telles queE1∩
E2 = K . AlorsE1 etE2 sont linéairement disjointes,E = K(E1∪E2) est une extension
galoisienne de K , et l’homomorphisme u ⇝ (u|E1, u|E2) induit un isomorphisme de
groupe

Gal(E/K)
∼−−→ Gal(E1/K)× Gal(E2/K).

On sait par le th. 1 que E1 et E2 sont linéairement disjointes, par la prop. 3 que E est
galoisienne, et il est immédiat que l’homomorphisme envisagé dans le cor. 2 est injectif.
Pour prouver qu’il est surjectif, il suffit de noter que, puisqueE1 etE2 sont linéairement
disjointes,E s’identifie à l’algèbreE1⊗KE2, et siu1 (resp. u2) est unK-automorphisme
de E1 (resp. E2) alors u = u1 ⊗ u2 est unK-automorphisme de E1 ⊗K E2 induisant
u1 et u2 sur les deux sous-algèbresE1 etE2.

2. — Applications aux extensions quasi-galoisiennes

N. B. — Ce n◦ pourrait être mis en petits caractères ; il ne resservira pas dans la suite du
livre.

Proposition 4. — SoientK un corps, E une extension quasi-galoisienne deK , E0 la
fermeture séparable deX dansE (§7, prop. 14, cor. 5),E1 le corps des invariants du groupe
Gal(E/K) desK-automorphismes deE. Alors :

(i) E1 est la plus grande sous-extension radicielle deE.

(ii) E0 est une extension galoisienne deK , linéairement disjointe deE1, etE = K(E0∪
E1), donc l’homomorphisme canoniqueE0 ⊗K E1 −→ E est un isomorphisme.

(iii) E est une extension galoisienne de E1, et l’application de restriction Gal(E/E1) =

Gal(E/K) −→ Gal(E0/K) est un isomorphisme.

SoitΩune clôture algébriquedeE. Comme toutK-automorphismedeE se prolonge en
unK-automorphisme deΩ, et que par l’hypothèse quasi-galoisienne surE,E est stable
par lesK-automorphismes deΩ,E0 n’est autre que l’intersection deE avec le corps des
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invariants du groupe desK-automorphismes de Ω, et l’assertion (i) résulte donc de §7,
prop. 16, cor. 1. D’autre part, on aE0∩E1 = K , carE0∩E1 est une extension séparable
et radicielle deK , donc triviale en vertu de §7, prop. 16, cor. 2. D’autre part, commeE
est stable par lesK-automorphismes deΩ, il en est évidemment de même deE0, qui est
donc une extension quasi-galoisienne deK , et comme elle est séparable, elle est galoisi-
enne. Il résulte alors du th. 1 que E0 et E1 sont linéairement disjoints surK . D’autre
part, en vertu de §7, prop. 16, cor. 3,E est radicial surE0, donc ses éléments sont invari-
ants par lesE0-automorphismes deE (§7, prop. 16, cor. 1), d’où on conclut aussitôt que
toutK-automorphisme deE0 se prolonge de façon unique en unK-automorphisme de
E ; il est trivial d’ailleurs par définition que E est une extension galoisienne de E1, ce
qui établit (iii). Soit enfin E ′ = E1(E0), alors en vertu de th. 1 E ′ est une extension
galoisienne de E1 et l’application de restriction Gal(E ′/E1) −→ Gal(E0/K) est un
isomorphisme. Comme il en est de même, par (iii), de l’application composée des ap-
plications de restriction Gal(E/E1) −→ Gal(E ′/E1) −→ Gal(E0/K), on voit que
l’application de restriction Gal(E/E1) −→ Gal(E ′/E1) est un isomorphisme, ce qui
signifie en vertu de prop. 2 cor. 2 que Gal(E/E ′) est le groupe unité, de sorte queE est
une extension galoisienne deE ′ dont le groupe de Galois est le groupe unité, doncE est
une extension radicielle et séparable et par suite triviale deE (§7, prop. 16, cor. 1 et cor.
2). DoncE = E ′

0, ce qui prouve (ii) et achève de prouver la proposition.
On conclut de la partie (i) de la proposition qui précède une généralisation partielle

du th. 1 au cas des extensions quasi-galoisiennes :

Corollaire 1. — SoientK un corps,Ω une extension deK ,E etK ′ deux sous-extensions
de Ω, E ′ = K ′(E) l’extension composée et L = E ∩ K ′. Si E est une extension quasi-
galoisienne de K , E ′ est une extension quasi-galoisienne de K ′, et l’homomorphisme de
restriction u⇝ u|E deGal(E ′/K ′) dansGal(E/L) est un isomorphisme.

On sait déjà que E ′ est une extension quasi-galoisienne deK ′ et que E est une ex-
tension quasi-galoisienne de L (§6, n◦ 3) ; donc c’est une extension galoisienne d’une
extension radicielle E1 de L. Soit E ′

1 = K ′(E1), alors E ′
1 est une extension radicielle

deK ′, car engendrée par les éléments de E1, qui sont radicielles sur L, donc surK ′ qui
contientL. D’ailleursE ∩E1 est une sous-extension radicielle deE, donc par construc-
tion de E1 est contenue dans E1, donc égale à E1. Appliquons maintenant le th. 1 aux
extensionsE etE ′

1 deE1. On trouve queE ′ est une extension galoisienne deE ′
1, et que
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l’homomorphisme de restriction Gal(E ′/E ′
1) −→ Gal(E/E1) est un isomorphisme.

Or commeE1 (resp. E ′
1) est une extension radicielle de L (resp. K ′), les groupes précé-

dents ne sont autres que les groupes Gal(E/L) et Gal(E ′/K ′) et l’homomorphisme
envisagé l’homomorphisme de restriction envisagé dans le corollaire 1. Cela prouve le
corollaire 1. De plus :

Corollaire 2. — Sous les conditions du corollaire 1, soit E0 (resp. E1) la plus grande
sous-L-extension séparable (resp. radicielle) deE, et soient demêmeE ′

0 (E ′
1) la plus grande

sous-extension séparable (resp. radicielle) deE ′ surK ′. Alors on aE ′
0 = K ′(E0), E

′
1 =

K ′(E ′
1), E0 et K ′ sont linéairement disjoints sur L et E et E ′

1 sont linéairement dis-
joints sur E1. Pour que E et K ′ soient linéairement disjoints sur L, i.e. pour que
l’homomorphisme canonique E ⊗L K

′ −→ E ′ soit un isomorphisme, il faut et il suf-
fit queE1 etK ′ soient linéairement disjoints sur L.

La relation E ′
1 = K ′(E1) a déjà été prouvée dans la démonstration du corollaire 1,

pourprouver la relationE ′
0 = K ′(E0), onnotequeK ′(E0) est une sous-extensiondeE ′

séparable surK ′ (§7, prop. 14, cor. 3) et queE ′ est radicielle surK ′(E0), car engendrée
par E dont les éléments sont radicielles sur E0 donc surK ′(E0). En vertu de §7, prop.
16, cor. 3, cela montre queK ′(E0) = E ′

0. Comme on a évidemment E0 ∩ K ′ = L

puisque E ∩K ′ = L, on conclut par le th. 1 que E0 etK ′ sont linéairement disjoints
sur L. D’ailleurs le même th. 1 appliqué aux extensions E et E ′

1 de E prouve que E et
E ′

1 sont linéairement disjoints surE1. On en conclut que l’homomorphisme canonique
E ⊗ K ′ −→ E ′ s’identifie à l’homomorphisme déduit, par changement du corps de
baseE1 −→ E, de l’homomorphisme canoniqueE1 ⊗L K

′ −→ E ′
1. Donc le premier

est un isomorphisme si et seulement si le deuxième l’est, ce qui achève la démonstration
du corollaire 2.

Remarque. — Nous verrons au §12, avec le critère de Mac-Lane, qu’une extension
séparable d’un corps est linéairement disjointe de toute extension radicielle de ce corps.
Comme, avec les notations du cor. 2,E1 est une extension radicielle deL, il s’ensuit que
niK ′ est une extension séparable deL. E1 etK ′ sont linéairement disjoints surL et par
suiteE etK ′ sont linéairement disjoints sur L.

45



3. — La théorie de Galois : classification des sous-extensions d’une ex-
tension galoisienne finie

Théorème 2. — SoientE un corps,G un sous-groupe du groupe des automorphismes deE,
K le corps des invariants deG. Pour queE soit de degré fini surK , il faut et il suffit que
G soit fini. Dans ce cas, E est une extension galoisienne deK ,G est son groupe de Galois,
et le degré deE surK est égal à l’ordre deG.

SiE est une extensiondedegré finindeK , c’est une extension algébrique, et il résulte
immédiatement de la définition qu’elle est galoisienne. De plus, en vertu de App. 5.5 le
groupe de tous lesK-automorphismes deE a au plus n éléments, a fortiori l’ordre deG
est au plus n. Il reste à démontrer que siG est d’ordre finim, alorsE est de degré fini sur
K et [E : K] ≤ m. Or c’est un cas particulier du théorème d’Artin (§6, n◦ 4, th. 1).

Théorème 3. — SoientE une extension galoisienne de degré fini d’un corpsK ,G son
groupe de Galois, K l’ensemble des sous-extensions de E, G l’ensemble des sous-groupes de
G. Pour tout sous-groupeH deG, soit k(H) le corps des invariants deH , et pour toute sous-
extension F de E, soit g(F ) son groupe de Galois, qui est donc un sous-groupe deG (prop.
2). On obtient ainsi deux applications :

k : G −→ K et g : K −→ G

Ces applications sont bijectives, et inverses l’une de l’autre. Pour tout couple (H,F ), avec
H ∈ G et F = k(H), on a :

[H : e] = [E : F ] , [G : H] = [F : K].

En effet, le fait que k ◦ g soit l’application identique n’est autre que la prop. 2, et
le fait que g ◦ k soit l’application identique est un cas particulier du th. 2. La formule
[H : e] = [E : F ] est un cas particulier de th. 2, en particulier [G : e] = [E : K]; la
deuxième formule en résulte compte tenu des relations

[E : F ][F : K] = [E : K] et [G : H][H : e] = [G : e]

Corollaire 1. — Ordonnons G et K par inclusion. Alors les applications k et g sont
strictement décroissantes. Si (Fi)i∈I est une famille de sous-extensions deE, F leur inter-
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section, alors Gal(E/F ) = g(F ) est le sous-groupe de G engendré par les Gal(E/Fi) =

g(Fi).

Il est trivial que k et g sont décroissantes, d’où il résulte aussitôt qu’elles sont stricte-
ment décroissantes, compte tenu qu’elles sont inverses l’une de l’autre. Par suite, cha-
cune de ces applications induit un isomorphisme de l’ensemble ordonné source avec
l’ensemble but, muni de la structure d’ordre opposée de sa structure d’ordre envisagée
dans le corollaire 1. Cela implique que chacune de ces applications échange entre elles
les opérations Inf et Sup, d’où en particulier la dernière assertion du corollaire.

Corollaire 2. — SoitH un sous-groupe deG. Pour que le corps des invariants F deH
soit une extension galoisienne deK , il faut et il suffit queH soit distingué.

Cela résulte aussitôt du th. 1 et de prop. 2, cor. 2.

Corollaire 3. — Soient F1 et F2 deux sous-extensions de E,H1 etH2 leurs groupes de
Galois. Pour que F1 et F2 soient linéairement disjointes, il faut et il suffit qu’on ait

[G : H1 ∩H2] = [G : H1][G : H2]

En effet, F = K(F1 ∪ F2), cette relation équivaut à

[F : K] = [F1 : K][F2 : K]

qui est un critère de disjonction linéaire (§2, prop. 4).

Corollaire 4. — Soit E une extension galoisienne de degré fini d’un corps K , G son
groupe de Galois,G1 etG2 deux sous-groupes deG,E1 (resp. E2) le corps des invariants de
G1 (resp. G2). Les conditions suivantes sont équivalentes :

(i) On aG1 ∩G2 = (e) etG1 ·G2 = G.

(i bis) Tout élément de G peut s’écrire, de façon unique, sous la forme g1g2, avec g1 ∈
G1, g2 ∈ G2.

(1 ter) On aG1 ∩G2 = (e) et [G : G1 ∩G2] = [G : G1][G : G2].

(ii) Les extensions E1 et E2 sont linéairement disjointes et engendrent E, i.e.
l’homomorphisme naturel

E1 ⊗K E2 −→ E
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est un isomorphisme.

L’équivalence des conditions (i) (i bis) (i ter) est unequestiondepure théorie des groupes,
et a été vue (?) auChap. I. En vertudu th. 3,G1∩G2 = (e) équivaut àK(E1∪E2) = E,
donc l’équivalence de (i ter) et de (ii) résulte du corollaire 3.

Notons qu’il résulte du cor. 4 et du cor. 2 que, pour queG2 soit invariant dansG et
queG soit le produit semi-direct deG1 etG2, il faut et il suffit que la condition (ii) soit
satisfaite et que de plus E2 soit une extension galoisienne deK . Plus particulièrement,
on obtient :

Corollaire 5. —Avec les notations du corollaire 4, pour queG soit le produit direct des
sous-groupes G1 et G2, il faut et il suffit que E1 et E2 soient deux sous-extensions galoisi-
ennes deE engendrantE, et que leur intersection soitK (ce qui implique déjà qu’elles sont
linéairement disjointes, donc que l’homomorphisme canonique E1 ⊗K E2 −→ E est un
isomorphisme).

Proposition 5. — SoientK un corps,E une extension étale deK , n son degré. Alors il
y a au plus 2n sous-extensions deE.

En effet, soit E ′ l’extension quasi-galoisienne engendrée par E dans une clôture al-
gébriqueΩ deE, alorsE ′ est galoisienne (prop. 3, cor. 1) ; soitG son groupe de Galois,
etH le groupe de Galois deE ′ surE. En vertu du th. 3 et de son cor. 1, il y a une corre-
spondance biunivoque entre l’ensemble des sous-extensions deE, et l’ensemble des sous-
groupes deG contenantH . Ce dernier ensemble est en correspondance biunivoque avec
un sous-ensemble de l’ensemble des parties deG/H . Comme cardG/H = n (th. 1), la
prop. 5 en résulte.

N. B. — La prop. 5 me semble bonne pour être mise en exercice. Il serait camula-
resque en tous cas de la donner sans la précision du 2n, car pour ce qui concerne la seule
assertion de finitude, elle est pratiquement triviale sans théorie de Galois, et vraie pour
l’ensemble des sous-algèbres d’une algèbre étale : on est en effet ramené au cas d’une al-
gèbre diagonalisable par extension de la base, et dans ce cas on regarde (les sous-algèbres
correspondent alors biunivoquement aux relations d’équivalence sur un ensemble à n
éléments).
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4. — Algèbres galoisiennes sur un corps

Le présent n◦ et le suivant sont indépendants de la théorie de Galois (n◦ 3).

Soit k un corps, et G un groupe. Dans le présent numéro, nous étudions certaines
structures A de l’espèce suivante : A est une k-algèbre commutative de degré fini, sur
laquelleG opère par automorphismes de k-algèbre. Nous savons (App. 3) qu’il y a une
correspondance biunivoque canonique entre l’ensemble des idéaux maximaux de A et
l’ensemble des facteurs indécomposables (ou encore, locaux) deA. En vertu de App. 5,
A s’identifie canoniquement à un produit fini d’algèbresBi à groupe d’opérateursG, tel
que pour chaqueBi,G opère transitivement sur l’ensemble des idéauxmaximaux deBi.
De plus, si A 6= 0, pour que ce produit soit réduit à un seul facteur, i.e. pour que G
opère transitivement sur l’ensemble des idéaux maximaux deA, il faut et il suffit queA
soit isomorphe, comme algèbre à opérateurs, à une algèbre de la forme HomH(G,A0),
où A0 est une k-algèbre de degré fini locale sur laquelle opère un sous-groupeH deG ;
de façon précise, on peut alors prendre pour A0 un quelconque des facteurs locaux de
A, qui est un quotient de A, et pourH son stabilisateur, ou ce qui revient au même, le
stabilisateur de l’idéal maximal correspondant. Bien entendu, sous ces conditionsA est
réduit si et seulement siA0 l’est, i.e. si et seulement siA0 est un corps. Notons également
que, siΩ désigne une extension algébriquement close de k, alors l’applicationu⇝ Ker u
de l’ensemble P (A) = Homk-alg(A,Ω) des homomorphismes de k-algèbres de A dans
Ω, dans l’ensemble des idéaux premiers (c’est-à-dire maximaux) de A, est surjective, et
commute aux opérations de G définies par transport de structure. Par suite si G opère
transitivement surP (A), il opère transitivement sur l’ensemble des idéauxmaximaux de
A, et on peut par suite appliquer les remarques qui précèdent.

Proposition 6. — Soient k un corps, G un groupe fini, A une k-algèbre à groupe
d’opérateurs. Les conditions suivantes sont équivalentes :

(i) A est diagonalisable, et G opère de façon simplement transitive sur l’ensemble
Homk-alg(A, k).

(ii) A est isomorphe, comme algèbre à groupe d’opérateurs, à l’algèbre k(G) du groupe
G, à coefficients dans k, sur laquelleG opère par translations à gauche, i.e. l’algèbre
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des fonctions φ : G −→ k, sur laquelleG opère par

(gφ)(x) = φ(g−1x).

En effet, on sait que l’ensemble des homomorphismes dans k de l’algèbre kI des ap-
plications de l’ensemble fini I dans k est en correspondance biunivoque avec I par
l’application qui, à tout i ∈ I , associe l’application φ ⇝ φ(i) de kI dans k (App.
5.4). Cette bijection est évidemment compatible avec toute bijection de I sur lui-même,
induisant un automorphisme de kI par transport de structure. Ceci montre aussitôt que
(i) équivaut (ii).

Définition 2. — Une k-algèbre A à groupe d’opérateurs fini G est dite galoisienne
triviale si elle satisfait aux conditions équivalentes de prop. 6. Elle est dite galoisienne si
l’algèbre à groupe d’opérateurs G, déduite par extension des scalaires de k à une clôture
algébriqueΩ de k, est galoisienne triviale.

Évidemment, cette condition ne dépend pas de la clôture algébrique choisie, en vertu
du théorème de Steinitz. On peut même, dans cette définition, remplacer la clôture al-
gébrique par n’importe quelle extension algébriquement closeΩ′ de k : en effet, on peut
supposer Ω ⊂ Ω′, et il suffit de prendre la forme (i) de la définition des algèbres galoisi-
ennes triviales.

Corollaire. — SoientA,A′ deuxk-algèbres à groupe d’opérateursG galoisiennes. Tout
homomorphismeu d’algèbres deA dansA′ commutant aux opérations deG est un isomor-
phisme. Si σ : A −→ Ω est un k-homomorphisme deA dans une extension Ω de k, u est
uniquement déterminé par la connaissance de σ ◦ u−1 : A′ −→ Ω.

On peut supposer évidemment que Ω est algébriquement close, puis (quitte à faire
le changement de corps de base k) que k = Ω. Alors le corollaire devient évident.

Proposition 7. — Soit k un corps, G un groupe fini, A une k-algèbre à groupe
d’opérateursG.

(i) Soient k′ une extension de k, A′ = A ⊗k k
′ la k′-algèbre à groupe d’opérateursG

déduite deA par changement de corps de base. SiA est galoisienne (resp. galoisienne
triviale), il en est de même deA′. SiA′ est galoisienne,A est galoisienne.
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(ii) Soit u : G −→ G′ un homomorphisme deG dans un groupe finiG′. Si A est ga-
loisienne, l’algèbre A′ à groupe d’opérateurs G′ induite, A′ = HomG(G

′, A), est
galoisienne. Réciproquement, si u est injectif et si A′ est galoisienne, A est galoisi-
enne.

(iii) SoitH un groupe fini,B une k-algèbre à groupe d’opérateursH . SiA etB sont des
algèbres à opérateurs galoisiennes (resp. gal. triviales), il en est demême de l’algèbre
A⊗kB à groupe d’opérateursG×H . Le foncteur (A,B)⇝ A⊗kB de la catégorie
produit des catégories des k-algèbres galoisiennes à groupe d’opérateursG (resp. H),
dans la catégorie des k-algèbres galoisiennes à groupe d’opérateursG × H , est une
équivalence de catégories.

La première assertion de (i), les assertions (ii), et la première assertion de (iii), se ramènent
aussitôt, compte tenu des définitions, au cas des algèbres galoisiennes triviales, où la véri-
fication est triviale et laissée au lecteur. La deuxième assertion dans (ii), résulte aussitôt
de la remarque faite après la déf. 2. Reste à prouver la dernière assertion dans (iii). Pour
ceci, nous allons exhiber un foncteur quasi-inverse h du foncteur envisagé φ : c’est celui
qui associe à l’algèbreC à groupe d’opérateursG×H , le coupleA,B avec

A = HomG×H(G,C) , B = HomG×H(H,C).

On définit de façon évidente des homomorphismes :

hφ −→ id , id −→ φh

et il reste à vérifier que ce sont des isomorphismes. C’est trivial pour le premier (transi-
tivité de l’opération d’induction), pour le second on est ramené au cas où le corps de base
est algébriquement clos, donc au cas des algèbres galoisiennes triviales, où c’est également
trivial.

N. B. — Il faut certainement garder la partie (ii) de prop. 7, qui donne la loi fonc-
torielle de H1(k,G) par rapport àG. Quant à la partie (iii), qui servira à montrer que le
foncteur G ⇝ H1(k,G) commute aux produits, on peut éventuellement la rejeter en
exercice ; de toutes façons, on retrouverait ce résultat au n◦ 6, grâce à l’interprétation de
H1(k,G) en termes du groupe fondamental de k. Mais cela obligerait à rejeter à ce n◦
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(et subordonner à des considérations topologiques) la structure de groupe sur H1(k,G)

lorsqueG est abélien, ce qui semble peu naturel.
Bien entendu, il faut avoir fait au Chap. I les opérations induites dans le cas d’un

homomorphisme quelconque G −→ G′ de groupes, pas seulement l’inclusion d’un
sous-groupe comme dans App. n◦ 5, où on avait en vue des phénomènes spéciaux au cas
d’une telle inclusion.

Remarques. —

a) La partie (i) de prop. 7 implique en particulier qu’une algèbre à opérateurs ga-
loisienne triviale est bien galoisienne, ce qui justifie la terminologie. Il est évident
d’autre part quedeux algèbres à opérateurs galoisiennes triviales, relatives aumême
groupeG, sontG-isomorphes.

b) On voit aussitôt, par réduction au cas galoisien trivial, que si A est une k-algèbre
à groupe d’opérateursG qui est quasi-galoisienne, alorsG opère fidèlement surA
et on a :

[A : k] = [G : e].

Proposition 8. — Soient k un corps, Ω une extension algébriquement close de k, G un
groupe fini, A une k-algèbre commutative à groupe d’opérateurs G. Les conditions suiv-
antes sont équivalentes :

(i) A est une algèbre à opérateurs galoisienne.

(ii) A est une k-algèbre étale, etG opère de façon simplement transitive sur l’ensemble
P (A) = Homk-alg(A,Ω).

(iii) Il existe une extension galoisienne finieK de k, un sous-groupeH de G, et un iso-
morphisme deH sur le groupeGal(K/k), tels queA soit isomorphe, comme algèbre
à groupe d’opérateursG, à l’algèbre induiteHomH(G,K).

Ces conditions impliquent A 6= 0, donc l’existence d’un corps résiduel de A. Lorsqu’on
s’est donné un corps résiduelK = A/m deA, et qu’on désigne parH le sous-groupe deG
stabilisateur deK , les conditions précédentes équivalent aussi à la condition suivante :
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(iv) A est réduit,G opère transitivement sur l’ensemble des idéaux maximaux deA,K
est une extension galoisienne de k et l’application canoniqueH −→ Gal(K/k) est
un isomorphisme.

Dire que A est une algèbre étale signifie que A ⊗k Ω est une Ω-algèbre diagonalisable,
donc (ii) signifie que A ⊗k Ω est galoisienne triviale, ce qui équivaut à (i) comme on a
observé après la définition 2. Ces conditions impliquent manifestement que A est non
nulle. L’équivalence de (iii) et (iv) résulte aussitôt des remarques préliminaires à la prop.
6. D’autre part (iii)⇒ (ii), car en vertu de prop. 7 (ii) on est ramené à prouver qu’une
extension galoisienne K de k, de degré fini, de groupe de Galois G, est une algèbre à
opérateurs galoisienne, pour les opérations naturelles deG surK , ce qui se voit en effet
trivialement sur la condition (ii). Enfin, prouvons (ii)⇒ (iv). On sait déjà, moyennant
(i), queA est réduit, et queG opère transitivement sur l’ensemble des idéaux maximaux
deA. Cela implique déjà queA est isomorphe, comme algèbre à groupe d’opérateursG,
à l’algèbre induite HomH(G,K), et compte tenu de prop. 7 (ii), on sait queK est une
algèbre à groupe d’opérateursH galoisienne. Cela implique queH opère fidèlement sur
K , et que son ordre est égal au degré n deK sur k, en vertu de la remarque ci-dessous,
donc queK est une extension galoisienne de k et queG −→ Gal(K/k) est un isomor-
phisme, grâce au cor. à la prop. 1.

On conclut de ce qui précède :

Corollaire. — Soient k un corps, K une extension de degré fini de k. Les conditions
suivantes sont équivalentes :

(i) K est une extension galoisienne de k (déf. 1).

(ii) Il existe un groupe finiG et une structure d’algèbre à groupe d’opérateursG surK ,
compatible avec la structure d’algèbre déjà donnée surK , tels queK soit une algèbre
à opérateurs galoisienne (déf. 2).

(iii) Désignant parΓ le groupe des k-automorphismes deK , et munissantK de sa struc-
ture naturelle d’algèbre à groupe d’opérateursΓ,K devient une algèbre à opérateurs
galoisienne (déf. 2).

De plus, si ces conditions sont vérifiées, alors avec les notations de (ii) et (iii),
l’homomorphismeG −→ Γ, définissant les opérations deG surK , est un isomorphisme.
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En d’autres termes, la terminologie de la définition 2 est en accord avec celle intro-
duite dans la définition 1, et de plus, siK est une extension de degré fini galoisienne de k,
alors il existe surK essentiellement une seule structure d’algèbre à groupe d’opérateurs,
compatible avec la structure d’algèbre déjà donnée deK , et en faisant une algèbre à opéra-
teurs galoisienne. De plus, la proposition 8 ramène l’étude des k-algèbres à opérateurs
galoisiennes à celle des extensions galoisiennes de degré fini de k.

5. — Les ensembles ponctuésH1(k,G) etH1(k,Ω;G)

Définition. — Soient k un corps,G un groupe fini, Ω une extension algébriquement close
de k. On appelle k-algèbre à groupe G d’opérateurs Ω-ponctuée un couple X = (A, ξ),
où A est une k-algèbre à groupe d’opérateurs G, et où ξ est un k-homomorphisme de k-
algèbres deA dansΩ. On dit queX est galoisienne (resp. galoisienne triviale) si l’algèbre
à opérateursA est galoisienne (resp. galoisienne triviale).

La notion d’isomorphisme pour cette espèce de structure (pour k, Ω, G fixés) est
claire. L’intérêt technique de la notion de ponctuation tient du fait qu’elle a pour ef-
fet de rigidifier la structure envisagée ; en d’autres termes, tout automorphisme d’une
algèbre à groupe d’opérateurs G galoisienne ponctuée est l’identité. C’est ce que dit
le cor. à prop. 6, qui prouve même que la catégorie de ces algèbres à opérateurs est
discrète. On notera que si A est une k-algèbre à groupe d’opérateurs G qui est galoisi-
enne, elle provient toujours d’une algèbre à opérateursΩ-ponctuéeX = (A, ξ), puisque
l’ensembleHomk-alg(A,Ω) est non vide ; de façon plus précise, commeG opère de façon
simplement transitive sur ce dernier ensemble, il opère de façon simplement transitive
sur l’ensemble des structures de k-algèbres à opérateurs ponctuées dontA est l’algèbre à
opérateurs sous-jacente. Mais on notera que siX = (A, ξ) et Y = (B, η) sont deux k-
algèbres à groupes d’opérateursG ponctuées, galoisiennes, un isomorphisme de A avec
B n’est pas nécessairement un isomorphismedeX surY , etA etB peuvent fort bien être
isomorphes (et même égaux) sans queX et Y le soient (cf. prop. 10 plus bas). Cepen-
dant, on voit aussitôt que siX et Y sont triviales, elles sont isomorphes.

Proposition 9. — Soient k un corps,G un groupe fini.

(i) SoitR(X) la relation : “X est une k-algèbre à groupe d’opérateursG galoisienne”,
et soit S(X) la relation “R(X) etX = τ(R(X))”. Alors la relation S est collec-
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tivisante.

(ii) Soit Ω une extension algébriquement close de k. Soit R′(X) la relation : “X est
une k-algèbre à groupe d’opérateurs G, Ω-ponctuée galoisienne”, et soit S ′(X) la
relation “R′(X) etX = τ(R′(X))”. Alors la relation S ′ est collectivisante.

La démonstration est laissée à Bourbaki, d’autant plus que le style définitif de l’énoncé
et de sa démonstration dépend de décisions pendantes sur le livre des Ensembles.

Définition 4. —Les notations étant celles de la prop. 9, on désigne parH1(k,G) (resp.
parH1(k,Ω;G)) l’ensemble desX satisfaisant la relationS(X) (resp. S ′(X)) de la prop.
9.

Comme d’habitude, si X est une k-algèbre à groupe d’opérateurs G galoisienne, on
appelle l’élément

cl(X) = τY (R(Y ) et Y est isomorphe àX) ∈ H1(k,G)

(qui est l’unique élément deH1(k,G) qui soit isomorphe àX) la classe (ou si on veut pré-
ciser, la classe à isomorphisme près) de X , et on adopte une notation et une terminologie
analogues pour le cas des algèbres à groupes d’opérateurs ponctuées.

Nous allons considérer les deux ensembles de la déf. 4 comme ponctués par la classe
des algèbres à opérateurs galoisiennes (resp. ponctuées) triviales.

La prop. 7 (ii) nous montre que l’expression H1(k,G) resp. H1(k,Ω;G), pour
k (resp. k et Ω) fixé(s), peuvent être considérés comme la valeur, en G, d’un foncteur
(covariant)

G⇝ H1(k,G) resp. G⇝ H1(k,Ω;G),

allant de la catégorie des groupes finis dans celle des ensembles ponctués. La prop. 7 (iii)
implique que ces deux foncteurs “commutent aux produits de deux facteurs”, d’ailleurs
ils transforment évidemment objets finaux (les groupes réduits à l’élément unité) en ob-
jets finaux (ensembles réduits à un élément), donc “commutent aux produits finis”.
(N.B. — Le deuxième foncteur est même exact à gauche, ce qui équivaut au fait qu’il
est proreprésentable; mais il n’y a pas lieu de le démontrer ici, car ce fait résultera triviale-
ment du n◦7).
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On a une application canonique, fonctorielle enG, déduite du foncteur associant à
toute algèbre à opérateurs ponctuée l’algèbre à opérateurs déduite par oubli de la ponc-
tuation :

H1(k,Ω;G) −→ H1(k,G).

Proposition 10. — L’application précédente est surjective. Faisons opérer G sur
lui-même par automorphismes intérieurs, donc sur les deux ensembles H1(k,Ω;G) et
H1(k,G) par la loi fonctorielle de ces expressions. Alors l’application précédente est com-
patible avec les opérations de G, et pour que deux éléments de H1(k,Ω;G) aient même
image dansH1(k,G), il faut et il suffit qu’ils soient transformés l’un de l’autre par une
opération deG.

En d’autres termes, l’application envisagée induit une bijection canonique (évidem-
ment fonctorielle enG) :

H1(k,Ω;G)/G
∼−−→ H1(k,G)

permettant de reconstituer l’ensembleH1(k,G) à partir de la connaissance de l’ensemble
deH1(k,Ω;G) et des opérations deG sur ce dernier.

Démontrons la proposition. L’assertion de surjectivité provient de la remarque, déjà
faite après la déf. 3, que toute algèbre à opérateurs galoisienne provient d’une algèbre
à opérateurs galoisienne ponctuée. Le fait que l’application envisagée commute aux
opérations de G provient du fait que cette application est fonctorielle. Enfin, soient
X = (A, ξ) et Y = (B, η) deux algèbres à groupe G d’opérateurs ponctuées galoisi-
ennes; pour que les algèbres à opérateurs A et B soient isomorphes, il faut et il suffit
évidemment que Y soit isomorphe à une Y ′ = (A, ξ′), définie par une ponctuation ξ′

deA. CommeG opère transitivement sur l’ensemble des ponctuations deA parΩ, cela
signifie aussi que Y est isomorphe à une Y ′ de la forme (A, g · ξ), où g ∈ G et où g · ξ
désigne la ponctuation ξ ◦ g−1

A déduite de ξ par transport de structure au moyen de gA.
La proposition sera donc démontrée si nous démontrons que pour Y ′ défini en termes
deX et de g de cette façon, on a

cl(Y ′) = g · cl(X),

en d’autres termes queY ′ est isomorphe à l’algèbre à opérateurs ponctuée induite à partir
deX = (A, ξ) par v = int(g) : G −→ G. Il revient au même de dire qu’il existe un
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isomorphisme u : A −→ A, satisfaisant aux relations :u(v(h) · x) = h · u(x), h ∈ G, x ∈ A,

g · ξ = ξ ◦ u.

On prendra alors u = g−1
A , de sorte que la seconde relation est vérifiée par définition, et

la première s’écrit
g−1(ghg−1 · x) = h(g−1 · x),

qui est également vérifiée. Cela achève la démonstration.

Corollaire 1. — Pour tout g ∈ G, la permutation de H1(k,G) induite par
l’automorphisme int(g) deG est l’identité.

Corollaire 2. — Supposons G abélien. Alors l’application canonique
H1(k,Ω;G) −→ H1(k,G) est bijective.

En effet, G opère trivialement sur lui-même par automorphismes intérieurs, donc
opère trivialement sur H1(k,Ω;G).

Notons maintenant que siG est abélien, alors l’application (g, h) ⇝ gh deG× G
dansG est un homomorphisme de groupes, et induit donc une application

H1(k,G)×H1(k,G) −→ H1(k,G),

compte tenu que le foncteur H1(k,−) commute aux produits finis.

Proposition 11. — Soient k un corps, G un groupe fini abélien. La loi de composi-
tion qu’on vient de définir sur H1(k,G) en fait un groupe abélien, admettant le point
marqué comme élément unité. Si u : G −→ H est un homomorphisme de groupes finis
abéliens, l’application correspondanteH1(k,G) −→ H1(k,H) est un homomorphisme
de groupes.

La deuxième assertion s’exprime encore en disant que H1(k,G) −→ H1(k,H) est
compatible avec les lois de composition internesmises sur ces deux ensembles, et provient
aisément par application du foncteur H1 de la commutativité du diagramme

G×G G

H ×H H,
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où les flèches verticales sont u × u et u, et les flèches horizontales sont les applications
somme. Le fait que H1(k,G) soit un groupe commutatif pour sa loi de composition
se vérifie de façon analogue. (N.B. — La vérification n’est autre que celle du fait général
qu’un foncteur commutant aux produits finis transformemonoïdes, resp. groupes, resp.
groupes commutatifs…de la première catégorie en animaux de même nature de la sec-
onde. Bien entendu, c’est là un résultat constamment utilisé dans toutes sortes de con-
textes, à tel point qu’on omet généralement d’en donner la justification, oumême de sig-
naler qu’il y aurait lieu d’en donner une. Les seules références existantes sont quelques
nobles et vagues affirmations, dans le style de celle-ci. Bourbaki juge-t-il que c’est son
rôle de donner un sorite utilisable sur les structures algébriques dans les catégories, ou
préfère-t-il se taper deux ou trois pages d’explications et diagrammes dans chaque situa-
tion particulière qu’il rencontrera ? Quant au rédacteur, il se détourne avec horreur et
effroi d’une telle alternative). Cela achève la démonstration.

Soit maintenant k′ une extension de k. Utilisant prop. 7, (i), on trouve une applica-
tion d’ensembles ponctués

H1(k,G) −→ H1(k′, G),

fonctorielle en le groupe fini G. Lorsque G est abélien, cette application est compati-
ble avec les structures de groupes envisagées sur les deux membres. Si d’autre part Ω est
une extension de k, Ω′ une extension de k′, et si on se donne un homomorphisme de
k-extensionsΩ −→ Ω′, de sorte qu’on a donc un carré commutatif :

k Ω

k′ Ω′,

alors on définit de même une application d’ensembles ponctués

H1(k,Ω;G) −→ H1(k′,Ω′;G).

Cette application est encore fonctorielle enG, en particulier commute aux opérations de
G envisagées dans la prop. 10, d’autre part le carré d’applications

H1(k,Ω;G) H1(k,G)

H1(k′,Ω′;G) H1(k′, G)
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est commutatif.
Lorsqu’on se donne également une extension k′′ de k′, alors l’application

H1(k,G) −→ H1(k′′, G) correspondante est la composée des applications de change-
ment de corps de base H1(k,G) −→ H1(k′, G) −→ H1(k′′, G). On peut présenter
la variance de H1(k,G) par rapport aux deux arguments en disant que H1(k,G) est un
bifoncteur en le couple (k,G), contravariant en le premier argument et covariant en le
second, où k varie dans la catégorie des corps, G dans la catégorie des groupes finis, et
H1(k,G) est à valeurs dans la catégorie des ensembles pointés. LorsqueG est astreint à
être abélien, on peut considérer ce bifoncteur comme étant à valeurs dans la catégorie des
groupes abéliens.

6. — Groupe de Galois topologique et théorie de Galois des extensions
galoisiennes infinies

Le présent n◦ et le suivant utilisent certaines notions de Topologie Générale, qui ne
seront développées que dans le livre suivant. Comme les résultats donnés ici ne seront
utilisés, dans la suite de ce traité, qu’après le livre de Topologie Générale, un cercle vi-
cieux n’est pas à craindre.

Propostion 12. — SoitG un groupe topologique. Les conditions suivantes sont équiva-
lentes :

(i) G est compact et totalement discontinu.

(ii) G est compact, et il existe un système fondamental de voisinages de l’élément neutre
qui sont des sous-groupes ouverts.

(iii) Comme (ii), mais en exigeant que les sous-groupes envisagés soient distingués.

(iv) Onpeut trouver un système projectif (Gi)i∈I de groupes finis, indexé parun ensemble
ordonné filtrant I , tel queG soit isomorphe au groupe topologique limite projective
de ce système (les Gi étant considérés comme groupes topologiques à l’aide de leur
topologie discrète).

Par définition de la topologie de lim←−Gi, il est évident que (iv) implique (iii), d’autre part
(iii) implique (iv), comme on voit en prenant le système projectif formé des groupes quo-
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tientsG/U , où U est un sous-groupe ouvert distingué deG. En effet, les groupesG/U
sont finis (car compacts et discrets), et l’homomorphisme naturel de G dans lim←−G/U
est injective grâce à (iii), et a une image dense, donc est un isomorphisme puisqueG est
compact et lim←−G/U est séparé. Ainsi (iv) équivaut à (iii), qui implique trivialement (ii).
D’autre part (ii) implique (iii) en vertu du :

Lemme 1. — SoitG un groupe,H un sous-groupe d’indice fini deG, alors l’ensemble
des sous-groupes de G conjugués de H est fini, et leur intersection H ′ est un sous-groupe
distingué d’indice fini deG.

En effet, soitE = G/H l’espace homogène défini par le sous-groupeH , et soitG′ le
groupe des permutations de E, qui est un groupe fini. On a donc un homomorphisme
naturel G −→ G′. On sait (Chap. I) que les conjugués de H sont les stabilisateurs
des éléments de E, et sont donc en nombre fini, et que leur intersection est le noyau de
G −→ G′, qui est donc d’indice fini.

Corollaire. — SiG est un groupe topologique, etH un sous-groupe ouvert deG, d’indice
fini, alorsH ′ est un sous-groupe ouvert d’indice fini et distingué contenu dansH .

En effet, une intersection finie d’ouverts est ouverte.
On a donc prouvé l’équivalence des conditions (ii) à (iv). D’autre part (ii) implique

évidemment que la composante connexe l’élément unité e deG est réduite à {e}, donc
par translation que pour tout g ∈ G la composante connexe de g est réduite à {g}. Donc
(ii) implique (i), et il reste à prouver que (i) implique (ii). Nous utiliserons le lemme
suivant :

Lemme 2. — Soient G un groupe topologique, X un espace compact sur lequel G
opère continûment à gauche (de sorte que, par définition, l’application (g, x) 7→ g.x de
G × X dans X est continue), R une relation d’équivalence dans X telle que les classes
d’équivalence modR soient des parties ouvertes deX . Alors le sous-groupeH deG, formé
des g ∈ G qui laissentR invariante, est un sous-groupe ouvert, et si de plusX est compact,
il existe une relation d’équivalence R′, plus fine que R, satisfaisant à la même condition
queR, et stable par les opérations deG.

Comme toute classe d’équivalence est le complémentaire de la réunion des autres
classes d’équivalence, il s’ensuit qu’elle est fermée. D’ailleurs, X étant compact,
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l’ensemble de ces classes est nécessairement fini, donc la donnée de R équivaut à celle
d’une partition (Xi)i∈I deX en un ensemble fini de parties à la fois ouvertes et fermées.
Pour tout i ∈ I , soit Ui l’ensemble des g ∈ G tels que g(Xi) ⊂ Xi. Je dis que Ui est
ouvert : en effet, soit Vi l’image inverse deXi par l’application (g, x) 7→ g.x deG×Xi

dansX . C’est une partie ouverte deG×Xi, et si pi : G×Xi −→ G désigne la projec-
tion canonique,Ui n’est autre queG−pi(G×Xi−Vi). Comme pi est propre,Xi étant
compact (réf.), il transforme parties fermées en parties fermées, ce qui prouve queUi est
ouvert. Il en est donc de même de l’intersection desUi, I étant fini, or cette intersection
n’est autre que le groupeH stabilisateur deR. DoncH est un sous-groupe ouvert.

LorsqueG est compact, cela implique queH est d’indice fini, donc que l’ensemble
des relations d’équivalence g.R transformées de R par des éléments de G est fini (cet
ensemble étant en effet en correspondance biunivoque avec les éléments de G/H). Si
R′ est la relation d’équivalence borne supérieure des g.R, on voit alors que ces classes
d’équivalence sont ouvertes comme intersection finies de parties ouvertes, et de plusR′

est évidemment stable parG et plus fine queR. Cela achève la démonstration du lemme
2.

Soit maintenant G un groupe topologique compact totalement discontinu, prou-
vons que tout voisinage ouvert U de l’élément neutre contient un sous-groupe ouvert
de G. On peut supposer déjà U ouvert et fermé. Il suffit alors d’appliquer le lemme 2
au groupe G et à X = Gs, et à la relation d’équivalence définie par la partition de Gs

en les ensembles U etG − U (en supposant G − U 6= ∅, ce qui est loisible, car sinon
il suffit de prendre le sous-groupe G lui-même) : si H est le stabilisateur de cette rela-
tion d’équivalence,H est un sous-groupe ouvert en vertu du lemme 2, et on aH ⊂ U ,
puisqueH.U ⊂ U et e ∈ U , ce qui achève la démonstration.

N. B.— J’ai inclus le lemme 2 pour fournir une référence commode pour la démon-
stration du fait suivant, qui pourrait être indiqué en exercice : siG est un groupe com-
pact opérant continûment sur un espace compact totalement discontinu, alors il existe
un système projectif (Xi)i∈I d’espaces quotients finis discrets de X , stables par G, in-
dexé par un ensemble d’indices ordonné filtrant croissant, tel que l’application canon-
iqueX −→ lim←−Xi soit un isomorphisme d’espaces topologiques à groupe topologique
G d’opérateurs. Cela implique alors ceci : soient k un corps,G son groupe fondamental
relativement à une extension sép. close Ω de k, alors le foncteur A 7→ Homk-alg(A,Ω)

61



établit une antiéquivalence entre la catégorie des k-algèbres entières séparables, et la caté-
gorie des espaces topologiques compacts totalement discontinus à groupe topologique
G d’opérateurs.

Définition 5. — Un groupe topologique G satisfaisant les conditions équivalentes de
la prop. 12 est appelé un groupe profini.

Proposition 13. — SoitG un groupe topologique,H un sous-groupe. SiH est fermé et
d’indice fini dansG, alorsH est ouvert, et la réciproque est vraie siG est compact.

SiH est ouvert,G compact, alorsG/H est compact et discret, donc fini, d’autre part on
sait qu’un sous-groupe ouvert est fermé. SiH est fermé i.e. G/H séparé, et siH est d’indice
fini i.e. G/H fini, donc discret, H est ouvert puisqu’il est l’image inverse d’un point de
G/H , lequel est ouvert.

Proposition 14. — Soient G un groupe profini, H un sous-groupe fermé. Muni de
la topologie induite, H est un groupe profini. De plus, H est intersection des sous-groupes
ouverts deG qui le contiennent. L’espace homogèneG/H est un espace compact totalement
discontinu, et siH est invariant, le groupe topologique quotientG/H est profini.

La première assertion provient du fait queG étant compact et totalement discontinu,
il en est de même de toute partie fermée. D’autre part, on sait que toute partie fermée est
intersection de ses voisinages à la fois ouverts et fermés. Pour prouver queH est l’intersection
des sous-groupes ouverts de G qui le contiennent, il suffit de prouver que tout voisinage U
deH dansG qui est ouvert et fermé contient un voisinage qui est un sous-groupe ouvert de
G. Considérons une relation d’équivalence R dans G dont les classes sont ouvertes, l’une
d’elles contenantH et contenue dansU (par exemple la relation ayant comme seules classes
U , et G − U si ce dernier est non vide). Appliquant le lemme 2 à H opérant sur X par
translations à gauche, on voit que l’ensemble des transformées deR par les opérations deH
est fini, donc quitte à remplacer R par la borne supérieure de ses transformées parH , on
peut supposerR invariante par les opérations deH . Appliquons maintenant le lemme 2 à
G opérant sur lui-même par translations à gauche, et soitH ′ le sous-groupe deG stabilisa-
teur deR. C’est un sous-groupe ouvert deG, contenantH par hypothèse, et contenu dans la
classe d’équivalence V contenantH (puisqueH.V ⊂ V et e ∈ V ), et a fortiori contenu
dansU . Ceci prouvé, on en conclut que l’image de l’élément neutre deG dansG/H admet
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un système fondamental de voisinages à la fois ouverts et fermés, donc par translation on
voit qu’il en est demême de tout point deG/H , qui est donc totalement discontinu. Comme
il est manifestement compact, cela achève la démonstration de prop. 14.

Proposition 15. — Soit (Gi)i∈I un système projectif de groupes topologiques, et soitG le
groupe topologique limite projective de ce système. Si lesGi sont profinis, il en est de même
deG.

En effet, on sait qu’une limite projective d’espaces compacts est un espace compact, et
d’autre part la condition (iii) de prop. 12 est vérifiée, comme on voit aussitôt en utilisant
la même condition sur lesGi et la description des voisinages de l’élément neutre dansG.

Définition 6. — Soient K un corps, E une extension quasi-galoisienne de K , G son
groupe de Galois. On appelle groupe de Galois topologique deE (ou, s’il y a lieu de préciser,
deE surK) le groupeG, muni de la topologie de la convergence simple,E étant considéré
comme muni de la topologie discrète.

Nous verrons un peu plus bas que cette topologie fait bien de G un groupe topologique
(réf.), ce qui justifiera la terminologie. Par la suite, on dira souvent “groupe de Galois”
au lieu de “groupe de Galois topologique”, étant entendu que, lorsqu’un groupe de Galois
sera considéré comme groupe topologique, c’est toujours de la topologie qu’on vient de définir
qu’il s’agira. Signalons tout de suite que le groupe deGalois topologique deE surK est égal
par définition au groupe de Galois topologique deE sur le corps des invariantsKG deG;
c’est ce qui permettrait, dans l’étude des groupes deGalois topologiques, de se ramener au cas
des extensions galoisiennes. Signalons aussi que siE est une extension quasi-galoisienne de
degré fini deK , son groupe de Galois, qui est alors fini, est discret, car si S est un ensemble
générateur fini de l’extensionE, pour tout g ∈ G, l’ensemble des g′ ∈ G tels que g′(x) =
g(x) pour tout x ∈ S est un voisinage de g réduit à {g}.

Proposition 16. — Soit E une extension quasi-galoisienne de K , réunion filtrante
d’une famille d’extensions quasi-galoisiennesEi. Alors l’homomorphisme naturel

Gal(E/K) −→ lim←−
i

Gal(Ei/K)

est un isomorphisme de groupes topologiques.

Cela résulte trivialement des définitions.
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Corollaire 1. — Le groupe de Galois topologique d’une extension quasi-galoisienne est
un groupe topologique pro-fini.

En effet, E est réunion filtrante croissante de ses sous-extensions quasi-galoisiennes
Ei de degré fini surK , donc prop. 16 implique queG est isomorphe à une limite pro-
jective de groupes finis discrets, ce qui montre à la fois que c’est un groupe topologique,
et que ce dernier est profini.

Corollaire 2. — SoitE une extension galoisienne du corpsK ,G son groupe de Galois
topologique. Les conditions suivantes sont équivalentes :

(i) Le groupeG est fini.

(ii) Le groupe topologiqueG est discret.

(iii) L’extensionE est de degré fini.

L’équivalence de (i) et (ii) provient du fait queG est compact (cf. prop. 13), celle de (i)
et (iii) provient du théorème 2.

Rappelons que siu : G −→ H est un homomorphisme de groupes topologiques,G
étant compact etH séparé (condition vérifiée siG etH sont tous deux profinis), u(G)
et ker u sont fermés dansH etG et u induit un isomorphisme de groupes topologiques
deG/ keru sur u(G), muni de la topologie induite parH ; en particulier, si u est injectif
(resp. bijectif),u induit un isomorphisme de groupes topologiques deG avecu(G) (resp.
deG avecH). De ceci, on conclut immédiatement les résultats suivants :

Proposition 17. — SoitE une extension galoisienne du corpsK , F une sous-extension
de E. Alors Gal(E/F ) est un sous-groupe fermé de Gal(F/K). Si F est galoisien, alors
l’isomorphisme de groupesGal(F/K) ' Gal(E/K)/Gal(E/F ) de prop. 2. cor. 2 est un
isomorphisme de groupes topologiques.

Corollaire. — Sous les conditions du théorème 1, l’isomorphisme

Gal(E ′/K ′) ' Gal(E/K)

est un isomorphisme de groupes topologiques.
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Proposition 18. — Soient E une extension galoisienne du corps K , G son groupe de
Galois topologique,H un sous-groupe deG. Pour que le corps des invariants deH soit égal
àK , il faut et il suffit queH soit dense dansG.

La condition est suffisante, car siH est dense dansG, pour tout x ∈ E, l’orbite de
x sous G est égale à son orbite sousH , ce qui montre que le corps des invariants deH
est égal à celui de G, c’est-à-dire à K . Inversement, supposons que le corps des invari-
ants deH soit réduit àK . Pour toute sous-extension galoisienne F de degré fini de E,
l’ensemble des restrictions à F des g ∈ H est alors un sous-groupeHF du groupe GF

desK-automorphismes de F ; comme le corps des invariants est réduit àK , en vertu du
théorème 3, cela implique queHF = GF ; donc queH est dense dansG.

Nous pouvons maintenant généraliser aux extensions galoisiennes éventuellement
infinies le théorème fondamental de la théorie de Galois :

Théorème 4. — Soient E une extension galoisienne d’un corps K , G son groupe de
Galois, K l’ensemble des sous-extensions de E, G l’ensemble des sous-groupes fermés de G.
Pour tout sous-groupeH deG, soit k(H) le corps des invariants deH , qui est un élément de
K, et pour toute sous-extension F deE, soit g(F ) son groupe de Galois, qui est un élément
de G. On obtient ainsi deux applications : k : G −→ K et g : K −→ G Ces
applications sont bijectives et inverses l’une de l’autre. SiH ∈ G etF ∈ K se correspondent,
alors F est de degré fini surK si et seulement siH est d’indice fini dansG, ou encore si et
seulement siH est un sous-groupe ouvert deG, on a alors :

[G : H] = [F : K]. (∗)

En effet, le fait que k ◦ g soit l’application identique n’est autre que la prop. 2, et le
fait que g ◦ k soit l’application identique résulte aussitôt de la prop. 18. CommeG/H
est en correspondance biunivoque avec l’ensemble desK-monomorphismes de F dans
E (ou ce qui revient au même, dans une clôture algébrique donnée de E), cela montre
l’égalité (*) en tous cas, compte tenu de §7, prop. 14, cor. 6, ce qui implique queH est
d’indice fini dansG si et seulement siH est ouvert dansG. Cela achève la démonstration
du théorème.
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7. — Groupe fondamental d’un corps, et structure de la catégorie des
algèbres étales sur un corps

Définition 6. — Soient k un corps, Ω une extension séparablement close de k. On appelle
groupe fondamental de k relativement à Ω, et on notera π1(k,Ω), le groupe de Galois
topologique de la fermeture algébrique séparable ks de k dansΩ.

Dans cette définition,Ωn’intervient que via la fermeture algébrique séparableks dek
dansΩ. Compte tenude §7, prop. 22, cor., cette dernière ne dépendpas, à isomorphisme
près, du choix deΩ. On obtient donc :

Proposition 19. — Les groupes fondamentaux d’un corps k, relatifs à deux extensions
séparablement closes quelconques de k, sont isomorphes.

Remarques. — 1) On notera que l’isomorphisme θ : π −→ π′ construit dans la dé-
monstration de la prop. 19 dépenddu choix d’un isomorphismeu entre deux clôtures sé-
parablesks etk′s dek. Ce dernier est évidemment déterminémodulo composition par un
automorphisme v de l’extension k′s. Or v ∈ π′, et désignant par int(v) l’automorphisme
intérieur de π′ défini par u :

int(v)(w) = vwv−1,

on voit aussitôt que l’isomorphisme θ′ : π −→ π′ associé à l’isomorphismew : ks −→
k′s est donné par

θ′ = int(v) ◦ θ.

On peut donc dire qu’on a défini une classe d’isomorphismes θ : π −→ π′, modulo
composition par des automorphismes intérieurs de π′. Lorsque en particulier le groupe
fondamental π de k est abélien, on voit qu’on a défini un isomorphisme canonique entre
les groupes fondamentaux π et π′, relatifs à deux extensions séparablement closes quel-
conques de k.

2) En vertu de la prop. 19, on se permet parfois, par abus de langage, de parler du
groupe fondamental de k, qu’on note simplement π1(k), sans préciser le choix d’une ex-
tension séparablement close. Ce langage ne présente pas d’inconvénients tant qu’il n’est
question que de propriétés de ce groupe qui sont invariantes par isomorphisme, mais
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doit être évité en tous cas dans les questions où interviennent les propriétés fonctorielles
du groupe fondamental.

Rappelons nous que, si ks est une clôture séparable de k, les extensions algébriques
séparables dek sont isomorphes à des sous-extensions deks, et deux telles sous-extensions
sont isomorphes si et seulement si elles sont conjuguées par un élément du groupe de
Galois de ks. On obtient alors, compte tenu du théorème 4 :

Proposition 20. — Soient k un corps, Ω une extension séparablement close de k, et
G = π1(k,Ω) le groupe fondamental de k relatif à Ω. Alors il y a une correspondance
biunivoque canonique entre les classes, à isomorphisme près, d’extensions algébriques sé-
parables de k, et les classes à conjugaison près, de sous-groupes fermés deG. Aux classes des
extensions finies correspondent les classes des sous-groupes ouverts i.e. d’indice fini.

Il convient de préciser ce dernier énoncé, en donnant un théorème de structure sur
la catégorie des algèbres étales sur k. L’importance de la notion de groupe fondamental
d’un corps k tient en premier lieu au fait qu’elle permet de formuler un tel théorème de
structure. Pour ceci, introduisons la

Définition 7. — SoitG un groupe topologique. Un ensembleE à groupe d’opérateurs
G est dit admissible si l’application (g, x) 7→ g.x deG× E dansE est continue, lorsque
E est muni de la topologie discrète etG× E de la topologie produit.

CommeG× E est l’ensemble somme desG× {x}, pour x ∈ E, on voit que cette
condition signifie aussi que pour tout x ∈ E, l’application g ⇝ g.x deG dansE muni
de la topologie discrète est continue, ou encore que le stabilisateurGx de x dansG est un
sous-groupe ouvert. Ainsi, les ensembles à groupe d’opérateursG admissibles sont ceux
qui sont isomorphes à un ensemble de opérateurs somme d’espaces homogènesG/Hi, où
(Hi) est une famille de sous-groupes ouverts deG. Notons que lorsque E est fini, cela
signifie aussi (comme on voit grâce au lemme 1 du n◦ 6) que l’on peut trouver un sous-
groupe ouvert distinguéH , tel que Π opère trivialement sur E, i.e. tel que la structure
externe deE provienne d’une structure à groupe d’opérateursG/H .

SiG est un groupe topologique, nous désignons par

Ensf(G)

la sous-catégorie pleine de la catégorie des ensembles à groupe d’opérateursG, qui sont
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finis et admissibles. D’autre part, si k est un corps, nous désignons par

Et(k)

la catégorie des algèbres étales sur k. Supposons maintenant choisi une extension sépara-
blement closeΩ de k, et que l’on ait

G = π1(k,Ω).

Nous allons, sous ces conditions, définir une anti-équivalence entre les deux catégories
qu’on vient de définir, et de façon plus précise, nous allons définir deux foncteurs

φ : Et(k)◦ −→ Ens(G),

h : Ens(G) −→ Et(k)◦,

quasi-inverses l’un de l’autre.
1) Définition du foncteur φ. On posera pour toute k-algèbre étale :

φ(A) = Homk-alg(A, ks) ' Homk-alg(A,Ω),

où ks est la fermeture algébrique séparable de k dans Ω, et où le deuxième membre est
considéré comme ensemble à groupe d’opérateursG, en faisant agir ce dernier par

g.u = g ◦ u (g ∈ G, u ∈ φ(A)).

Cet ensemble à opérateurs est manifestement fini (de cardinal égal à [A : k]) et admissi-
ble. Si u : A −→ B est un homomorphisme de k-algèbres étales, on définit

φ(u) : φ(B) −→ φ(A)

par la formule
φ(u)(v) = v ◦ u.

Il est immédiat qu’on définit bien ainsi un foncteur φ de Et(k)◦ dans Ensf(G).
2) Définition du foncteur h. On posera, pour tout ensemble à groupe d’opérateurs

G fini et admissible :
h(E) = HomG(E, ks),
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où le deuxième membre est considéré comme k-algèbre par la structure de k-algèbre in-
duite par ks :

(λu)(x) = λ(u(x)) (λ ∈ k, x ∈ E, u ∈ HomG(E, ks)).

Si u : E −→ F est un homomorphisme d’ensembles à groupe d’opérateursG, finis et
admissibles, on définit

h(u) : h(F ) −→ h(E)

par la formule
h(u)(v) = v ◦ u.

Il est immédiat qu’on définit ainsi un foncteur contravariant de la catégorie Ensf(G)
dans la catégorie desk-algèbres. Prouvons que ce foncteur prend ses valeurs en fait dans la
catégorie Et(k), plus précisément, que h(E) est une algèbre étale de degré égal à card(E).
Pour ceci, observonsqueh transforme sommes enproduits, commeonconstate aussitôt ;
compte tenu qu’un produit fini d’algèbres étales est une algèbre étale, on est ramené à
prouver que notre assertion dans le cas où E est de la forme G/H , où H est un sous-
groupe ouvert de G. Mais alors h(E) est isomorphe au corps des invariants deH dans
ks, qui est une extension de degré fini de ks de degré G : H , (théorème 4), donc une
extension étale. Cela prouve en particulier que h définit bien un foncteur de Ensf(G)
dans Et(k)◦.

3) Définition d’un isomorphisme fonctoriel :

αA : A −→ hφ(A).

Pour toute k-algèbre étaleA, on désigne par αA l’homomorphisme défini par

αA(x)(u) = u(x) pour x ∈ A, u ∈ φ(A) = Homk-alg(A, ks).

Il est immédiat que c’est un homomorphisme de k-algèbres, fonctoriel enA. Prouvons
que c’est un isomorphisme. Pour cela, observons que le foncteur φ transforme man-
ifestement produits finis en sommes, et comme h transforme sommes en produits, il
s’ensuit que hφ est un foncteur qui commute aux produits finis. Cela nous ramène au
cas oùA est une extension. DoncαA est nécessairement injectif. Mais en vertu de ce qui a
été dit dans 1) et 2),A et hf(A) ontmême degré fini sur k, doncαA est un isomorphisme.
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4) Définition d’un isomorphisme fonctoriel

βE : E −→ φh(E).

Pour tout ensemble E à groupe d’opérateurs G, fini et admissible, on désigne par βE
l’homomorphisme défini par

βE(x)(u) = u(x) pour x ∈ E, u ∈ h(E) = HomG(E, ks).

Il est immédiat que c’est un homomorphisme d’ensembles à groupe d’opérateurs G,
fonctoriel en E. Prouvons que c’est un isomorphisme. Utilisant le fait que φh trans-
forme sommes en sommes, on est ramené au cas où E est de la forme G/H , où H est
un sous-groupe ouvert deG. Mais alors h(E) est isomorphe au corps des invariants de
H dans ks, qui est une extension étale de k, d’où résulte queG opère transitivement sur
φ(h(E)), donc, commeE est non vide, queE −→ φh(E) est surjectif. Or il résulte de
ce qu’on a dit dans 1) et 2) que E et φh(E) ont même cardinal fini, donc l’application
considérée est bijective.

Remarque. —On vérifie aussitôt que les isomorphismes de foncteurs αE et βE sat-
isfont la condition de compatibilité habituelle pour deux foncteurs adjoints, cf. Ens.
Chap. …§…n◦ ….

On conclut de ceci :

Théorème 5. — Soient k un corps, Ω une extension séparablement close de k, G le
groupe fondamental de k relativement àΩ. Alors les foncteursφ et h précédents définissent
des équivalences, quasi-inverses l’une de l’autre, entre la catégorie des algèbres étales sur k,
et la catégorie opposée de la catégorie des ensembles à groupe d’opérateursG qui sont finis et
admissibles. De plus, si l’algèbre étaleA surk et l’ensemble à opérateursE se correspondent,
on a

[A : k] = card(E).

Théorème 5. — Supposons queA etE se correspondent. Pour queA soit une extension
de k, il faut et il suffit queE 6= ∅ et queG opère transitivement surE. Pour queA soit de
plus une extension galoisienne de k, il faut et il suffit que le stabilisateur d’un (ou encore,
de tout) point deE dansG soit un sous-groupe distingué.
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Corollaire 2. — Supposons que A et E se correspondent. Pour qu’on ait A = 0 (resp.
A ' k) il faut et il suffit queE = ∅ (resp. queE soit réduit à un point).

En effet, les objets finaux (resp. initiaux) de Et(k) correspondent aux objets initiaux
(resp. finaux) de Ensf(G). On peut aussi prouver ce corollaire directement sans utiliser
le th. 5 !

Corollaire 3. — Les produits tensoriels finis dans Et(k) correspondent par les équiva-
lences φ et h aux produits finis dans Ensf(G).

En effet, les produits tensoriels d’algèbres étales sont les sommes, au sens de la
catégorie Et(k). (N. B. — Bien entendu, le fait que φ transforme produits tensoriels
d’algèbres en produits ordinaires d’ensembles à opérateurs est trivial directement ; ce qui
l’est moins, c’est que h transforme produits ordinaires en produits tensoriels).

Corollaire 4. — Soient A une k-algèbre étale à groupe Γ d’opérateurs (à gauche), de
sorte que φ(A) est un ensemble à groupe d’opérateurs G, fini et admissible, sur lequel Γ
opère par fonctorialité à droite (en commutant donc aux opérations deG). Pour queA soit
une algèbre à groupe d’opérateurs Γ galoisienne, il faut et il suffit que Γ opère de façon
simplement transitive sur φ(A). On obtient ainsi une équivalence de la catégorie des k-
algèbres à groupe d’opérateurs Γ qui sont galoisiennes, avec la catégorie des espaces princi-
paux homogènes (brrr) à droite sous Γ, munis du groupe d’opérateurs à gaucheG, opérant
de façon admissible.

La première assertion est une conséquence triviale de la définition 2 et du critère (i)
de prop. 6. Les autres assertions s’ensuivent aussitôt, grâce au théorème 5.

Proposons nousmaintenant d’interpréter demême la structure dek-algèbre à groupe
d’opérateurs Γ galoisienne munie d’une ponctuation relativement àΩ (déf. 3).

Par définition, en termes de l’ensemble E à opérateurs G et Γ correspondant, une
ponctuation correspond simplement au choix d’un point x de E. Or un tel choix per-
met d’identifier l’espace principal homogène à droite E à Γa, à l’aide de l’application
γ 7→ x.γ. Cette identification faite, l’ensemble des automorphismes d’ensemble à
groupe Γ d’opérateurs de E peut être identifié à Γ, opérant sur Γa par translation à
gauche, ce qu’on peut expliciter aussi en disant que pour tout γ ∈ Γ, il y a un unique
Γ-automorphisme g = ρ(γ) deE tel que g.x = x.γ, et qu’on obtient ainsi un isomor-
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phisme ρ de Γ sur AutΓ(E). Par suite, la donnée, sur le Γ-ensemble E, d’une structure
d’objet à groupe d’opérateurs G équivaut à celle d’un homomorphisme G −→ Γ, et
cette structure est admissible si et seulement si cet homomorphisme est continu. On a
ainsi, a toute k-algèbre étale à groupe d’opérateurs G galoisienne et ponctuée, associé
canoniquement un homomorphisme continu

G −→ Γ,

et de ce qui précède il résulte immédiatement que : a) deux structures de l’espace précé-
dent sont isomorphes si et seulement si elles définissent lemêmehomomorphismeG −→
Γ, et b) tout homomorphisme continu G −→ Γ provient d’une structure de l’espace
envisagée. Notons enfin qu’il résulte immédiatement des définitions que si A est une
algèbre à groupe d’opérateurs Γ galoisienne ponctuée, et si Γ −→ Γ′ est un homomor-
phisme de Γ dans un groupe fini Γ′, alors l’homomorphisme G −→ Γ′ associé à A′,
l’algèbre à groupe d’opérateurs Γ′ galoisienne ponctuée déduite deA par extension con-
travariant dugroupe structural, n’est autre que le composéG −→ Γ −→ Γ′. Onobtient
donc :

Corollaire 5. —Le procédé qui précède définit un isomorphisme, fonctoriel en le groupe
fini Γ :

H1(k,Ω; Γ)
∼−−→ Homcont(G,Γ),

où le deuxième membre désigne l’ensemble des homomorphismes continus deG dans Γ.

Utilisant maintenant la prop. 10, on trouve par suite :

Corollaire 6. — Pour tout groupe fini Γ, désignons parH1(G,Γ) l’ensemble quotient
de l’ensemble Homcont(G,Γ) par les opérations du groupe Γ, en faisant opérer γ ∈ Γ

sur cet ensemble par composition avec l’automorphisme intérieur int(γ). Alors on a un
isomorphisme fonctoriel en Γ :

H1(k,Γ)
∼−−→ H1(G,Γ).

Deplus, nous rappelant que lorsqueΓ est un groupe abélien, on adéfini surH1(k,Γ)

une loi de groupe abélien, en termes de la propriété de commutation du foncteur
Γ ; H1(k,Γ) aux produits finis, et que la loi de groupe naturelle sur H1(G,Γ)

∼−−→
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Homcont(G,Γ) peut manifestement être décrite par le même procédé, (N. B. — un
foncteur d’une catégorie abélienne dans (Ens) qui commute aux produits finis se fac-
torise par (Ab) d’une seule manière). On en conclut :

Corollaire 7. — Lorsque Γ est un groupe fini abélien, l’isomorphisme du corollaire 6
est compatible avec les structures de groupe naturelles sur les deux membres.

Remarque. — Le corollaire 5 permettrait de donner une description du groupe
profiniG = π1(k,Ω), indépendamment de la théorie deGalois, à isomorphisme unique
près, comme proreprésentant le foncteur H1(k,Ω; Γ) en le groupe fini Γ, cf. exerc. …

(N. B. — On peut donner en exercice le sortie de la proreprésentation en général,
le lieu au groupe fondamental et à l’exercice suggéré dans le N. B. avant le déf. 5. On
peut également mettre en exercice la théorie de Galois axiomatique dans les catégories
(cf. SGA V et SGADX 7.5).)

Considérons maintenant un carré commutatif de corps

(0)
k′ Ω′

k Ω

où Ω (resp. Ω′) est une extension séparablement close de k (resp. k′). Soit ks (resp.
k′s) la fermeture algébrique séparable de k (resp. k′) dans Ω (resp. Ω′), d’où un carré
commutatif de corps correspondant

(1)

k′ k′s

k ks

compte tenuquek′(ks)dansΩ′ est une extension algébrique séparable dek′ (§7…), donc
contenue dans k′s. Considérons alors le diagramme de corps

(2)

k′ k′(ks) k′s

k k′ ∩ ks ks

Le diagramme (1), compte tenu que k′s est une extension galoisienne de k, définit un
homomorphisme canonique

(3) Gal(k′s/k
′) −→ Gal(ks/k),
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qui, grâce à (2), peut aussi se factoriser en

(4) Gal(k′s/k
′) −→ Gal(k′(ks)/k′) −→ Gal(ks/k′kS) −→ Gal(ks/k),

où le premier homomorphisme est surjectif (cor. 2 à prop. 2), le deuxième bijectif
(théorème 1), le troisième injectif (prop. 2) ; en d’autres termes, (4) donne une interpré-
tation en termes de théorie des corps de la factorisation de l’homomorphisme canonique
(3) associé au carré (0). Cet homomorphisme, par définition, peut aussi s’écrire :

(5) π1(k
′,Ω′) −→ π1(k,Ω),

et il s’appelle l’homomorphisme sur les groupes fondamentaux induit par le carré (0).
Le plus souvent, on se borne à prendre une extension Ω′ de k′, et on désigne par Ω

l’extension correspondante de k ; il est évident que le choix d’une autre sous-extension
séparablement close Ω de Ω′ sur k ne modifie pas, à isomorphisme canonique près, le
carré (1), donc ne modifie pas, à isomorphisme canonique près, l’homomorphisme (5).

En vertu de prop. 17, l’homomorphisme (5) est continu, en particulier son image est
fermée. De plus, la factorisation canonique (4) donne :

Proposition 21. — Le noyau de l’homomorphisme (5) est canoniquement isomor-
phe au groupe de Galois topologique de k′s sur k′(ks), et l’espace homogène quotient du
groupe but par l’image est en correspondance biunivoque canonique avec l’ensemble des k-
homomorphismes de k′1 dans ks, où k′1 = k′ ∩ ks est la clôture algébrique séparable de k
dans k′. Pour que l’image de l’homomorphisme (5) soit d’indice fini dans π1(k,Ω) il faut
et il suffit que k′1 soit une extension de degré fini de k.

N. B. — On aimerait pouvoir dire : c’est le cas particulier si k′ est une extension de
type fini de k. Or il aurait fallu pour cela avoir dit qu’une sous-extension d’une extension
de type fini est de type fini. C’est là un résultat utile, que je propose d’inclure dans un
nouveau n◦ au §5, intitulé : extensions de type fini.

Il manque un résultat de transitivité sur les homomorphismes des groupes fonda-
mentaux de corps, permettant de dire que π1(k,Ω) est un foncteur contravariant en
(k,Ω), à valeurs dans la catégorie des groupes profinis, et de dire que, pour un carré (0)
donné, le foncteur “extension du corps de base” de Et(k) dans Ensf(k′), s’interprète,
compte tenu des équivalences Et(k′) ≈ Ensf(π) et Et(k′) ≈ Ensf(π′) du théorème 5,
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comme le foncteur restrictiondu groupe d’opérateurs ; comme corollaire, onobtient que
les bijections du th. 5, cor. 5 et 6, sont fonctorielles également en (k,Ω), non seulement
en le groupe Γ. Le rédacteur suppose que Bourbaki peut se faire une idée suffisamment
nette de l’allure qu’aurait un n◦ sur le groupe fondamental d’un corps, sans qu’il soit
nécessaire d’aller jusqu’au bout du sorite.

Autocritique du rédacteur. Il est manifeste qu’on comprend moins bien que si
on pouvait renverser les flèches et parler de schémas étales sur k, de sorte que l’anti-
équivalence du théorème 5 devient une équivalence, et les algèbres à opérateurs galoisi-
ennes deviennent les fibrés principaux homogènes. On pourrait essayer, dans un n◦

heuristique, d’expliquer ce point de vue, et la relation entre la théorie de Galois et la
théorie des revêtements ; on pourrait y dire aussi que les petits bouts de H1 introduits
ici s’insèrent dans la théorie générale de la cohomologie, permettant d’utiliser des suites
exactes diverses etc, ce qui fait l’intérêt du formalisme. Évidemment, on peut proposer
également de vider purement et simplement le groupe fondamental et le théorème 5, en
disant qu’il est toujours temps de faire cette théorie avec la généralité qui lui appartient
(sic) plus tard, quand on dispose d’un langage géométrique. Je pense cependant que le
cas des corps est assez important pour mériter un traitement séparé, utilisant les simplifi-
cations techniques spéciales à ce cas pour obtenir le théorème de structure pratiquement
sans travail. —Le seul travail étant d’aligner dans un ordre agréable les sorties fonctoriels
utiles de la théorie.
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PROJECTDERÉÉDITIOND’ALGÈGRE, CHAP. V (CORPS
COMMUTATIFS)

(suite et fin)
COMMENTAIRES

Contrairement à son intention première, le rédacteur s’est abstenu de faire figurer dans la
rédaction un paragraphe sur les algèbres radicicielles. Après une rédaction au brouillon
sur ce sujet, il a jugé en effet que ce sorte peu substentiel est plus à sa place en Géométrie
Algébrique, où il devient plus intuitif, que dans un Chapitre de théorie des corps (ou
d’Algèbre Commutative). Compte tenu de la décision louable de Bourbaki de faire fig-
urer la sortie des normes et traces dans un Chapitre antérieur (et les énoncés spéciaux
au cas d’algèbres ou extensions étales, dans les par. 7 et 8 du présent Chap. V), le plan
prévu pour la rédaction du Chap. V se présente donc maintenant ainsi (avec par. 1 à 6
ne variature) :

7. Algèbres entières séparables.

8. Théorie de Galois.

9. Racines de l’unité, corps finis, extensions kummériens.

10. Algèbres séparables transcendantes. Produits tensoriels d’extensions.

11. Dérivations et différentielles dans les corps.



On trouvera ici une rédaction à peu près en forme du par. 10. Le rédacteur s’est dispensé
de reprendre la rédactionduprésent par. 9 ; il suffira de faire par rapport au texte imprimé
quelquesmodifications, énumérées dans les commentaires à la rédaction n◦ 457 (page 3).
Je me suis également dispensé de faire une rédaction du par. 11, bien qu’il convienne ici
de faire desmodifications subtantielles par rapport au texte imprimé, etme suis contenté
de proposer au Maître un plan possible pour ce paragraphe, inspiré par EGA IV, par.
18 à 21 (qui pourront fournir, pour le moins, une quantité respectable d’exercices pour
l’édition nouvelle du chap. V).
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§ 10. —ALGÈBRES ENTIÈRES SÉPARABLES SURUNCORPS.
CLÔTURE SÉPARABLE ET CLÔTURE PARFAITE D’UN

CORPS

1. — Critères de séparabilité de Mr N. bourbaki et de Mac-lane

Lemme 1. — Soient k un corps, Ω une extension de k, V un vectoriel sur k, (ui)i∈I une
famille d’homomorphismes de V dans le k-espace vectoriel sous-jacent à Ω. Les deux con-
ditions suivantes sont équivalentes :

(i) L’homomorphisme V ⊗k Ω −→ ΩI déduit de la famille (ui) est injectif.

(ii) Pour tout sous-espace vectorielW de V , de rang fini n, le rang sur Ω de la famille
des restrictions ui|W : W −→ Ω est égal à n.

On est réduit aussitôt à prouver le lemme dans le cas où V est lui-même de rang fini sur
k, utilisant le fait que V est limite inductive de ses sous-espaces vectoriels de rang finiW ,
et que V ⊗kΩ est alors la limite desW ⊗kΩ. De plus, quitte à remplacer V par V ⊗kΩ,
et les ui par les homomorphismesV ⊗kΩ −→ Ω correspondants, on peut supposer que
k = Ω. Mais dire que (ii) est vérifiée, signifie aussi que les ui engendrent le dual V ′ de
V (qui, on le sait, est en effet de rang égal au rang n de V ), ou encore que l’orthogonal
dans V de la famille des ui est réduit à zéro ; or cet orthogonal n’est autre que le noyau
de l’homomorphisme envisagé dans (i), d’où notre assertion.

Corollaire. — Soient k un corps,A une k-algèbre,Ω une extension de k. Les conditions
suivantes sont équivalentes :



(i) La Ω-algèbre A ⊗k Ω est isomorphe à une sous-algèbre d’une algèbre de la forme
ΩI , où I est un ensemble d’indices convenable.

(ii) Pour tout sous-k-espace vectoriel V de A, de rang fini n sur k, le rang sur Ω de
l’ensemble des restrictions à V des k-homomorphismes deA dansΩ est égal à n.

De plus, ces deux conditions équivalentes impliquent queA est une extension séparable sur
k.

L’équivalence des conditions (i) et (ii) est un cas particulier du lemme, obtenu en
prenant V = A, (ui)i∈I = famille de tous les homomorphismes de k-algèbres deA dans
Ω. D’autre part, le fait que (i) implique queA est séparable sur k, résulte aussitôt de (Par.
7, n◦ 3, prop. 12, (iv), (i) et (ii)).

Lemme 2. — Soient k un corps d’exposant caractéristique p, A une k-algèbre. Les
conditions suivantes sont équivalentes :

(i) A⊗k k
p−∞ est réduit.

(i bis) A⊗k k
p−1 est réduit.

(ii) Pour toute extension radicielle k′ de k,A⊗k k
′ est réduit.

(ii bis) Pour toute sous-extension finie k′ de kp−1 ,A⊗k k
′ est réduit.

(iii) Pour toute famille (xi)i∈I d’éléments de A linéairement libre sur k, la famille
(xpi )i∈I est linéairement libre sur k.

(iii bis) Il existe une base (xi)i∈I deA sur k telle que la famille (xpi ) soit linéairement libre
sur k.

Comme pour toute sous-extension k′′ d’une extension k′ de k,A⊗k k
′′ s’identifie à un

sous-anneau deA ⊗k k
′, et que lorsque k′ est réunion d’une famille filtrante croissante

de sous-extensions kα, alors A ⊗k k
′ est réunion filtrante croissante des sous-anneaux

A ⊗k kα, donc réduit si et seulement si ces derniers le sont, on voit aussitôt que l’on a
les implications (i) ⇐⇒ (ii), (i bis) ⇐⇒ (ii bis). De plus, (i) équivaut aussi
(pour la même raison) à la condition (ir) : A⊗k k

p−r est réduit pour tout entier naturel
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r ≥ 1. Or pour un r donné, montrons que A ⊗k k
p−r réduit équivaut à chacune des

conditions (iii) et (iii bis) ; comme ces dernières sont indépendantes de r, le lemme 2
en résultera évidemment. Notons d’abord qu’on voit aussitôt, par récurrence sur r, que
chacune des conditions (iii) et (iii bis) reste inchangée, à équivalence près, quand on y
remplace xpi par x

pr

i . Ceci dit, montrons que (ir) implique (iii) : siB = A⊗k k
p−r est

réduit, l’homomorphisme x 7→ xp
r de B dans lui-même induit un isomorphisme de B

sur Bpr = k(Apr) ⊂ A, d’ailleurs semi-linéaire relativement aux structures naturelles
d’algèbres de B et Bpr sur kp−r et k respectivement, et à l’homomorphisme λ 7→ λp

r

de kp−r dans k. Si alors (xi)i∈I est une famille d’éléments deA linéairement libre sur k,
alors (xi ⊗ 1)i∈I est une famille linéairement libre de B = A ⊗k k

p−r sur kp−r , donc
par transport de structure la famille des (xi ⊗ 1)p

r
= xp

r

i est linéairement libre sur k,
d’où (iii). Évidemment (iii) implique (iii bis), enfin (iii bis) implique (ir), comme
on voit en reprenant en sens inverse le raisonnement précédent : (iii bis) implique que
l’homomorphisme x 7→ xp

r de A dans lui-même est injectif, puisque les images des xi,
étant linéairement indépendantes sur k, le sont a fortiori sur kpr . Cela implique déjà que
A est réduit, et l’hypothèse que (xp

r

i ) est linéairement libre sur k s’interprète en disant
que l’homomorphisme canoniqueApr⊗kp

r k −→ A est un isomorphisme. Donc le pre-
mier membre est réduit. Par transport de structure à l’aide de x 7→ xp

−r , on en conclut
queA⊗k k

p−r est également réduit. Cela achève la démonstration du lemme 2.
Nous verrons un peu plus bas que les conditions envisagées équivalent à celle queA

soit séparable sur k. Bornons-nous pour l’instant à la précision suivante :

Corollaire. — Supposons queA soit une extension de k, et supposonsA et kp−∞ plongés
dans une même sur-extension Ω. Alors les conditions équivalentes du lemme 2 équivalent
aussi aux suivantes :

(iv) A et kp−∞ sont linéairement disjoints sur k.

(iv bis) A et kp−1 sont linéairement disjoints sur k.

On sait en effet que (iii bis) et (iv bis) sont équivalents ; plus généralement, pour tout
entier r ≥ 1, la condition (iii bis) (où on peut, on l’a déjà signalé, remplacer xi par xp

r

i )
équivaut à la disjonction linéaire de A et kp−r sur k. Ces dernières conditions, pour r
variable, sont donc équivalentes entre elles, et comme leur conjonction équivaut à (iv),
on voit que (iv) équivaut à (iv bis), ce qui achève la démonstration du corollaire.
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Théorème 1. — Soient k un corps d’exposant caractéristique p, K une extension de
k, Ω une extension algébriquement close de K , kp−∞ la clôture parfaite de k dans Ω, et
kp

−1 la sous-extension de celle-ci formée des éléments dont la puissance p-ème est dans k.
Les conditions suivantes sont équivalentes :

(i) K est une extension séparable de k (par. 7, n◦ 3, déf. 5).

(ii) K est linéairement disjoint sur k avec kp−∞ .

(ii bis) K est linéairement disjoint sur k avec kp−1 .

(iii) La Ω-algèbreK ⊗k Ω est isomorphe à une sous-algèbre d’une algèbre de la forme
ΩI , pour un ensemble d’indices convenable I .

(iv) Pour tout sous-k-espace vectoriel V de rang fini n deK , l’ensemble des restrictions à
V de la famille des k-automorphismes deΩ a un rang surΩ égal à n.

Les implications (iv) ⇒ (iii) ⇒ (i) sont un cas particulier du corollaire au lemme 1.
L’équivalence de (iv) et (ii) est un cas particulier du théorème d’Artin (Par. 6, n° 4, th.
1) où on faitK = k, G = ensemble des k-automorphismes deΩ ; on tient compte de
plus du fait quekp−∞ est le corps des invariants du groupeGdesk-automorphismes deΩ
(Par. 7, n◦ 5, prop. 16, cor. 1), et que la disjonction linéaire deK surk avec une extension
k′ (ici k′ = kp

−∞) signifie que tout sous-k-espace vectoriel V deK , de rang fini n, est de
rang n également sur k′. Enfin on a (i) ⇒ (ii) ⇐⇒ (ii bis) en vertu du corollaire au
lemme 2, compte tenu que par définition, siK est séparable sur k,K⊗k k

p−∞ est réduit.
Cela achève la démonstration du théorème 1.

Corollaire 1. — Soit k un corps parfait. Alors toute extension de k est séparable. Plus
généralement, pour toute algèbreA sur k,A est séparable si et seulement si elle est réduite.

La première assertion résulte aussitôt de l’implication (ii)⇒ (i) du théorème, et de
l’égalité k = kp

−∞ exprimant que k est parfait. Il reste à en déduire que toute k-algèbre
réduiteA est séparable. Or en vertu de App. 2.12, dire queA est réduite signifie queA
se plonge dans un produit de corps, qui sont donc des extensions séparables de k d’après
ce qui précède ; on en conclut que A est séparable sur k grâce à (Par. 7, n◦ 3, prop. 12,
(i) et (ii)).
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Corollaire 2. — Soient k un corps, A une k-algèbre, k′ une extension parfaite de k.
Pour queA soit séparable sur k, il faut et il suffit queA⊗k k

′ soit un anneau réduit.

En effet (Par. 7, n◦ 3, prop. 12, (iv)) A est séparable sur k si et seulement si A′ =

A⊗k k
′ l’est sur k′, et on applique le corollaire 1.

Corollaire 3. — Soient k un corps parfait,A etB deux k-algèbres réduites, alorsA⊗k

B est une k-algèbre réduite.

C’est une conséquence du corollaire 1 et de (Par. 7, n◦ 3, prop. 11).
Remarques. —1) Soit k un corps. Pour que k soit parfait, il faut et il suffit que toute

extension de k soit séparable, ou encore que toute algèbre réduite sur k soit séparable, ou
ce qui revient encore au même, que le produit tensoriel de deux extensions de k (resp.
de deux algèbres réduites sur k) soit un anneau réduit. La nécessité a été vue dans les
corollaires 1 et 3 précédents, la suffisance résulte trivialement de la définition des corps
parfaits (Par. 7, n◦ 6, déf. 7).

2) Comme tout corps de caractéristique nulle est parfait, (Par. 7, n◦ 6, th. 1, cor.
1), on conclut que le produit tensoriel de deux algèbres réduites sur un tel corps est un
anneau réduit.

Proposition 1. — Soient k un corps d’exposant caractéristique p,A une k-algèbre. Les
conditions suivantes sont équivalentes :

(i) A est une k-algèbre séparable.

(ii) A⊗k k
p−∞ est un anneau réduit.

(ii bis) A⊗k k
p−1 est un anneau réduit.

(ii ter) Pour toute sous-extension finie k′ de kp−1 ,A⊗k k
′ est réduit.

(iii) Il existe une extensionΩ de k, telle queA⊗k Ω soitΩ-isomorphe à une sous-algèbre
d’une algèbre de la formeΩI , I un ensemble d’indices convenable.

(iv) Il existe une extension Ω de k, telle que pour tout sous-k-espace vectoriel V deK , de
rang fini n sur k, l’ensemble des restrictions à V de la famille des homomorphismes
de k-algèbres deA dansΩ soit de rang surΩ égal à n.
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(v) A est réduit, et pour tout entier premier minimal p de A, le corps des fractions de
A/p est une extension séparable de k.

En effet, l’équivalence des conditions (iii) et (iv), et le fait que celles-ci impliquent la
condition (i), résulte encore du lemme 1 et de son corollaire. D’autre part il est trivial
que l’on a les implications (i) ⇒ (ii) ⇒ (ii bis) ⇐⇒ (ii ter). Il reste à prouver les
implications (ii bis) ⇒ (v) et (v) ⇒ (iii). Or, utilisant (Par. 7, n◦ 3, lemmes 2 et 3),
on trouve que l’hypothèse (ii bis) est stable par passage deA à tout anneau de fractions
S−1A, relativement à une partie multiplicativement stable S de A. Prenant pour S un
ensemble de la forme A − p, p un idéal premier minimal de A, on trouve que S−1A

est isomorphe au corps des fractions k(p) etA/p (compte tenu queA est réduit, ce qui
résulte du fait que A est isomorphe à un sous-anneau de A ⊗k k

p−1 , qui est réduit par
hypothèse). Donc k(p)⊗k k

p−1 est réduit, ce qui signifie aussi que k(p) est linéairement
disjoint de kp−1 sur k (cor. au lemme 2), et implique en vertu du théorème 1 (implication
(ii bis)⇒ (i)) que k(p) est séparable sur k. Cela montre que (ii bis)⇒ (v).

Enfin, (v) implique que A est isomorphe à une sous-k-algèbre de l’algèbre produit
des k(p), où p parcourt les idéaux premiers minimaux de A. Appliquant le théorème 1
(implication (i) ⇒ (iii)) à chaque k(p), et prenant une extension Ω de k contenant
pour chaque p une sous-extension k-isomorphe à une clôture algébrique de k(p), on
trouve que pour tout p, k(p) ⊗k Ω est Ω-isomorphe à une sous-algèbre d’une algèbre
produitΩI(p), où I(p) est un ensemble convenable. Prenant pour I un ensemble somme
des I(p), on voit que le produit des k(p) ⊗k Ω se plonge dansΩI , d’autre part en vertu
de (Par. 7, n° 3, lemme 1)A ⊗k Ω se plonge dans le produit des k(p) ⊗k Ω, donc aussi
dansΩI , ce qui montre la validité de la condition (iii), et établit que (v) implique (iii).
C.Q.F.D..

N.B. — Autocritique. On a utilisé le fait que si A est un anneau réduit, et p un
idéal premier minimal deA, alors le localiséAp est canoniquement isomorphe au corps
des fractions de A/p. Si Bourbaki tient à la proposition 1, il faudrait donc, soit donner
ici la propriété énoncée sous forme de lemme ad hoc, soit l’inclure antérieurement dans
le sorite sur les anneaux réduits, idéaux premiers etc. préconisé dans l’Appendice. (On
pourrait éventuellement faire un petit paragraphe à part, dans le Chapitre V de théorie
des corps, contenant les résultats d’algèbre plus oumoins commutative dont on aimerait
pouvoir disposer et qui n’auraient pas trouvé leur place dans un Chapitre antérieur.) Si
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la prop. 1 est adoptée, il semblerait d’ailleurs plus raisonnable de la baptiser th. 1, le th.
1 actuel devenant corollaire (m. pour la disjonction linéaire !).

Corollaire 1. — Soient k un corps,K une extension algébrique de k,A uneK-algèbre.
Pour que A soit séparable sur k, il faut et il suffit que K soit séparable sur k, et A soit
séparable surK .

Le “il suffit” a été mis pour mémoire, étant établi sous des conditions plus générales
dans (Par. 7, n◦ 3, prop. 12, (v)). Pour le “il faut”, on note d’abord que siA est séparable
sur k, il en est demême du sous-anneauK , en vertu de (Par. 7, n◦ 3, prop. 12, (i)). Reste
à prouver queA est séparable surK , ou ce qui revient aumême en vertu de la proposition
1, queA⊗KK

p−∞ est réduit. Or commeK/k est séparable, donc linéairement disjoint
de kp−∞ , qui est algébrique sur k, on en conclut queK ⊗k k

p−∞ est un corps, isomor-
phe au composéK(kp

−∞
) dans kp−∞ . Ce composé, étant algébrique sur kp−∞ (puisque

K est algébrique sur k), est un corps parfait, comme il contientK et est contenu dans
Kp−∞ , il est isomorphe àKp−∞ . Par suite

A⊗K Kp−∞ ' A⊗K (K ⊗k k
p−∞

) ' A⊗k k
p−∞

,

et comme le dernier terme est réduit,A étant séparable surk, il en est demêmedupremier
terme, ce qui prouve le corollaire.

Corollaire 2. — Soient k un corps d’exposant caractéristique p,A est une k-algèbre, S
une famille d’éléments de A entiers sur k. Pour que k[S] soit séparable sur k, il faut que
l’on ait k[S] = k[Sp], et cette condition est également suffisante lorsqu’on suppose S de
rang fini sur k.

Posons K = k[S], la relation k[S] = k[Sp] s’écrit aussi K = k[Kp]. On peut
évidemment dans la première assertion se borner au cas oùS est fini, donc on est ramené
au cas oùK est fini sur k. On peut alors remplacerK par une base linéaire S deK sur
k, S = (xi)i∈I . Pour queK soit séparable sur k, il faut et il suffit que Sp = (xpi ) soit
libre sur k (en vertu de prop. 1) ou encore que ce soit une base (puisqueK est de degré
fini sur k), ce qui signifieK = k[Sp].

N.B.—Le rédacteur ne serait pas opposé à un vidage de ce corollaire, qui s’est borné
à copier sur l’état actuel de Bourbaki.
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2. — Fermature entière et extension du corps de base

Théorème 2. — Soient k un corps,A une k-algèbre,B une sous-algèbre deA,C l’ensemble
des éléments de A entiers sur B, k′ une extension de k, A′, B′, C ′ les k′-algèbres déduites
respectivement des k-algèbres A,B,C par extension du corps de base. On identifie B′ et
C ′ à des sous-algèbres deA′, avecB′ ⊂ C ′.

Alors :

a) Si l’extension k′ de k est séparable, alorsC ′ est la fermeture intégrale deB′ dansA′.

b) En tous cas, si D′ désigne la fermeture entière de B′ dans A′, on a C ′ ⊂ D′, et
pour tout x′ ∈ D′, il existe un entier r ≥ 0 tel que x′pr ∈ C ′, où p est l’exposant
caractéristique de k.

Il est trivial que l’on a C ′ ⊂ D′. Montrons l’implication inverse lorsque k′ est une ex-
tension séparable de k. Supposons d’abord k parfait. On voit aussitôt que si l’assertion
voulue est prouvée en remplaçant k′ par une sur-extension k′′, elle est également vraie
pour k′. Cela nous permet de supposer k′ algébriquement clos, l’hypothèse k parfait
nous assurant que toute extension de k est séparable, donc que l’hypothèse de séparabil-
ité n’est pas perdue. Nous savons alors (Par. 7, n◦ 6, th. 1) que k est identique au corps
des invariants du groupe des k-automorphismes de k′. Pour tout tel automorphisme
g, considérons l’automorphisme correspondant ḡ = idA⊗kg de A′; on a évidemment
ḡ(B′) = B′, d’où résulte par transport de structure que ḡ(D′) = D′. Comme ceci a lieu
pour tous les g, on conclut de (Chap. III…) que l’on aD′ = D ⊗k k

′, oùD = D′ ∩A.
Comme on aD ⊃ C et queD est évidemment entier surC , on en conclut par définition
deC queD = C , ce qui achève la démonstration dans ce cas. Lorsque k est quelconque,
considérons la clôture parfaite k1 de k (réf.), et posons k′1 = k1 ⊗k k

′. Comme k′ est
une extension séparable de k, k′1 est un corps, extension séparable de k (Par. 7, prop. 12,
(iv)). Définissons A1, B1, C1 resp. A′

1, B
′
1, C

′
1 à partir de A,B,C par le changement

de corps de base k −→ k1 resp. k −→ k′1. Utilisant l’énoncé déjà démontré dans le
cas du changement de base k1 −→ k′1, pour la fermeture entièreD1 deB1 dansA1, on
trouve que la fermeture entière de B′

1 dans A′
1 n’est autre que D′

1 = D1 ⊗k1 k
′
1. Par

suite la fermeture entièreD′ deB′ dansA′ est contenue dansD′
1 ∩A′, évidemment égal

à (D1 ∩ A) ⊗k k
′. OrD1 ∩ A est égal à la fermeture entière C de B dans A (réf. Par.
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3), doncD′ est contenu dans C ′ = C ⊗k k
′, ce qui prouve l’assertion a) du théorème

2. (N.B. – On a utilisé le fait suivant, qui devrait donc figurer au Par. 7 dans le sorite
des algèbres entières : si A est une algèbre sur un corps k, B une sous-algèbre, k1 une
extension de k, A1 et B1 déduits de A,B par changement de corps de base, et si enfin
x ∈ A, alors x est entier surB si et seulement si il est entier surB1.)

Il reste à prouver, lorsque k′ n’est plus supposé séparable sur k, que pour tout x′ ∈
D′, il existe r ≥ 0 tel que x′pr ∈ C ′. Quitte à remplacer k′ par une sur-extension, on
peut supposer k′ parfait, donc que k′ contient une clôture parfaite k1 de k. Désignant
parD1 la fermeture entière de B1 = B ⊗k k1 dans A1 = A ⊗k k1, on sait d’après ce
qui précède, appliqué à l’extension séparable k′ de k1 et à la sous-algèbreB1 deA1, que
D′ = D1⊗k1k

′, ce qui nous ramène aussitôt au cas oùk′ = k1 est la clôture parfaite dek.
Alors k′ est limite inductive de ses sous-extensions finies k′i, qui sont des extensions finies
radicielles de k, et A′ etB′ sont respectivement limites inductives desA′

i = A ⊗k k
′
i et

B′
i = B⊗k k

′
i. Ainsi pour i assez grand, x′ provient d’unA′

i, et de même les coefficients
d’une équation de dépendance intégrale de x′ sur B′ proviennent, pour i assez grands,
d’unB′

i. Ceci nous ramène au cas où k′ est une extension radicielle finie de k. Mais alors
il existe un entier r ≥ 0 tel que pour tout λ′ ∈ k′, on ait λ′pr ∈ k. Il en résulte que
pour tout x′ ∈ A′, on a x′pr ∈ A. Si donc x′ ∈ A′ est entier surB′, alors x′pr est entier
surB′pr , qui est contenu dansB, donc il est dansC , et a fortiori dansC ′. Cela achève la
démonstration du théorème 2.

Corollaire 1. —Avec les notations du théorème 2 pour k,A, k′, si k est algébriquement
fermé dans A, et si k′ est une extension séparable de k, alors k′ est algébriquement fermé
dansA′ = A⊗k k

′.

Cela résulte en effet du fait que tout élément deA′ qui est régulier dansA′ est régulier
dansA′′.

Corollaire 2. — Avec les notations précédentes, supposons queA soit un corps, et qu’on
ait k′ = k((xi)i∈I), où (xi)i∈I est une base de transcendance de k′′ sur k. Alors l’anneau
total des fractions deA⊗k k

′′ = A′′ s’identifie àA((xi)i∈I)⊗k′ k
′′.

En effet, avec les notations du corollaire 1, on a évidemment un isomorphisme
canonique A′

1 ' A((xi)i∈I), et tout revient à prouver que A′
1 ⊗k′ k

′′ est égal à son
propre anneau total des fractions, de sorte que notre corollaire se réduit au résultat suiv-
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ant :

Lemme 4. — Soient k un corps,K une extension de k, k′ une extension algébrique de
k, alorsK ⊗k k

′ est égal à son propre anneau total des fractions, i.e. tout élément régulier
de cet anneau est inversible.

En effet (par. 3), K ′ = K ⊗k k
′ est entier surK puisque k′ est entier sur k, d’où

aussitôt le résultat en écrivantK ′ comme limite inductive de ses sous-algèbres finies sur
K . (N.B. — Bien entendu, le lemme 4 est un remords du par. 3, qui de toutes façons
devait être réécrit.)

Proposition 2. — Soient k un corps, L une extension de k,K une sous-extension de
L, k′ une extension de k,K ′ (resp. L′) l’anneau total des fractions deK ⊗k k

′ (resp. L⊗k

k′). Sous ces conditions :

1) SiK est algébriquement fermé dans L, et si l’extension k′ de k est séparable, alors
K ′ est intégralement fermé dans L′.

2) Si tout élément deL algébrique surK est radiciel surK , alors pour tout élément x′

de L′ entier surK ′, il existe une puissance pr(r ≥ 0) de l’exposant caractéristique
p de k, telle que x′p

r

∈ K ′.

On notera que cet énoncé a un sens grâce au corollaire 2 du lemme 3, qui permet
d’identifier K ′ à un sous-anneau de L′. Démontrons la proposition 2 d’abord dans le
cas où k′ = k((xi)i∈I) est une extension pure de k, de sorte que l’on a alors L′ =

L((xi)i∈I), K
′ = K((xi)i∈I). Dans ce cas, la proposition est essentiellement équiva-

lente au

Corollaire. — Soient K un corps, L une extension de K, (xi)i∈I une famille
d’indéterminées alors la fermeture algébrique de K((xi)i∈I) dans L((xi)i∈I) est égale
àM((xi)i∈I), oùM est la fermeture algébrique deK dans L.

Comme M((xi)i∈I) est évidemment algébrique sur K((xi)i∈I), on est réduit à
prouver que tout élément f ∈ L((xi)i∈I) algébrique surK ′ = K((xi)i∈I) appartient à
M ′ =M((xi)i∈I). On est ramené aussitôt au cas où I est fini, puis de proche en proche
au cas où I est réduit à un seul élément, de sorte que f est une fonction rationnelle en
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une variablex. Ecrivons f sous la formeP/Q, oùP etQ sont deux polynômes étrangers
de L[x] (réf. Chap. IV ?? Cf. commentaires dans App. 4). Ecrivant une équation de
dépendance intégrale pour f surK(x), et chassant les dénominateurs, il vient une rela-
tion

(∗) g0P
n + g1P

n−1Q+ · · ·+ gnQ
n = 0,

les gi ∈ K[x], et g0 6= 0. On conclut de cette relation que Q divise g0P n, donc étant
étranger à P , il divise g0 (réf.…), de sorte que, quitte à multiplier P et Q par un même
facteur, on peut supposerQ = g0, doncQ ∈ K[x]. Par suite P = fQ est algébrique
surK(x), et on est ramené à prouver que P ∈ M [x], i.e. on est ramené au cas où f est
un polynôme. Ecrivons donc

f = a0x
n + · · ·+ an, ai ∈ L,

et prouvons que les ai sont algébriques sur K . Nous procédons par récurrence sur le
degré de f , l’assertion étant triviale si ce dernier est< 0. Ceci nous ramène à prouver que
le terme constant an est algébrique surK (en appliquant alors l’hypothèse de récurrence
à (f − an)/x). Or considérons l’équation de dépendance intégrale (∗) (où maintenant
P = f,Q = 1), on y peut supposer que les gi ne s’annulent pas tous simultanément
à l’origine (quitte à diviser par une puissance convenable de x). Faisant la substitution
x = 0 dans cette équation, on trouve une équation de dépendance algébrique pour
an = f(0) surK , ce qui achève de prouver le corollaire.

Pourprouver la proposition2, 2◦ dans le cas général, on écritk′ commeune extension
algébrique d’une extension pure de k, ce qui, compte tenu du corollaire, nous ramène au
cas où k′ est une extension algébrique de k. Mais alors, en vertu du lemme 4, K ′ et L′

s’identifient respectivement aux produits tensoriels K ⊗k k
′ et L ⊗k k

′, et l’assertion
à prouver est un cas particulier du théorème 2, b). Un argument analogue, invoquant
cette fois-ci le théorème 2 a), prouve la validité de la conclusion de la partie 1◦) de la
proposition 2, dans le cas particulier où k′ est une extension algébrique séparable d’une
extension pure de k. Or nous verrons au paragraphe suivant qu’il en est ainsi, chaque fois
quek′ est une extension séparablede type fini dek. D’autre part, on se ramène aussitôt au
cas où l’extension envisagée k′ de k est de type fini, en écrivant k′ comme limite inductive
de ses sous-extensions de type fini. Cela achève la démonstration de la proposition 2, sous
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réserve (pour la partie 1◦) de la démonstration du résultat du paragraphe suivant qu’on
vient d’invoquer ; le lecteur notera d’autre part que ledit paragraphe est logiquement
indépendant du paragraphe présent.

N.B.—Au concours : éliminer le résultat en question de la démonstration du 1◦ de
la prop. 2. Signalons que la démonstration (par Cartier) dans le vieux séminaire Cartan-
Chevalley du corollaire à la proposition 2 se faisait également par voie différentielle (en
utilisant le critère différentiel d’étalité d’une extension de type fini). Le rédacteur s’est
fatigué à trouver une démonstration plus directe, dans le but de rendre le présent para-
graphe (à l’exception de prop. 2, 1◦, qu’on peut rejeter dans le par. suivant) indépendant
du tapis différentiel.

3. —Algèbres géométriquement irréductibles et algèbres géométrique-
ment intègres

Théorème 3. — Soient k un corps,A une k-algèbre,B l’anneau réduit quotient deA par
son nilradical (réf.). Les conditions suivantes sont équivalentes :

(i) Pour toute extension k′ de k, A ⊗k k
′ est un anneau irréductible, i.e. son quotient

par son nilradical est intègre.

(i bis) Il existe une extension séparablement close (réf.) k′ de k, telle que A ⊗k k
′ soit un

anneau irréductible.

(i ter) Pour toute extension étale k′ de k,A⊗k k
′ est un anneau irréductible.

(ii) Pour toute extension séparable k′ de k,B ⊗k k
′ est intègre.

(ii bis) Il existe une extension séparablement close k′ de k telle queB ⊗k k
′ soit intègre.

(ii ter) Pour toute extension étale k′ de k,B ⊗k k
′ est intègre.

(iii) B est intègre, et siK désigne son corps des fractions,K0 la fermeture algébrique de
k dansK (réf.),K0 est une extension radicielle (réf.) de k.

Notons que siC est un anneau, et J un nilidéal deC , alorsC est irréductible si et seule-
ment si C/J l’est ; cela implique déjà que chacune des conditions envisagées est invari-
ante quand on y remplace A par B, de sorte qu’on est ramené au cas où A est réduit.
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Nous prouverons le théorème 3 suivant le diagramme d’implications :

(i) (i bis)

(ii) (ii bis) (i ter)

(ii ter) (iii) (i).

Les implications (i) ⇒ (i bis), (i) ⇒ (i ter), (ii) ⇒ (ii bis), (ii) ⇒ (ii ter) sont triv-
iales. Comme pour toute extension séparable k′ de k, A ⊗k k

′ est réduit, donc intègre
si et seulement si il est irréductible, nous concluons aussitôt les implications verticales
(i) ⇒ (ii), (i bis) ⇒ (ii bis), (i ter) ⇒ (ii ter). Comme un sous-anneau d’un an-
neau intègre est intègre, on voit que les conditions (ii bis) et (ii ter) impliquent chacune
que A est intègre. Soient alors K , K0 comme dans l’énoncé de (iii), et prouvons que
K0 (sous l’une ou l’autre des conditions précédentes) est une extension radicielle de k.
Notons d’abord qu’en vertu de (Par. 7, n◦ 3, lemme 2), et compte tenu qu’un anneau
localisé d’un anneau intègre est intègre, on trouve que l’une et l’autre hypothèse (ii bis),
(ii ter) est stable par passage de A à K . Les conditions envisagées étant également sta-
bles par passage à un sous-anneau, on voit queK0 satisfait à la même hypothèse queA.
L’implication (ii bis) ⇒ (iii) et (ii ter) ⇒ (iii) résulte alors de la partie “il suffit” du
corollaire suivant :

Corollaire 1. — Soient k un corps,K une extension algébrique de k. Pour queK soit
une extension radicielle, il faut et il suffit que pour une extension k′ séparable et séparable-
ment close de k, ou encore pour toute extension étale k′ de k, l’anneauK ⊗k k

′ soit intègre
(donc un corps, étant entière sur k′).

Il nous suffira ici de démontrer le “il suffit”, pour notre preuve du théorème 3, qui à
son tour implique trivialement le corollaire. Or siK n’est pas radicielle, alors en vertu de
(Par. 7, n◦ 5, prop. 16, cor. 4) il existe une sous-extension étale L deK de degré≥ 2. Si
k′ est, soit une extension séparablement close dek, soit une extension étale “assez grande”
de k, il résulte de (Par. 7, n◦ 2, prop. 5) que L⊗k k

′ est diagonalisable, et étant de degré
≥ 2, c’est donc un anneau non intègre, ce qui contredit l’hypothèse (ii bis) resp. (ii ter).

Pour prouver le théorème 3, il nous reste donc à établir l’implication (iii)⇒ (i), qui
est la partie non triviale de la preuve. Il suffit évidemment de prouver que les conditions
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(iii) sont stables par toute extension k′/k du corps de base, et pour ceci on est ramené à le
prouver séparément dans les deux cas suivants : 1◦) k′ est une extension pure de k, et 2◦)
k′ est une extension algébrique de k. D’ailleurs, pour k′ quelconque, quitte à remplacer
A parB, ce qui ne change pas la conclusion qu’on veut établir, on peut supposer déjàA
intègre. Comme alorsA⊗k k

′ est isomorphe à un sous-anneau deK ⊗k k
′, on peut de

plus supposer queA = K . Il faut prouver alors queK ⊗k k
′ est irréductible, et que le

corps des fractionsK ′ de son quotient par son nilradical est tel que tout élément deK ′

algébrique sur k′ est radiciel sur k′. Or dans le cas 1◦) c’est ce qu’affirme le corollaire à la
proposition 2. Dans le cas 2◦), un passage à la limite immédiat nous ramène au cas où k′

est une extension finie de k, de sorte queK⊗k k
′ est une algèbre finie sur le corpsK . En

vertu du théorème 2, b), pour tout élément e deK ⊗k k
′ qui est entier surK , il existe

une puissance pr de l’exposant caractéristique p, telle que epr ∈ k′. Appliquant ceci au
cas où e est un idempotent deK ⊗k k

′, on trouve que e ∈ k′ donc e = 1, ce qui prouve
queK ⊗k k

′ est irréductible. SiK ′ est son quotient par son nilradical,K ′ est donc un
corps (extension finie deK). Soit alors x′ ∈ K ′ algébrique surK , et soit y′ ∈ K ⊗k k

′

relevant x′, alors y′ est entier sur k′ (N.B. — sorite oublié dans par. 3), et en vertu du
théorème 2, b), il existe un r ≥ 0 tel que y′p

r

∈ k′, d’où a fortiori x′p
r

∈ k′. Cela achève
la démonstration du théorème 3.

Définition 1. — Soientk un corps,Aunek-algèbre. Ondit queA est géométriquement
irréductible (ou, si une confusion est à craindre, géométriquement irréductible sur k) si elle
satisfait les conditions équivalentes du théorème 3. Une extensionK de k est dite primarie
si elle est une algèbre géométriquement irréductible.

N.B. — Le rédacteur a gardé la terminologie spéciale “primaire”, dans le cas parti-
culier d’une extension, par piété. Il ne serait pas opposé au vidage de ce terme. Noter
que l’expression “algèbre primaire” au lieu de “algèbre géom. irr.” est manifestement
impossible (à cause des confusions possibles avec les autres significations de “primaire”).

Corollaire 2. —Soientk un corps,Aunek-algèbre. Les conditions suivantes sont équiv-
alentes :

(i) A est séparable et géométriquement irréductible.

(ii) Pour toute extension k′ de k,A⊗k k
′ est intègre.
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(ii bis) Pour toute k-algèbre intègreA′,A⊗k A
′ est intègre.

(iii) Il existe une extension algébriquement close k′ de k, telle queA⊗k k
′ soit intègre.

(iii bis) Pour toute extension finie k′ de k,A⊗k k
′ est intègre.

(iv) A est intègre, et le corps des fractionsK deA est une extension séparable et primaire
(déf. 1) de k.

C’est clair, grâce au théorème 3 et prop. 1.

Définition 2. — Soientk un corps,Aunek-algèbre. Ondit queA est géométriquement
intègre si elle satisfait aux conditions équivalentes du corollaire 2.

Corollaire 3. — Soit k un corps. Les conditions suivantes sont équivalentes :

(i) Le corps k est séparablement clos.

(ii) Si A et B sont deux k-algèbres irréductibles, alors A ⊗k B est une k-algèbre irré-
ductible.

(ii bis) SiA etB sont deux k-algèbres intègres,A⊗k B est irréductible.

(ii ter) SiK et L sont deux extensions de k, alorsK ⊗k L est irréductible.

(iii) Toute extension de k est primaire.

C’est clair, grâce au théorème 2. (N.B.— Si Bourbaki désire vider la variante (ii bis) et (ii
ter) du corollaire, le rédacteur n’objecte pas.)

Corollaire 4. — Soit k un corps. Les conditions suivantes sont équivalentes :

(i) Le corps k est algébriquement clos.

(ii) SiA etB sont deux k-algèbres intègres,A⊗k B est intègre.

(ii bis) Itou, avecA etB deux extensions finies de k.

(iii) Toute extension de k est géométriquement intègre (déf. 2), i.e. primaire et séparable.
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Comme k algébriquement clos signifie : k séparablement clos et k parfait (Par. 7, n◦ 7,
prop. 23), le corollaire 4 résulte de la conjonction du corollaire 3 et de la remarque du n◦

1.
A l’usage des membres fondateurs, s’il en reste :

Corollaire 5. — SoientK une extension d’un corps k, Ω une surextension algébrique-
ment close. Pour que K soit une extension primaire de k, il faut et il suffit que K soit
linéairement disjointe de la fermeture séparable ks de k dans Ω (Par. 7, n◦ 4, prop. 14,
cor. 5), ou encore queK soit linéairement disjointe de toute sous-extension étale k′ deΩ.

Comme les k′ envisagées sont précisément les sous-extensions finies de ks (Par. 7, n◦

7, prop. 22, cor.), les deux conditions énoncées de disjonction linéaire sont bien équiv-
alentes (réf.). D’autre part, comme ks est une extension algébrique de k, la disjonction
linéaire deK et ks sur k signifie simplement queK ⊗k ks est intègre, ce qui en vertu du
critère (ii bis) du théorème 2 équivaut au fait queK est une extension primaire de k. On
prouve de même, à l’aide du cor. 2 :

Corollaire 6. — SoientK, k,Ω comme dans le cor. 5. Pour queK soit une extension
primaire séparable de k (i.e. soit une k-algèbre géométriquement intègre), il faut et il suffit
queK soit linéairement disjointe de la fermeture algébrique k̄ de k dansΩ, ou encore que
K soit linéairement disjointe de toute sous-extension finie k′ deΩ.

N.B. — La notion “extension primaire et séparable” est appelée chez Weil “exten-
sion régulière”. On ne peut adopter cette terminologie, qui conflicte avec celle d’anneau
régulier, qu’on ne peut plus guère songer à changer. Il ne semble pas que la notion soit
assez importante pour qu’il faille absolument trouver un nom lapidaire, plus court que
“géométriquement intègre” utilisé par le rédacteur de ses lignes (qui se trouve fort bien
de cet usage, comme de bien entendu).

Pour terminer, n’en déplaise aux canons esthétiques du Maître, voici le sorite des
notions introduites dans le présent numéro, résumé en une proposition à six points :

Proposition 3. — Soit k un corps.

(i) SoitAunek-algèbre. SiA est géométriquement irréductible (resp. géométriquement
intègre) il en est de même de toute sous-algèbre deA, et de toute algèbre de fractions
deA.
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(ii) Toute limite inductive filtrante de k-algèbres géométriquement irréductibles (resp.
géométriquement intègres) est itou.

(iii) Soit (Ai)i∈I une famille de k-algèbres, A l’algèbre produit. Pour que A soit
géométriquement irréductible (resp. géométriquement intègre) il faut et il suffit
que pour tout i ∈ I ,Ai le soit.

(iv) SoientA etB deux k-algèbres. SiA etB sont géométriquement irréductibles (resp.
géométriquement intègres) il en est de même deA⊗k B, et la réciproque est vraie si
A etB sont non nulles.

(v) SoientAunek-algèbre,k′ une extensiondek. Pour queA soit géométriquement irré-
ductible (resp. géométriquement intègre) il faut et il suffit que la k′-algèbreA⊗k k

′

le soit.

(vi) Soit K une extension de k, et A une K-algèbre. Si K est géométriquement irré-
ductible (resp. géométriquement intègre) sur k, et A est géom. irr. (resp. géom.
intègre) surK , alorsA est géom. irréd. (resp. géom. intègre) sur k.

Le lecteur admirera (déplorera) la symétrie avec la prop. 12 du par. 7, n◦ 3, déparée seule-
ment par l’oubli dans ladite de la limite inductive filtrante. La démonstration se fait par
le même âne qui trotte. Le (i) résulte de la définition et du fait qu’un sous-anneau ou un
localisé d’un anneau irréductible (resp. intègre) est itou. Argument analogue pour (ii).
Dans (iii), même argument, en utilisant le par. 7, n◦ 3, lemme 1, et pour la réciproque
le (i) déjà établi. Pour (v), voir la démonstration de son homologue dans loc. cit. Cela
nous ramène dans (iv) au cas où k est algébriquement clos, et à prouver alors que le pro-
duit tensoriel de deux k-algèbres irréductibles (resp. intègres) est irréductible (resp. intè-
gre). On est ramené aussitôt, pour cela, à l’énoncé respé, qui est contenu dans le cor. 4
précédent. La réciproque dans (iv) est conséquence immédiate de (i). Pour (vi), compte
tenu de l’assertion analogue dans loc. cit., on est ramené à prouver l’assertion non re-
spée, et pour ceci, que pour toute extension étale k′ de k, A ⊗k k

′ est irréductible. Or
A⊗k k

′ = A⊗K (K⊗k k
′), et l’hypothèse de primarité surK/k implique queK⊗k k

′

est un corps, extension étale deK , doncA⊗K k
′ est irréductible d’après l’hypothèse faite

pourA/K , C.Q.F.D.
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Corollaire 1. — Soient k un corps, A une k-algèbre (resp. une extension de k). Pour
queA soit géométriquement irréductible (resp. géométriquement intègre) il faut et il suffit
que toute sous-algèbre (resp. toute sous-extension) de type fini deA le soit.

Cela résulte aussitôt de la conjonction de (i) et (ii).

Corollaire 2. — Soient k un corps,K une extension algébrique de k,A uneK-algèbre
non nulle. Pour que A soit géométriquement irréductible (resp. séparable, resp. géom.
intègre) sur k, il faut et il suffit queK soit géom. irréd. (resp. séparable, resp. géom. intè.)
sur k, et queA soit géom. irréd. (resp. séparable, resp. géom. intègre) surK .

Le il suffit a déjà été vu dans (vi) et par. 7, prop. 12 (v), prouvons la réciproque. La
conclusion sur K/k est contenue dans (i), reste à voir que si A est géom. irréd. (resp.
séparable, resp. géom. intègre) sur k, il l’est surK . Dans le cas non respé, désignant par
ks une clôture séparable de k, le fait queK soit algébrique et géom. irréd. sur k (donc
radicielle sur k) implique que K ⊗k ks est un corps, extension algébrique de ks, donc
séparablement clos comme ks, et commeA⊗k ks = A⊗K (K ⊗k ks) est irréductible,
il résulte du critère (i bis) du th. 3 queA est géométriquement irréductible surK . Dans
le premier cas respé, désignant par kp la clôture parfaite de k, le fait queK est algébrique
séparable sur k implique queK⊗k kp est un corps, extension algébrique de corps parfait
kp, donc un corps parfait (par. 7, n◦ 6, prop. 18). Ceci dit,A⊗k kp = A⊗K (K⊗k kp)

est réduit d’après l’hypothèse de séparabilité pour A/k, ce qui implique que A/K est
également séparable en vertuducritère deprop. 1 (ii). Enfin, le deuxième cas respé résulte
aussitôt de la conjonction des deux cas déjà traités.
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§ 11. —DÉRIVATIONS ETDIFFÉRENTIELLES DANS LES
CORPS (PLAN)

1. — Algèbres formellement lisses, non ramifiées, resp. étales

Tous les anneaux et algèbres sont commutatifs.

Définition 1.2. — Une algèbre B sur l’anneau A est dite formellement lisse (resp.
formellement non ramifiée, resp. formellement étale) si pour toute algèbre C surA, toute
extension E de C par un idéal nilpotent J , et tout homomorphisme de A-algèbres u0 :

B −→ C , il existe au moins un (resp. au plus un, resp. exactement un) homomorphisme
deA-algèbres u : B −→ E qui relève u0.

Proposition 1.2. —Dans cette définition, on peut se borner au casC = B, u0 = idB ,
et J de carré nul, donc à demander l’existence (resp. l’unicité, resp. l’existence et l’unicité)
d’une trivialisation pour une extension deA-algèbres deB par un idéal de carré nul.

C’est immédiat.
Remarque 1.3. —Formellement étale = formellement lisse + formellement non ram-

ifiée.
Exemple 1.4. — Soit (Xi) une famille d’indéterminées, alors l’algèbre de polynômes

A[(Xi)i∈I ] est formellement lisse surA.

Sorite 1.5. —

(i) Stabilité par changement de baseA −→ A′.



(ii) Transitivité : si C est formellement lisse (resp.…) sur B et B formellement lisse
(resp.…) surA, alorsC est formellement lisse (resp.…) surA.

(iii) Stabilité par localisation en haut (passage deB à S−1B).

C’est tout immédiat.

Corollaire 1.6. — Si k est un corps, toute extension pure de k est formellement lisse sur
k. (Elle est formellement étale sss l’extension est triviale.)

Résulte de 1.4 et 1.5 (iii).

2. — Propriétés différentielles des algèbres formellement lisses

Proposition 2.1. — Soit B formellement lisse sur A, A une algèbre sur k. Alors la suite
d’homomorphismes canoniques

0 −→ Ω1
A/k ⊗A B −→ Ω1

B/k −→ Ω1
B/A −→ 0

est exacte et splitte.

Cf. EGA 0IV 20.5.7.
N.B.—Uncomplément intéressant,mais qu’onnepeutdonner dansBourbaki faute

de disposer de la notion voulue, est queΩ1
B/A est unB-module projectif.

Proposition 2.2. — Soient B une algèbre sur A, J un idéal de B, C = B/J , et
supposonsC formellement lisse surA. Alors la suite d’homomorphismes canoniques

0 −→ J/J2 −→ Ω1
B/A ⊗B C −→ Ω1

C/A −→ 0

est exacte et splitte.

Cf. EGA 0IV 20.5.12.

Proposition 2.3. — SoitB uneA-algèbre. Pour queB soit formellement non ramifiée
surA, il faut et il suffit que l’on aitΩ1

B/A = 0, i.e. que touteA-dérivation deB dans un
B-moduleM soit nulle.
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Celaprovient du fait que, sous les conditions de 1.2, les splittages de l’extension envis-
agée forment un ensemble vide ou principal homogène sous le groupe desA-dérivations
deB dans J .

Corollaire 2.4. — Soit B une A-algèbre formellement étale, A étant une k-algèbre.
Alors l’homomorphisme canoniqueΩ1

A/k ⊗A B −→ Ω1
B/k est un isomorphisme.

On conjugue 2.1 et 2.3.

3. — Caractérisation différentielle des algèbres étales sur un corps

Théorème3.1. — Soientk un corps,Aunek-algèbre de type fini. Conditions équivalentes :

(i) A est étale.

(ii) A est formellement étale.

(iii) A est formellement non ramifiée, i.e. Ω1
A/k = 0.

Démonstration. — (i)⇒ (ii). On peut supposerA une extension étale de k, donc de la
forme k[X]/Fk[X], où F ∈ k[X] est un polynôme séparable. Soit x ∈ A défini par
X , et soitE une extension deA par un idéal J de carré nul, à montrer que x se relève en
un élément y satisfaisant F (y) = 0. On choisit ”au hasard” un élément a relevant x, et
on cherche z ∈ J tel que F (a + z) = 0, i.e. F (a) + F ′(a)z = 0, ce qui se résout par
z = −F (a)/F ′(a), compte tenu que F étant séparable, on a F ′(a) = F ′(x) 6= 0.

L’implication (ii)⇒ (iii) étant triviale, il reste à prouver (iii)⇒ (i). Faisons d’abord
la démonstration lorsque A est déjà supposé finie sur k. Quitte à faire une extension
sur le corps de base k, on peut supposer k algébriquement clos, puis on peut supposer
A local, donc extension de k par un idéal nilpotent m. Mais m/m2, étant isomorphe à
Ω1

A/k⊗Ak, est nul, doncm = 0, doncA = k, on gagne. Reste à prouver que la condition
(iii) implique queA est fini sur k. Quand on dispose d’un peu d’Algèbre commutative,
on peut encore procéder comme dessus, en se ramenant au cas k alg. clos et notant que
pour tout idéal maximal m de A, l’anneau local noethérien Am est tel que m/m2 = 0,
donc est réduit à son corps résiduel, donc tout point fermé de Spec(A) est isolé, et on
gagne. Dans le cadre du chap. V, on peut donner une démonstration par récurrence
sur le nombre n de générateurs de A sur k, le cas n ≤ 1 étant immédiat. Si n ≥ 2,
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soit x1 le premier générateur, et soitB = k[x1] ⊂ A, à prouver qu’il n’est pas possible
que x1 soit transcendant sur k. Sinon, soit en effet B′ = k(x1) le corps des fractions
de B, et A′ = A ⊗B B′ ⊂ B′. Alors la relation Ω1

A/k = 0 implique Ω1
A/B = 0,

donc par changement de base Ω1
B′/A′ = 0, donc par hypothèse de récurrence B′ est

étale sur A′, d’où on conclut que Ω1
A′/k ' Ω1

B′/k ⊗B′ A′ en vertu de 2.4. Comme
Ω1

B′/k ' Ω1
B/k ⊗B B′ est libre de rang 1 donc non nul, et que A′ ⊃ B′ est non nul,

on conclut que Ω1
A′/k 6= 0, or le premier membre est localisé de Ω1

A/k qui est nul par
hypothèse, d’où une contradiction.

Corollaire 3.2. — Soit k0 un sous-corps parfait de k (par exemple le corps premier),
alors les conditions de 3.1 équivalentes encore à la suivante :

(iv) Ω1
k/k0
⊗k A −→ Ω1

A/k0
est un isomorphisme, i.e. pour toutA-moduleM , toute k0-

dérivation k −→M se prolonge de façon unique en une k0-dérivationA −→M .

En effet, (ii) implique (iv) en vertu de 2.4, et (iv)⇒ (iii) puisqueΩ1
A/k est isomorphe au

conoyau de l’homomorphisme envisagé dans (iv).

Corollaire 3.3. — Extension de 3.1 au cas oùA, au lieu d’être une algèbre de type fini
sur k, est localisée S−1B d’une telle algèbreB (par exemple lorsqueA est une extension de
type fini de k).

Cela résulte facilement de 3.1 sous la forme envisagée, compte tenu qu’on aura
Ω1

A/k = Ω1
B/k ⊗B A = S−1Ω1

B/k, et comme Ω
1
A/k est un module de type fini, s’il

devient nul par localisation par rapport à S, il existe f ∈ S qui l’annule, de sorte que
l’on peut appliquer 3.1 à l’algèbre de type finiAf .

Proposition 3.4. — Soient k un corps, A une algèbre entière sur k, J le nilradical de
A, A0 = A/J , A′ (resp. A′

0) la clôture séparable de k dans A (resp. dans A0). Alors le
morphisme canonique A −→ A0 induit un isomorphisme Φ : A′ −→ A′

0. Pour tout
x ∈ A′

0, Φ−1(x) est l’unique élément de A relevant x et séparable sur k, a fortiori Φ−1

est l’unique homomorphisme de k-algèbres deA′
0 dansA qui relève l’inclusion deA′

0 dans
A0.

Démonstration. —CommeΦ est évidemment injectif (A′ étant réduit), pour prou-
ver que c’est un isomorphisme il suffit de prouver que tout élément x de A′

0 provient
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d’un élément de A′ (manifestement unique), ce qui prouvera 3.4. Or il suffit pour ceci
d’appliquer à l’algèbre k[x] l’implication (i)⇒ (ii) de 3.1. On conclut aussitôt de 3.4 :

Proposition 3.5. — Toute algèbre entière séparable sur un corps k est formellement
étale sur k.

4. — Caractérisation différentielle des extensions séparables : cas des
extensions de type fini

Théorème 4.1. — Soient k un corps,K une extension de type fini de k. AlorsΩ1
K/k est un

vectoriel de dimension finie surK , et on a

(∗) deg trK/k ≤ rangKΩ
1
K/k.

De plus les conditions suivantes sont équivalentes :

(i) K est une extension séparable de k.

(ii) L’inégalité (*) est une égalité.

(iii) K est une extension étale d’une sous-extension pure.

On prouve d’abord le

Corollaire 4.2. — Soient x1, . . . , xm ∈ K , alors les dK/kxi engendrent Ω1
K/k si et

seulement siK est une extension étale de k(x1, . . . , xm) = K ′.

En effet, on utilise le critère différentiel d’étalité 3.3, en notant que Ω1
K/K′ est iso-

morphe àΩ1
K/k divisé par le sous-espace vectoriel engendré par les dK/kxi.

Le corollaire 4.2 implique aussitôt l’inégalité (*) et l’implication (ii) ⇒ (iii).
D’autre part (iii) implique trivialement (i), et il reste à prouver que (i) implique (ii).
Pour ceci, voir le texte Bourbaki imprimé, p. 142.

On pourra, si on veut, introduire (comme dans l’ancienne rédaction) la terminolo-
gie : base de transcendance séparante ; cela ne semble pas indispensable. Notons aussi :

Corollaire 4.3. — Les conditions précédentes impliquent la suivante :

(iv) K est formellement lisse sur k.
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Cela résulte en effet de la transitivité 1.5 (ii), de 1.6 et de 3.1.

Corollaire 4.4. — Soit k0 un sous-corps de k. Alors les conditions de 3.1 impliquent la
suivante :

(v) L’homomorphismeΩ1
k/k0
⊗k0 K −→ Ω1

K/k0
est injectif, i.e. toute k0-dérivation de

k dansK se prolonge en une k0-dérivation deK dansK .

On utilise 4.3 et 2.1.
Remarque 4.5. — Nous verrons au n◦ 7 que les conditions (iv) et (v) sont même

équivalentes à la condition (i), pourvu que dans (v) on suppose que k0 est parfait (et
sans supposer nécessairementK de type fini sur k).

5. — p-bases

Dans le présent n◦ et le suivant, p désigne un nombre premier, et sauf dans 6.9 tous les
anneaux envisagés sont de caractéristique p.

Définition 5.1. — Soient A un anneau, B une A-algèbre, (xi)i∈I une famille
d’éléments de B. On dit que cette famille est une famille p-génératrice sur A (resp. est
p-libre surA, resp. est une p-base surA) si la famille des monômes∏

i∈I

xni
i (où (ni) ∈ Z(I), 0 ≤ ni < p pour tout i)

est une famille génératrice (resp. libre, resp. une base) du A-module sous-jacent à B. Si
A = Fp, on omet la référence àA, et on dit aussi famille p-génératrice (resp.…) absolue.

Remarque 5.2. — Pour que (xi) soit une famille p-génératrice, il f. et s. qu’elle
engendreB comme algèbre surA[Bp].

Proposition 5.2. — Soient A −→ B −→ C des homomorphismes d’anneaux, tels
que Im(B −→ C) ⊃ Cp,M une partie deB,N une partie deC .

a) SiM est p-génératrice dans B sur A, et N est p-génératrice dans C sur B, alors
M ∪N est p-génératrice dansC surA.

b) SiM est une p-base deB surA, alorsN est p-libre surB si et seulement siM ∪N
est p-libre surA.
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C’est immédiat, cf. EGA 0IV 21.1.10.

Théorème 5.3. — Soient k un corps,K une extension de k, S une partie p-génératrice
deK sur k, L ⊂ S une partie p-libre deK sur k. Il existe alors une p-baseB deK sur k
telle que L ⊂ B ⊂ S. En particulier, toute extension de k admet une p-base sur k.

Démonstration par application facile de Zorn (cf. EGA 0IV 21.4.2), en utilisant le

Lemme 5.4. — Pour qu’un élément x deK soit p-libre sur k, il f. et suffit que x /∈
k(Kp).

Corollaire 5.5. — Pour qu’une famille (xi)i∈I d’éléments deK soit p-libre sur k, il f.
et s. que pour tout i, xi n’appartienne pas au corpsKi engendré par k(Kp) et les xj avec
j 6= i.

6. — Dérivations et différentielles en caractéristique p

Proposition 6.1. — SoientA un anneau,B uneA-algèbre. Alors :

a) Pour toutB-module, touteA-dérivationD deB dansM s’annule surBp, donc est
uneA[Bp]-dérivation. SiA etB sont des corps,D est même uneA(Bp)-dérivation.

b) L’homomorphisme canonique

Ω1
B/A −→ Ω1

B/A[Bp]

est un isomorphisme. De même, siA etB sont des corps, l’homomorphisme

Ω1
B/A −→ Ω1

B/A(Bp) .

Par suite, en car. p > 0, pour l’étude des propriétés des dérivations resp. différentielles
d’uneA-algèbreB, on se ramène généralement au cas oùA est un sous-anneau deB con-
tenantBp.

Proposition 6.2. — Soient B un anneau, A un sous-anneau contenant Bp, (xi)i∈I
une p-base deB surA, L unA-module. Alors :

a) Pour qu’une dérivationD deA dansL se prolonge en une dérivation deB dansL,
il faut et suffit queD s’annule dansBp.
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b) Lorsqu’il en est ainsi, pour toute famille (yi)i∈I d’éléments de L, il existe une déri-
vationD′ et une seule de B dans L, prolongeantD, et telle queD′(xi) = yi pour
tout i.

Cf. EGA 0IV 21.2.3., où cette proposition est présentée comme cas particulier d’une
autre plus générale, concernant le prolongement d’un relèvement partiel A −→ E, où
E est une extension de B par un idéal nilpotent. — Le dictionnaire habituel en termes
de différentielles donne :

Corollaire 6.3. — La suite

0 −→ Ω1
A/Bp ⊗A B −→ Ω1

B/Bp −→ Ω1
B/A −→ 0

est exacte et scindée, et la famille (dB/Axi)i∈I forme une base duB-moduleΩ1
B/A.

Corollaire 6.4. — Soient A un anneau, B une A-algèbre admettant une p-base
(xi)i∈I , alors la famille (dB/Axi)i∈I est une base deΩ1

B/A surB.

En effet, grâce à 6.1 on est ramené au cas où Bp ⊂ A ⊂ B, et on est alors sous les
conditions de 6.3.

Théorème 6.5. — Soient k un corps, K une extension de k, (xi)i∈I une famille
d’éléments de K . Pour que celle-ci soit p-libre (resp. p-génératrice, resp. une p-base) sur
k, il faut et il suffit que la famille (dK/kxi)i∈I soit une famille libre (resp. génératrice,
resp. une base) duK-moduleΩ1

K/k.

Cf. EGA 0IV 21.4.5.

Corollaire 6.6. — Pour que Ω1
K/k = 0, il faut et il suffit que K = k(Kp). En

particulier, si k est parfait (par exemple est le corps premier) cela signifie que Ω1
K = 0

(module des différentielles absolues), ou encore queK est parfait.

Corollaire 6.7. — SoientK une extension de k, et x ∈ K . Conditions équivalentes :

(i) x /∈ k(Kp).

(ii) dK/kx 6= 0.

(iii) L’élément x est p-libre sur k.
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Corollaire 6.8. — SoientB unanneau réduit,Aun sous-anneau contenantBp. Supposons
queB admette une p-base surA, et queA admette une p-base surBp (conditions vérifiées
siA etB sont des corps, en vertu de 5.3). Alors, on a un isomorphisme canonique

(Ω1
B/A)

(p) ' Ker(Ω1
A ⊗A B −→ Ω1

B) ,

envoyant l’élément (dB/Ax)
(p) du premier membre en l’élément dAx⊗ 1 du second.

Cf. EGA 0IV 21.3.5. Pour unB-moduleM , on a poséM (p) = M ⊗B (B,Φ) où
(B,Φ) désigne B considéré comme B-algèbre à l’aide de l’homomorphisme Φ : x ⇝
xp.

Théorème 6.9. — (Egalité deCartier). Soient k un corps de caractéristique quelconque
(N.B. la caractéristique nulle n’est pas exclue),K une extension de type fini. Alors Ω1

L/K

et γL/K = Ker(Ω1
K ⊗K L −→ Ω1

L) sont des vectoriels de dimension finie surK , et on a :

rangL Ω
1
L/K − rangL γL/K = deg tr L/K .

Cf. EGA 0IV 21.7.1.

Corollaire 6.10. — On a rangLΩ
1
L/K ≥ deg tr L/K , avec égalité si et seulement si

l’homomorphisme canoniqueΩ1
K ⊗K L −→ Ω1

L est injectif, i.e. sss toute dérivation deK
dans L se prolonge en une dérivation de L dans L.

N. B. — Ceci établit l’équivalence des conditions (ii) et (v) du n◦ 4, annoncée dans
4.5.

7. — Caractérisation différentielle des extensions séparables : cas
général

Théorème 7.1. — SoientK une extension d’un corps k, k0 un sous-corps parfait de k (par
ex. le corps premier). Conditions équivalentes :

(i) K est une extension séparable de k.

(ii) K est une algèbre formellement lisse sur k.
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(iii) L’homomorphisme canonique Ω1
k/k0
⊗k K −→ Ω1

K/k0
est injectif, i.e. toute k0-

dérivation de k dansK se prolonge en une k0-dérivation deK dans lui-même.

Démonstration. — (i) ⇒ (ii). Le cas oùK est une extension de type fini de k est déjà
connu (4.1) et on peut passer de là au cas général par un passage à la limite (EGA 0IV

19.6.1), indépendant de toute considération différentielle, mais qui a l’inconvénient de
se rédiger assezmal avec les moyens dont Bourbaki dispose ici, puisqu’il y est question de
l’homologie d’un certain complexe à la Hochschild. Il sera donc sans doute plus simple
de distinguer deux cas :

1◦) k de caractéristique nulle, alors K est une extension algébrique séparable d’une
extension pure de k, et on conclut comme dans 4.3, en utilisant ici 3.4 au lieu de
3.1 ;

2◦) k de car. p > 0.

On a alors un énoncé plus précis :

Corollaire 7.2. — Soient k un corps de car. p > 0, K une extension séparable de k,
(xi)i∈I une p-base de K sur k, E une k-algèbre extension d’une algèbre C par un idéal
nilpotent J , u : K −→ C un homomorphisme de k-algèbres, et pour tout i ∈ I , soit
yi ∈ E relevant u(xi). Alors il existe un unique k-homomorphisme v : K −→ E tel que
v(xi) = yi pour tout i.

Pour la démonstration, cf. EGA 0IV 21.2.7 (qui donne un énoncé plus général, sans
corps).

L’implication (ii) ⇒ (iii) étant évidente (2.1), il reste à prouver (iii) ⇒ (i). Or si
k est de caractéristique nulle, il n’y a rien à prouver. Si la caractéristique est p > 0, soit
(xi)i∈I une p-base absolue de k. Il résulte alors du critère de séparabilité de Mac-Lane
queK/k est séparable si et seulement si (xi) est p-libre dansK . Or cela signifie que les
dK(xi) forment un système libre surK dansΩ1

K . Comme ce sont les images des éléments
dkxi deΩ1

k⊗kK , qui forment une base de cet espace, on voit bien que (iii) implique (i).
Cela achève la démonstration de 7.1.

Remarque 7.3. — Compte tenu de l’égalité de Cartier, le théorème 7.1 redonne
l’équivalence des conditions (i) et (ii) de 4.1 (qui était la partie non triviale de (4.1), pour
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laquelle on a renvoyé au texte imprimé de Bourbaki). On pourrait donc (avec avantage
semble-t-il) reporter 4.1 en corollaire à 7.1. La raison pour laquelle j’ai gardé une dé-
monstration directe de 4.1, est que la démonstration en question est indépendante des
phénomènes spéciaux à la caractéristique p > 0.
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APPENDICE

1. — Décomposition d’un anneau en produit fini d’anneaux

Proposition 1.1. — Soient A un anneau, I un ensemble fini. Désignons par E(A; I)
l’ensemble des familles (ei)i∈I d’éléments centraux deA, indexées par I , telles qu’on ait

e2i = ei pour tout i ∈ I,

eiej = 0 pour i, j ∈ I, i 6= j,∑
I ei = 1.

Désignons par D(A, I) l’ensemble des familles (Ai)i∈I , indexées par I , d’anneaux quo-
tients Ai de A, telles que l’homomorphisme canonique A −→

∏
iAi, déduit des homo-

morphismes canoniquesA −→ Ai, soit un isomorphisme. Soit

φ : D(A, I) −→ E(A, I)

l’application définie de la manière suivante : si d = (Ai)i∈I ∈ D(A, I), et si u désigne
l’isomorphisme canonique A −→

∏
iAi, désignons par e′i l’élément de

∏
iAi dont la

composante d’indice j est égale à 0 si j 6= i, égale à l’élément unité deAi si j = i, et posons
ei = u−1(e′i). On pose alors φ(d) = (ei)i∈I .

Ceci posé, l’application précédente φ est bijective. Si e = (ei)i∈I ∈ E(A, I), l’unique
élément d = (Ai)i∈I tel que φ(d) = e est défini par la condition :

Ai = A/
∑
j ̸=i

ejA ;



de plus, l’application

vi : eiA −→ Ai

induite par l’application canonique A −→ Ai est bijective et applique ei sur l’élément
unité deAi.

Remarque 1.2. — On peut donc dire que l’application précédente eiA −→ Ai in-
duit un isomorphisme d’anneaux, lorsque l’idéal eiA est muni des lois d’addition et de
multiplication induites par celles deA, qui font de eiA un anneau admettant ei comme
élément unité. On fera attention cependant que pour cette structure d’anneau, eiA
n’est pas en général un sous-anneau deA ; c’est pourquoi nous nous garderons toujours
d’identifier l’anneau quotientAi deA avec l’idéal eiA deA.

Remarque 1.3. — Soit (Bi)i∈I une famille d’anneaux (pas nécessairement des an-
neaux quotients de A) et u : A −→

∏
iBi un isomorphisme. Alors chacun des ho-

momorphismes composants ui : A −→ Bi est évidemment surjectif, donc se factorise
de façon unique en un composé A −→ Ai −→ Bi, où A −→ Ai est un homomor-
phisme canonique sur un anneau quotient, et Ai −→ Bi un isomorphisme. Par suite,
u se factorise en un composé

A −→
∏
i

Ai −→
∏
i

Bi,

où la première flèche correspond à un élément bien déterminé de D(A, I), et la deux-
ième est déduite de la famille des isomorphismes Ai −→ Bi. On peut donc dire à un
isomorphisme près, tout isomorphisme tel que u : A −→

∏
iBi peut être défini par une

famille e = (ei)i∈I ∈ E(A, I), déterminée de façon unique.
Remarque 1.4. — On appelle idempotent d’un anneau A tout élément e de A tel

que e2 = e. On dit parfois que deux idempotents e et f de A sont “orthogonaux” si
on a ef = fe = 0. On peut donc dire que les éléments de E(A; I) sont les familles
d’idempotents centraux, mutuellement orthogonaux, de somme 1, indexées par I .

Corollaire 1.5. — Il y a une correspondance biunivoque entre l’ensemble des couples
(A′, A′′) d’anneaux quotients deA tels que l’homomorphisme canoniqueA −→ A′×A′′

soit un isomorphisme, et l’ensemble des idempotents centraux deA.

En effet, il suffit d’établir une bijection entre ce dernier ensemble et l’ensemble
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E(A; I), où I = {1, 2}, et pour ceci il suffit de faire correspondre à l’idempotent central
e le couple (e, 1− e).

Proposition 1.6. — SoitA un anneau. On dit queA est indécomposable siA n’est pas
nul, et siA n’est pas isomorphe à un produit de deux anneaux non nuls.

Par exemple, un corps, un anneau commutatif intègre, sont indécomposables.
Compte tenu de 1.5 et de 1.3 on obtient :

Proposition 1.7. — Pour que l’anneau A soit indécomposable, il faut et il suffit que
A 6= 0 et que 0 et 1 soient les seuls idempotents centraux deA, ou encore, queA ait exacte-
ment deux idempotents centraux.

Remarque 1.8. —Ainsi, pour queA soit indécomposable, il faut et il suffit que son
centre le soit, ce qui nous ramène au cas d’un anneau commutatif. * D’autre part, pour
qu’un anneau commutatif soit indécomposable, il faut et il suffit que son spectre premier
soit connexe. *

Proposition 1.9. — SoientA un anneau. Les conditions suivantes sont équivalentes :

(i) A est isomorphe au produit d’une famille finie d’anneaux indécomposables.

(ii) Il existe une famille finie d’idempotents centraux ei dansA, mutuellement orthog-
onaux (1.4), de somme 1, dont chacun est un “idempotent indécomposable” i.e. n’est
pas la somme de deux idempotents centraux non nuls.

(iii) L’ensemble des idempotents centraux deA est fini.

Sous ces conditions, si u : A −→
∏

i∈I Ai et u′ : A −→
∏

j∈J A
′
j sont deux isomor-

phismes de A avec des produits finis d’anneaux indécomposables Ai (i ∈ I) resp. A′
j

(j ∈ J ), il existe une bijection w : I −→ J , et des isomorphismes vi : Ai −→ A′
w(i), tels

queu′ soit égal à v◦u, où v :
∏
Ai −→

∏
A′

j est l’isomorphisme défini parw et le système
des vi. D’ailleurs,w et les vi sont uniquement déterminés par les données précédentes.

N.B.—Onpourrait vouloir donner un nomàun anneau satisfaisant aux conditions
de 1.9, par exemple l’appeler “complètement décomposable” ; mais cette terminologie
conduit au résultat qu’un anneau indécomposable est complètement décomposable ! —
La dernière partie de 1.9 a un énoncé assez lourd, il serait sans doute plus pigeable de le

109



remplacer par l’énoncé suivant : “Sous ces conditions, soit (Ai)i∈I la famille des anneaux
quotients deA qui sont indécomposables. Alors I est fini et l’homomorphisme canon-
ique u : A −→

∏
Ai est un isomorphisme.” On pourrait aussi en faire une quatrième

condition équivalente.”
Remarque 1.10. —Onvoit facilement que si toute suite croissante d’idéaux bilatères

deA est stationnaire, alorsA satisfait aux conditions de la proposition 1.9. * Il en est en
particulier ainsi siA est noethérien à gauche ou à droite. *

Remarque 1.11. — Si A satisfait aux conditions de 1.9, le cardinal de l’ensemble
d’indices I , pourun isomorphismedonnédeA avec le produit d’une famille finie (Ai)i∈I

d’anneaux indécomposables, ne dépend que deA. C’est un entier n ≥ 0, nul si et seule-
ment si A est nul, égal à 1 si et seulement si A est indécomposable. On peut aussi le
caractériser par la condition que le cardinal de l’ensemble des idempotents centraux de
A est égal à 2n. Noter que cet entier est le même pourA et pour le centre deA. * D’autre
part, siA est commutatif, alorsA satisfait aux conditions de 1.9 si et seulement si les com-
posantes connexes de son spectre premier sont ouvertes, ou encore si leur ensemble est
fini, et l’entier précédentnn’est alors autre que le cardinal de l’ensemble des composantes
connexes de ce spectre. *

La proposition qui suit pourrait passer n’importe où après la définition des idéaux
(mais de préférence dans le n◦ consacré aux anneaux produits) :

Proposition 1.12. — Soit (Ai)i∈I une famille finie d’anneaux,A leur produit. Soit,
pour tout anneauB, J(B) l’ensemble des idéaux à gauche (resp.…) deB.

Définissons une application

χ :
∏

J(Ai) −→ J(A),

en associant à la famille (Ji)i∈I d’idéaux à gauche (resp. ..) des Ai, le produit
∏
Ji, qui

est bien un idéal à gauche (resp. ...) deA (que I soit fini ou non). Alors χ est bijective.

Corollaire 1.13. — Les idéaux à gauche (resp.…) maximaux de A sont les idéaux de
la forme pr−1

i (Ji), où i ∈ I et où Ji est un idéal à gauche (resp.…) maximal deAi, i et Ji
étant d’ailleurs uniquement déterminés par l’idéal envisagé deA.

Corollaire 1.14. — Supposons que les Ai soient des corps. Alors tout idéal à gauche
(resp. à droite) de A est bilatère. L’ensemble des idéaux de A est en correspondance biu-
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nivoque avec l’ensemble des parties de I , en associant à toute partie I ′ de I le noyau JI′
de la projection canonique deA =

∏
i∈I Ai sur le produit partielAI′ =

∏
i∈I′ Ai. Cette

correspondance renverse les relations d’ordre, en particulier les idéauxmaximaux deA cor-
respondent aux éléments de I , comme noyaux des projections canoniques pri : A −→ Ai.

Plus généralement, il résulte de 1.13 que si chaque Ai admet exactement un idéal à
gauche (resp.…) maximal, alors l’ensemble des idéaux à gauche (resp.…) maximaux deA
est en correspondance biunivoque avec I .

Lemme 1.15. — SoientA un groupe abélien, (Ji)i∈I une famille finie de sous-groupes
deA, et pour tout i ∈ I , soitAi = A/Ji. Pour que l’homomorphisme canonique

u : A −→
∏
i∈I

Ai

soit surjectif, il faut et il suffit que pour tout i ∈ I , on ait :

Ji +
∩

j∈I−{i}

Jj = A.

Démonstration. — L’assertion est triviale pour card I égal à 0 ou 1, et pour card
I = 2 se vérifie en notant que de façon générale, si on a un homomorphisme de groupes
abéliensA −→ B, et siB′ est un sous-groupe deB,B′′ = B/B′, alorsA −→ B est sur-
jectif si et seulement si son composé avecB −→ B′′ l’est, et si de plus l’homomorphisme
induit J ′′ −→ B′ est surjectif, où J ′′ est le noyau de A −→ B′′. On applique ceci au
cas oùB = A/J ′ × A/J ′′ et oùB′ est le premier facteurA/J ′, doncB′′ ' A/J ′′, on
trouve que A −→ A/J ′ × A/J ′′ est surjectif si et seulement si J ′′ −→ A/J ′ l’est, i.e.
si et seulement si J ′ + J ′′ = A. Dans le cas où card I ≥ 3, on procède par récurrence
sur ce cardinal. Choisissons un i ∈ I , et soit Ki =

∩
j∈I−{i} Jj , par hypothèse on a

Ji + Ki = A i.e. l’homomorphisme A −→ A/Ji × A/Ki est surjectif. Or Ki est
précisément le noyau de l’homomorphisme A −→

∏
j∈I−{i}Aj , qui se factorise donc

parA/Ki −→
∏

j∈I−{i}Aj , et on est ramené à prouver que ce dernier est surjectif. Or
pour prouver queA −→

∏
j∈I−{i}Aj est surjectif, on utilise l’hypothèse de récurrence

et les relations Jj +Kj = A pour j ∈ I − {i}, qui donnent ce qu’on veut.

Définition 1.16. — Soit A un anneau. Un idéal bilatère J de A est dit premier si
pour deux idéaux bilatères quelconques I , I ′ deA, la relation J ⊃ I · I ′ implique J ⊃ I

ou J ⊃ I ′.
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Alors, pour toute suite finie d’idéaux bilatères I1, . . . , In de A, la relation J ⊃ I1 ·
I2 · · · · · In implique l’existence d’un i, 1 ≤ i ≤ n, tel que J ⊃ Ii. Cela se voit en effet
aussitôt par récurrence sur n.

Proposition 1.17. — Soit J un idéal bilatère deA. Pour que J soit premier, il suffit
queA/J soit “sans diviseur de zéro” i.e. que le produit de deux éléments non nuls deA/J
soit non nul. La condition est également nécessaire siA est commutatif.

Pour la première assertion, notons que si J ne contient ni I ni I ′, il existe x ∈ I et
x′ ∈ I ′ qui ne soient pas dans J , donc si A/J est sans diviseur de zéro, on a xx′ /∈ J ,
donc II ′ 6⊂ J . Pour la seconde assertion, il suffit de remarquer que si x, x′ ∈ A − J
étaient tels que xx′ ∈ J , alors les idéaux I = Ax et I ′ = Ax′ seraient tels que I et I ′

soient non contenus dans J , et II ′ contenu dans J .

Proposition 1.18. (“LemmeChinois” ?) — SoientA un anneau commutatif, (Ji)i∈I
une famille finie d’idéaux de A. Supposons que pour tout i ∈ I , il existe un seul idéal
maximal J ′

i deA contenant Ji, et supposons que les J ′
i (i ∈ I) soient deux à deux distincts.

Alors l’homomorphisme canonique A −→
∏

i∈I Ai, où Ai = A/Ji, est surjectif, donc
induit un isomorphismeA/

∩
i∈I Ji −→

∏
i∈I Ai.

En vertu de 1.15 il suffit de vérifier les relations

Ji +
∩

j∈I−{i}

Jj = A.

En vertu du théorème de Krull (…), il suffit de prouver pour ceci qu’aucun idéal max-
imal m de A ne peut contenir le premier membre, i.e. ne peut contenir à la fois Ji et∩

j∈I−{i} Jj . Or s’il contientJi, il est égal àJ
′
i par hypothèse, et s’il contient

∩
j∈I−{i} Jj ,

il résulte de 1.17 qu’il contient un des Jj , j ∈ I − {i} donc par hypothèse est égal à J ′
j ,

ce qui contredit l’hypothèse J ′
i 6= J ′

j pour i 6= j, C.Q.F.D.

Corollaire 1.19. — Soit (mi)i∈I une famille d’idéaux maximaux distincts de
l’anneau commutatifA. Alors l’homomorphisme canonique

A −→
∏
i∈I

ki, où ki = A/mi,

est surjectif.
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Définition 1.20. — SoitA un anneau commutatif. On dit queA est local s’il admet
un unique idéal maximal (ce qui implique que A 6= 0). On dit que A est semi-local si
l’ensemble de ses idéaux maximaux est fini (c’est le cas par exemple siA est nul).

Par exemple, un corps commutatif est local.

Proposition 1.21. — SoitA un anneau commutatif. SiA est local,A est indécompos-
able.

Proposition 1.22. — SoitAun produit fini d’anneaux commutatifs. AlorsA est semi-
local si et seulement si les Ai le sont. Il est local si et seulement si il existe i ∈ I tel que Ai

soit local et queAj = 0 pour j ∈ I − {i}.

Ces propositions résultent aussitôt des définitions et de 1.13.

Corollaire 1.23. —Un produit fini de corps commutatifs est un anneau semi-local.

Alors que tout ce qui précède semble le mieux à sa place dans le Chap. I, voici un
résultat qui serait plutôt un remords au Chap. II, puisqu’il s’exprime le plus aisément
dans le langage desmodules. Il doit figurer sans doute (dumoins sous une forme voisine)
au Chap. VIII. Il va être utilisé dans le Chap. V, § 7 à propos des familles diagonalisables
d’endomorphismes d’un vectoriel ; à la rigueur on pourrait l’y donner sous forme d’un
lemme.

Proposition 1.24. — Soient (Ai)i∈I une famille finie d’anneaux, A leur produit.
Pour toute famille (Mi)i∈I , où pour tout i ∈ I , Mi est un Ai-module, considérons sur
M =

∏
i∈I Mi la loi d’opération externe deA définie par

(ai)i∈I · (xi)i∈I = (aixi)i∈I .

Cette loi fait deM un A-module, c’est d’ailleurs la seule structure de A-module surM
pour laquelle, pour tout i ∈ I , la projection canonique M −→ Mi soit semi-linéaire
relativement à l’homomorphisme canonique A −→ Ai. Ceci posé, (Mi)i∈I ⇝ M =∏

i∈I Mi peut être considéré comme un foncteur (murmure d’horreur) de la catégorie pro-
duit

∏
i∈I Mod(Ai) dans la catégorie Mod(A), — où pour tout anneau B, Mod(B)

désigne la catégorie desB-modules. Eh bien, ce foncteur, c’est une équivalence de catégories.

Le rédacteur n’explicite pas, et pour cause, la définition du foncteur, ne sachant pas

113



plus que Bourbaki ce que Bourbaki entendra par ce terme. Il laisse au prochain rédacteur
hypothétique une rédaction de cette proposition sans utiliser le mot de catégorie ni de
foncteur.

J’ai oublié d’expliciter le foncteur quasi-inverse naturel : Mi se déduit deM par le
changement de baseA −→ Ai :

Mi 'M ⊗A Ai.

Corollaire 1.25. — Soit (Ai)i∈I une famille finie d’anneaux commutatifs, A leur
produit. Pour toute famille (Mi)i∈I , où pour tout i ∈ I ,Mi est une Ai-algèbre, consid-
érons chaqueMi comme une A algèbre à l’aide de la projection canonique A −→ Ai,
et formons la A-algèbre produit M =

∏
iMi. On obtient de cette façon un foncteur

(Mi)i∈I ⇝
∏

iMi de la catégorie produit
∏

i Alg(Ai) dans la catégorieAlg(A), où pour
tout anneau commutatif B, Alg(B) désigne la catégorie des algèbres sur B. Le foncteur
précédent est une équivalence. De plus, avec les notations précédentes, pour queM soit as-
sociatif (resp. commutatif, resp. unitaire) il faut et il suffit que chacun desMi le soit ; en
particulier le foncteur précédent induit des équivalences entre les sous-catégories obtenues en
se restreignant partout aux algèbres associatives (resp. commutatives, resp. unitaires, resp.
associatives unitaires, resp. associatives unitaires commutatives, resp. transjordaniennes).

2. — Éléments nilpotents, nilradical, anneaux réduits

Définition 2.1. — Soit A un anneau. Un élément x de A est dit nilpotent s’il existe un
entier n ≥ 1 tel que xn = 0. Un idéal à gauche (resp. à droite, resp. bilatère) deA est dit
un nilidéal à gauche (resp. à droite, resp. bilatère) si ses éléments sont tous nilpotents ; on
dit que I est un idéal nilpotent s’il existe un entier n ≥ 1 tel que In = 0, i.e. tel que pour
toute suite (x1, . . . , xn) de n éléments de I , on ait x1x2 . . . xn = 0. SiA est commutatif,
on dit queA est réduit si tout élément nilpotent deA est nul.

Bien entendu, si A est commutatif, on parlera simplement d’idéal nilpotent ou de
nilidéal, sans spécifier par une mention comme ”à gauche” etc. On notera qu’un idéal
nilpotent est un nilidéal, l’inverse n’étant pas vrai en général. * C’est vrai cependant dans
le cas particulier important oùA est un anneau commutatif noethérien. *
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Remarque 2.2. — Supposons A commutatif, et soit x ∈ A. Alors les conditions
suivantes sont équivalentes :

(i) x est nilpotent,

(ii) Ax est nilpotent,

(iii) Ax est un nilidéal.

En effet, les implications (ii)⇒ (iii)⇒ (i) sont évidentes en tous cas, et (i)⇒ (ii)
également pour A commutatif, puisqu’alors on a, pour tout entier n ≥ 1, (Ax)n =

Axn, donc xn = 0 implique (Ax)n = 0.

Proposition 2.3. — SoitA un anneau commutatif. L’ensemble J des éléments nilpo-
tents de A est un idéal de A, distinct de A si A 6= 0. C’est le plus grand nilidéal de A, et
aussi le plus petit idéalK deA tel queA/K soit réduit.

Si x ∈ J , alors pour tout a ∈ A on a ax ∈ J , car xn = 0 implique (ax)n =

anxn = 0. D’autre part, si x ∈ J , y ∈ J , alors x + y ∈ J , car si on a xn = yn = 0,
alors la formule du binôme montre que (x + y)2n = 0. Cela prouve que J est un idéal
deA. SiA 6= 0, alors l’élément unité deA n’est pas nilpotent, donc J 6= A. Il est trivial
que J est le plus grand nilidéal deA. Prouvons queA/J est réduit : en effet, siK est un
idéal deA, on voit aussitôt queA/K est réduit si et seulement si pour toutx ∈ A tel que
xn ∈ K pour un entier n ≥ 1 convenable, on a x ∈ K . Or cette condition est remplie
pourK = J , car si xn ∈ J , il existe un entierm ≥ 1 tel que (xn)m = 0 i.e. xnm = 0,
donc x ∈ J . D’ailleurs, siK satisfait la condition envisagée plus haut, alorsK contient
évidemment tout élément nilpotent deA, i.e. K ⊃ J , ce qui achève la démonstration.

Définition 2.4. — SoitA un anneau commutatif. L’idéal des éléments nilpotents de
A (cf. 2.3) est appelé le nilradical deA.

On notera queA est donc réduit si et seulement si son nilradical est nul.

Proposition 2.5. — SoientAunanneau commutatif,J unnilidéal deA,A0 = A/J ,
u : A −→ A0 l’homomorphisme canonique. Alors u induit une bijection de l’ensemble
des idempotents deA avec l’ensemble des idempotents deA0.

Compte tenu du n◦ 1, on en conclut aussitôt le
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Corollaire 2.6. — Pour queA soit indécomposable (resp. isomorphe à un produit fini
d’anneaux indécomposables) il faut et il suffit qu’il en soit de même de A0. Dans le cas
respé, le nombre de facteurs indécomposables envisagé dans 1.11 est le même pourA et pour
A0.

Corollaire 2.7. — Soit I un ensemble fini, alors pour toute famille (A0,i)i∈I

d’anneaux quotients de A0 appartenant à D(A0, I) (1.1), il existe une famille unique
d’anneaux quotients (Ai)i∈I deA qui soit élément deD(A, I) et telle que pour tout i ∈ I ,
l’homomorphisme composéA −→ A0 −→ A0,i se factorise parAi. De plus, siAi = A/Ji,
on aA0,i = A0/u(Ji) ' A/(J + Ji).

N. B. — La démonstration de 2.6 est triviale quand on dispose du langage des sché-
mas affines, impliquant que les idempotents de A correspondent aux parties à la fois
ouvertes et fermées de Spec(A). Ici, nous donnons une démonstration directe, à l’aide
du lemme 2.8 ci-dessous. Elle peut certainement se rédiger sans utiliser la notion de
polynôme ni la formule de Taylor pour les polynômes, si on y tient (et pourrait donc
passer au Chap. I).

Lemme 2.8. — SoientA un anneau commutatif, J un nilidéal deA, φ ∈ A[T ] un
polynôme,φ(T ) = a0+a1T+ · · ·+arT r. On suppose que a0 ∈ J et que a1 est inversible.
Alors il existe un unique élément x de J tel que φ(x) = 0.

Par hypothèse, il existe un entier n ≥ 1 tel que an0 = 0. Nous procédons par récur-
rence sur n, en notant que l’énoncé est trivial si n = 1, i.e. a0 = 0, auquel cas on
prend x = 0, solution qui est unique comme on voit en écrivant φ(x) = 0 sous la
forme x(a1 + a2x + . . . ) = 0 et en notant que si x ∈ J , alors le deuxième facteur
a1+a2x+ · · · = a1+ux est inversible, car a1 est inversible et ux nilpotent. Supposons
donc n ≥ 2, et le lemme prouvé pour des entiers n′ < n. On met x sous la forme

x = −a−1
1 a0 + z,

ce qui donne sur z les conditions z ∈ I (équivalente à x ∈ I , puisque a0 ∈ I), et
φ(−a−1

1 a0 + z) = 0. Développant par la formule de Taylor le premier membre, on
trouve une équation de la formeψ(z) = 0, oùψ(T ) ∈ A[T ],ψ(T ) = b0+b1T + · · ·+
brT

r, où b0 = φ(−a−1
1 a0) ∈ a20A, et où b1 = φ′(−a−1

1 a0) est de la forme a1 + ua0,
donc est inversible puisquea1 est inversible eta0 doncua0 nilpotent. D’ailleurs, la forme
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donnée de b0montre que bn−1
0 = 0, ce qui permet d’appliquer l’hypothèse de récurrence

à ψ ; donc il existe un unique z satisfaisant aux conditions voulues, C.Q.F.D..
Nous pouvons maintenant prouver 2.5. Soit e0 un idempotent deA0, e un élément

de A qui le relève. Alors, e2 − e ∈ J . Tout revient à montrer qu’il existe un unique
x ∈ J tel que e+ x soit idempotent, i.e. tel que (e+ x)2 − (e+ x) = 0, ce qui s’écrit
aussi

x2 + (2e− 1)x+ (e2 − e) = 0.

Compte tenu de 2.8, il suffit donc de prouver que 2e− 1 est inversible, ou ce qui revient
au même (cf. 2.10, ci-dessous) que 2e0 − 1 est inversible, ce qui résulte du

Lemme 2.9. — Soit e un idempotent d’un anneau A. Alors 2e − 1 est inversible, de
façon précise, son carré est 1.

En effet, on a (2e− 1)2 = 4e2 − 4e+ 1 = 1 puisque e2 = e.
Nous avons utilisé plusieurs fois, (pour démontrer 2.8 et 2.5) le résultat suivant, qui

devrait donc passer avant 2.5 :

Proposition 2.10. — Soient A un anneau, J un nilidéal bilatère de A, A0 = A/J

l’anneau quotient. Alors pour tout élément x de A, x est inversible si et seulement si son
image canonique dans A0 l’est. En particulier, si x est inversible, il en est de même de
x+ h pour tout h ∈ J .

Supposons en effet x0 inversible, d’inverse y0, image canonique de y. On a donc
xy = 1 + a, avec a ∈ J , et tout revient à prouver que 1 + a est inversible, car alors
y(1+a)−1 sera un inverse à droite de x, et on prouvera demême l’existence d’un inverse
à gauche. Or pour trouver un inverse de 1+a, a étant nilpotent, on utilise la formule de
Newton, qui donne l’inverse

∑
n≥0(−1)nan.

Proposition 2.11. — Soit (Ai)i∈I une famille finie d’anneaux commutatifs, A leur
produit. Alors le nilradical de A est le produit des nilradicaux des Ai. L’anneau A est
réduit si et seulement si lesAi le sont.

Beweis klar. Remords : donner la dernière assertion de 2.11 pour le produit d’une
famille pas nécessairement finie d’anneaux.

La proposition qui suit, pour venir sans larmes, suppose soit que l’anneau de frac-
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tions soit défini au Chap. I sans se borner au passage aux fractions par rapport à une par-
tie d’un anneau formée d’éléments réguliers ; soit qu’on dispose de la notion d’anneau
de polynômes (ce qui la rejetterait après le Chap. IV) :

Proposition 2.12. — Soit A un anneau commutatif. Alors le nilradical de A est
l’intersection des idéaux premiers deA.

En vertu de 2.3, il est contenu dans cette intersection, car si p est un idéal premier
deA,A/p est intègre donc réduit, donc p contient le nilradical. Pour l’inclusion en sens
inverse, il faut prouver que si f ∈ A n’est pas nilpotent, il existe un idéal premier p de
A ne contenant pas f . Pour ceci, on introduit l’anneau de fractions B = Af de A,
qu’on peut définir aussi comme l’anneau quotient B = A[T ]/(1 − fT ), T étant une
indéterminée. On voit aisément que, pour un élément donné f de B, Af est nul si et
seulement si f est nilpotent (pourrait être dégagé en lemme). En l’occurrence, f étant
supposé non nilpotent, doncAf non nul, il existe par Krull un idéalmaximal deAf . Son
image inverse dansA est un idéal premier ne contenant pas f . C.Q.F.D..

Proposition2.13. —SoientAunanneau commutatif,J unnilidéal deA,A0 = A/I

l’anneau quotient, φ : A −→ A0 l’application canonique. Alors l’application p ⇝
φ−1(p) établit une correspondance biunivoque entre l’ensemble des idéaux premiers (resp.
maximaux) deA0, et l’ensemble des idéaux premiers (resp. maximaux) deA.

C’est une conséquence immédiate de 2.3 qui implique qu’un idéal premier deA con-
tient J . Pourrait être bloqué en corollaire à 2.3.

Proposition 2.14. — Sous les conditions de 2.13, A est local (resp. semi-local) si et
seulement siA0 l’est.

3. — Structures des anneaux artiniens commutatifs

Définition 3.1. — Un anneau A est dit artinien à gauche (resp. à droite) lorsque toute
suite décroissante d’idéaux à gauche (resp. à droite) deA est stationnaire.

Lorsque A est commutatif, on dit simplement que A est artinien s’il est artinien à
gauche (ou ce qui revient au même, à droite).

Proposition 3.2. — SoitA un anneau commutatif artinien. Alors tout idéal premier
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deA est maximal, et l’ensemble de ces idéaux est fini (en d’autres termes,A est semi-local).

Soit p un idéal premier deA, il faut prouver queA/p est un corps. CommeA/p est
évidemment artinien, il suffit de prouver pour ce point le

Corollaire 3.3. — Un anneau artinien à gauche non nul dont tout élément non nul
est régulier à gauche (par exemple un anneau commutatif intègre artinien) est un corps.

Il suffit de prouver que tout élément non nul f de A est inversible à droite, donc
que l’application g ⇝ fg de A dans lui-même est surjective. Or par hypothèse elle est
injective, et si elle n’était pas surjective, les images des homomorphismes itérés, i.e. les
idéaux à gauche fnA, formeraient une suite strictement décroissante d’idéaux à gauche
deA, contrairement à l’hypothèse artinienne surA.

Pour prouver 3.2, il reste à prouver que l’ensemble des idéaux maximaux de A est
fini. Mais si on pouvait trouver une suite infinie (mi)i∈N de tels idéaux, alors la suite des
idéauxNi =

∩
j≤i mj serait strictement décroissante, comme il résulte aussitôt de 1.19,

ce qui contredirait encore l’hypothèse artinienne surA.

Corollaire 3.4. — SoitA comme dans 3.2. Alors l’intersection de l’ensemble (fini) des
idéaux maximaux deA est identique au nilradical deA, et ce dernier est nilpotent.

Cela résulte de 3.2 et de 2.12 ; le caractère artinien deA impliquant qu’un nilidéal de
A est nécessairement nilpotent.

Proposition 3.5. — SoitA un anneau commutatif artinien.

(i) Pour que A soit local, il faut et il suffit qu’il soit indécomposable, ou encore qu’il
admette un idéal maximal nilpotent.

(ii) A est isomorphe au produit d’une famille finie d’anneaux artiniens locaux, et ceci
de façon essentiellement unique.

Si N est le nilradical de A, alors il résulte de 3.4 et 1.19 que A/N est isomorphe à un
produit fini de corps ki, i ∈ I . Cette décomposition se remonte en une décomposition
deA en vertu de 2.7, chaque facteurAi deA dans cette décomposition ayant un idéal ni
nilpotent tel queA/ni soit isomorphe au corps ki. En vertu de 2.14, chaqueAi est local,
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et a fortiori indécomposable. La propriété d’unicité d’une décomposition de A en pro-
duit fini d’anneaux indécomposables a été explicitée dans 1.9, ce qui prouve (ii). On voit
de plus, sur cette décomposition, queA est indécomposable si et seulement si l’ensemble
d’indices I est réduit à un élément, i.e. A est local, et ceci implique queA admet un idéal
maximal nilpotent ; l’inverse a déjà été observé plus haut comme conséquence de 2.14.
Cela achève la démonstration de 3.5.

Corollaire 3.6. — SoitA un anneau commutatif artinien. Pour queA soit réduit, il
faut et il suffit qu’il soit isomorphe à un produit fini de corps (et ces derniers sont déterminés
alors de façon essentiellement unique).

Résulte de 3.5 et de 2.11.

Corollaire 3.7. — SoitA un anneau commutatif artinien. Pour queA soit un corps,
il faut et il suffit queA soit local et réduit.

N. B. — On aurait dû après 3.1 noter qu’un quotient d’un artinien, ou un produit
d’une famille finie d’artiniens, est artinien, ce qui montre en particulier, grâce à 3.5 (ii),
que la classification des anneaux commutatifs artiniens se ramène entièrement à celle des
anneaux commutatifs artiniens locaux.

4. — Existence et unicité de la décomposition d’un polynôme à une
indéterminée sur un corps en produit de puissances de polynômes irré-
ductibles

Peut se traiter enuneproposition, à la place de la proposition 8duChap. IV, n◦ 5. Inutile
d’attendre le Chapitre des anneaux principaux pour donner cette propriété, qu’il serait
absurde de se refuser à utiliser dans le Chapitre des corps commutatifs, en cas de besoin.
Nous l’appliquerons dans 5.8 à la structure des algèbres commutatives de degré fini sur
un corps, qui pourrait être donnée dans un n◦ à part, faisant suite au précédent, dans le
Chap. IV, ou bien former le §7, du Chap. V, après le §6 de l’état publié actuel.
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5. — Algèbres de degré fini sur un corps k

Définition 5.1. — Soient k un corps,A une k-algèbre. On appelle degré de A sur k, ou
simplement degré deA, et on note [A : k], la dimension du k-espace vectoriel sous-jacent à
A.

Remarque 5.2. —On s’abstiendra par contre, pour une k-algèbre, d’utiliser le terme
“dimension deA” pour désigner son degré sur k, à cause des confusions possibles avec la
notion de dimension d’un anneau, qui sera étudiée enAlg. Comm.. Cet inconvénient ne
seprésentepas quandonutilise le synonyme“rangd’un espace vectoriel” pourdésigner sa
dimension, et on pourra alors utiliser le terme “rang de la k-algèbreA” comme synonyme
de “degré de la k-algèbreA”.

On dira donc que A est de degré fini sur k (ou de rang fini sur k, — mais non “de
dimension finie sur k” ! —) si son degré sur k est fini. Dans le cas contraire, ce degré
est égal à +∞ (N. B. — à vérifier si cela ne contredit pas la notion de dimension d’un
vectoriel, qui serait un cardinal— le rédacteur ne dispose pas, aumoment de rédiger, des
textes canoniques. En tous cas, la convention utile ici est bien de prendre+∞ et non le
cardinal d’une base).

Proposition 5.3. — SoitA une algèbre sur un corps k. SiA est de degré fini sur k, A
est artinienne à gauche et même à droite.

On pourrait même se borner à supposer k artinien au lieu d’un corps.
Grâce à 5.3, nous pouvons donc appliquer tous les résultats du n◦3 à la structure

des algèbres commutatives de degré fini sur un corps k ! Noter que simi (i ∈ I) sont les
idéauxmaximaux deA (en nombre fini, rappelons le), et ki = A/mi les corps correspon-
dants (appelés aussi corps résiduels en les mi, terminologie qui aurait pu être introduite
dès la notion d’idéal maximal), alors les ki sont des corps qui sont des k-algèbres, i.e. sont
des extensions de k, qu’on appellera aussi les extensions résiduelles de A. Noter qu’on
aura évidemment

∑
[ki : k] ≤ [A : k] = n (égalité si et seulement siA est réduite) et a

fortiori card I ≤ n (égalité si et seulement siA est isomorphe à kn).

Proposition 5.4. — Soient k un corps, A une algèbre commutative sur k, de degré
fini n,K une extension de k, ki (i ∈ I) les extensions résiduelles deA, φi : A −→ ki les
homomorphismes canoniques. Alors toutk-homomorphismeudeAdansK peut s’écrire, de
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façon unique, sous la forme v ◦φi, où i ∈ I et où v : ki −→ K est un k-homomorphisme.

Il suffit de noter que le noyau de u est un idéal premier de A, donc maximal (3.2),
d’où aussitôt l’assertion.

Corollaire 5.5. — Les k-homomorphismes de A dans K sont linéairement indépen-
dants dans leK-espace vectoriel des homomorphismes des k-espaces vectoriels sous-jacents à
A et àK . En particulier, il y a au plus n k-homomorphismes deA dansK .

En effet, quitte à faire l’extension de la basek −→ K , on se ramène au cas oùK = k,
et où l’assertion est immédiate, compte tenu queA s’envoie sur le produit des ki.

N. B. 5.6. — On retrouve ici par la bande, dans un cas particulier, le théorème de
Dedekind de l’indépendance des homomorphismes, qui pourrait s’énoncer ainsi : si S
est un monoïde,K un corps, l’ensemble des représentations de S dansK∗ est libre dans
l’espace vectoriel surK des applications de S dansK . On peut prouver cet énoncé assez
naturellement dans l’esprit des présentes notes, en introduisant l’algèbreAdeS surK , ce
quinous ramène àprouverque, pouruneK-algèbreA, l’ensembledes homomorphismes
de A dans K est libre dans le dual de l’espace vectoriel sous-jacent à A. On se ramène
aussitôt au cas K commutatif (diviser par l’idéal des commutateurs), et alors le lemme
chinois 1.19 donne aisément le résultat.

Proposition 5.7. — SoientA une algèbre commutative de degré fini n sur un corps k,
Ω une extension algébriquement close de k, P (A) l’ensemble des k-homomorphismes deA
dans Ω. Alors l’application u 7→ Ker(u) induit une bijection de P (A) avec l’ensemble
des idéauxmaximauxm deA tels que l’extension résiduelle correspondanteA/m de k soit
triviale. De plus, les conditions suivantes sont équivalentes :

(i) A est isomorphe à l’algèbre kn.

(ii) A est réduit, et pour tout k-homomorphisme u : A −→ Ω, on a u(A) = k.

(ii bis) A est réduit et ses extensions résiduelles sont triviales.

(iii) On a card(P (A)) = n.

(iv) A a n idéaux maximaux.
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La première assertion est triviale (et indépendante de l’hypothèse [A : k] < +∞), ainsi
que l’équivalence de (ii) et (ii bis), compte tenu de 5.4. L’équivalence de (i) et (ii bis) est
immédiate, compte tenu que A réduit implique que A est isomorphe au produit de ses
extensions résiduelles. D’ailleurs, (i)⇒ (iii) est trivial par 5.4, et on a (iii) =⇒ (i), car
on a un homomorphisme surjectif canonique A −→ kP (A), et (iii) assure que les deux
côtés de la flèche ont même degré sur k, donc l’homomorphisme est un isomorphisme.
L’équivalence de (i) et (iv) a déjà été observée plus haut.

Proposition 5.8. — Soient k un corps, f ∈ k[X] un polynôme en une indéterminée
X , on suppose f non constant et on considère sa décomposition en facteurs premiers

f = cf r1
1 . . . f rs

s ,

où les fi (1 ≤ i ≤ s) sont des polynômes unitaires irréductibles, et les ri sont des entiers
> 0. Alors la k-algèbre

A = k[X]/fk[X]

est finie sur k, de rang égal à n = deg f , et elle est isomorphe au produit des algèbres
Ai = k[X]/f ri

i k[X], ces dernières étant des algèbres locales, dont les extensions résiduelles
sont isomorphes aux extensions k[X]/fik[X].

Preuve par AQT.

Corollaire 5.9. — Pour queA soit locale, il faut et il suffit que s = 1. Pour queA soit
réduite, il faut et suffit que f soit sans facteurs multiples, i.e. que ri = 1 pour 1 ≤ i ≤ s.
Pour queA soit un corps, il faut et il suffit que f soit irréductible.

6. — Ensembles à groupes d’opérateurs induits

Soient G un groupe, H un sous-groupe, M un ensemble sur lequel H opère (à
gauche). Désignant, pour deux ensemblesE,F sur lesquelsH opère, parHomH(E,F )

l’ensemble des applications deE dansF compatibles avec l’action deH , et munissantG
de la structure d’ensemble à groupe d’opérateursH , grâce aux translations à gauche par
les éléments deH , on définit l’ensemble HomH(G,M). Utilisant le fait que la transla-
tion à droite par un élément g ∈ G commute aux opérations de H sur G, on met sur
HomH(G,M) une structure naturelle d’ensemble à groupe d’opérateurs G, en posant
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donc
(g.φ)(x) = φ(xg), g, x ∈ G,φ ∈ HomH(G,M);

on appelle parfois HomH(G,M) l’ensemble à opérateurs déduit de l’ensemble M à
groupe d’opérateurs H par extension contravariante du groupe d’opérateurs H à G.
Pour tout ensemble P à groupe d’opérateurs G, on a une bijection canonique, fonc-
torielle en tous les arguments :

(∗) HomG(P,HomH(G,M)) −→ HomH(P,M),

où dans le deuxième membre, on considère P comme muni du groupe d’opérateursH ,
par restriction des scalaires : ainsi, le foncteur extension du groupe d’opérateurs apparaît
comme l’adjoint à droite du foncteur restriction du groupe d’opérateurs— particularité
que Bourbaki sera le seul à lui reprocher. LorsqueM est un groupe (resp. un groupe
abélien, resp. un anneau, resp. un n’importe quoi), on voit aussitôt qu’il en est de même
deHomH(E,M), quel que soit l’ensembleE à groupe d’opérateursH , et cette structure
est stable par les automorphismes induits par lesH-automorphismesdeE ; enparticulier,
G opère par automorphismes sur HomH(G,M).

Partons maintenant d’un ensemble P à groupe d’opérateurs G, et soit M un en-
semble quotient de P . Soit H le sous-groupe de G formé des g ∈ G qui laissent ce
quotient invariant (i.e. qui laissent invariante la relation d’équivalence correspondante).
L’application canoniqueP −→M est donc unH-homomorphisme, et l’isomorphisme
(*) lui associe un homomorphisme

(∗∗) P −→ HomH(G,M).

Lorsque ce dernier est un isomorphisme, on dira que l’ensembleP à groupe d’opérateurs
G est induit par son quotientM . Lorsque P est un groupe (resp. anneau) à groupe
d’opérateurs, et queM est un groupe (resp. anneau) quotientM = P/R, alorsH est
aussi le sous-groupe deG des éléments qui laissent invariantsR, et l’homomorphisme ou
isomorphisme précédent respecte les structures de groupe (resp. anneau).

Supposons qu’on ait un ensemble (Mi)i∈I de quotients de P , et que
l’homomorphisme canonique P −→

∏
Mi soit un isomorphisme. Supposons

de plus que l’ensemble de quotients envisagé soit stable parG, de sorte queG opère sur
I . Choisissons un i0 ∈ I , alors le stabilisateur H deM = Mi0 est par définition le

124



stabilisateurH de i0 dansG. L’application (**) ci-dessus s’identifie alors à la projection
canonique du produit

∏
Mi sur le produit partiel

∏
i∈Gi0

Mi. Par suite, pour que
P soit induit par son quotient M = Mi0 , il suffit que G opère transitivement sur
I , et cette condition est d’ailleurs également nécessaire comme on voit facilement (en
traitant séparément les cas oùM aurait 0, ou 1, éléments). Dans le cas général, il y a lieu
d’introduire l’ensemble J des orbites Ij de G dans I , et de regarder la décomposition
de P en produit partiel P '

∏
j∈J Pj , où pour tout j ∈ J , on pose Pj =

∏
i∈Ij Mi.

Alors G opère sur P via ses opérations sur les facteurs Pj ; et chacun des ensembles
(resp. groupes…) Pj à groupe d’opérateurs G est justiciable du cas favorable, i.e. se
représente comme induit par n’importe lequel de ses quotientsMi(i ∈ Ij). En résumé,
pour un groupe donné G et un ensemble (resp. groupe…) P donné comme produit
d’un ensemble de quotients (Mi)i∈I , on peut expliciter complètement les manières de
faire opérerG sur P , laissant stable l’ensemble I envisagé, en termes des opérations des
sous-groupesH deG sur des facteursMi.

Prenons par exemple le cas où P est un anneau A satisfaisant aux conditions 1.19,
donc qui s’écrit comme produit fini de quotients indécomposables A =

∏
iAi.

L’ensemble de ces quotients est manifestement stable par tout automorphisme de A,
donc les réflexions précédentes sont applicables. En particulier, si un groupe G opère
sur A de façon à opérer transitivement sur Ai, on reconstitue l’anneau A à groupe
d’opérateursG à partir de l’anneauAi0 à groupe d’opérateursH (stabilisateur de i0 dans
G) comme l’anneau induit HomH(G,Ai0).
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