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PROJET DE REEDITION D’ALGEBRE, CHAPITRE V, CORPS
COMMUTATIFS

Plan
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6. Isomorphismes et automorphismes de corps. Extensions quasi-galoisiennes.
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8. Théorie de Galois.
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10. Racines de I'unité, corps finis, extensions kummériennes.
11. Algebres et extensions radicielles.

12. Algebres séparables. Produit tensoriels d’extensions.
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COMMENTAIRES SUR LE PLAN

Le changement essentiel de la présente rédaction par rapport au texte publié est 'accent
mis sur les a/gebres, partout ot il n’y avait pas lieu de se limiter a des extensions seulement,
et sur le procédé de changement du corps de base, qui rend ce point de vue nécessaire,
puisque une extension ne reste plus une extension apres changement du corps de base.

La définition des algebres séparables est donnée dans cet esprit au §7, ol on traite
surtout des phénomenes spéciaux au cas des algebres séparables enticres (comprenant
les extensions algébriques séparables), qui sont mis en relation avec les notions d’algebre
diagonalisable, et d’algebre étale (= qui devient diagonalisable aprés changement de base).
Le §7 contient également la suite des corps parfaits et des extensions radicielles, et les
notions de cléture parfaite et de cloture séparable, bien utiles et qui ne figuraient pas
dans Bourbaki.

Dans la théorie de Galois proprement dite, au §8, n° 1 a 3, on a pratiquement suivi le
texte publié, en augmentant simplement de quelques détails (notamment sur le cas quasi-
galoisien). Comme innovation, on introduit la notion d’algebre a groupes d’opérateurs
galoisienne, pour pouvoir définir 'objet H' (k, G), qui est un groupe commutatif si G
Iest, qu’on utilisera pour donner une formulation plus satisfaisante de la théorie de Kum-
mer au §10. On a étoffé un peu le n° des groupes de Galois topologiques (qui passe dans
le texte du §) par des suites sur les groupes profinis, et on a introduit la notion de groupe
fondamental d’un corps (= groupe de Galois topologique d’une cloture séparable), dont
Pimportance n’est apparue que dans les derni¢res années, ce qui explique son absence
dans le texte publié.

Les normes et traces sont disjointes du § de Galois et forment un paragraphe a part



(§9) ; il a paru antibourbachique, en effet, de définir des notions aussi générales en com-
mengant par le cas étriqué des extensions séparables finies, sous prétexte que dans ce
cas le norme et la trace s’expriment en termes des isomorphismes de I'extension dans
une cloture algébrique. Pratiquement, ce changement de plan consiste a4 remonter au
Chap. V le par. 12, n° 1 et 2, du Chap. VIIL Une autre possibilité serait de remonter la
suite des normes et traces au Chap. III ou IV (leur place semble en effet plutdt dans un
Chapitre consacré a des algebres générales, plutét que dans un Chapitre sur les algebres
semi-simples). Si cette solution était adoptée, le §9 de la présente rédaction disparaitrait,
et serait remplacé par un nouveau n° au §7, indiquant le calcul de la norme et de la trace
d’une algebre étale au moyen des homomorphismes dans une cléture algébrique du corps

de base, et le critere d’étalité par la forme trace.

Le paragraphe des corps finis, racines de I'unité, extensions cycliques, reste inchanggé,
sauf que la théorie de Kummer est réécrite dans 'esprit du H', et le théoréme 90 énoncé
dans le cas général, pas seulement cyclique. De plus, les théoremes de I’élément primitif
et de la base normale sont reportés a ce paragraphe. L’ordre des paragraphes a été pris de
telle fagon que les §7, 8, 9, 10 forment un “bloc galoisien” qui soit indépendant des §11,
12, 13 concernant des algebres et extensions pas nécessairement entieres séparables (voir
le Leitfaden).

Le par. 11 est nouveau, et consiste 3 magnifier le fait que les extensions radicielles
d’un corps k sont telles qui donnent des anneaux locaux (a idéal maximal un nilidéal)
par toute extension du corps de base. Il peut étre dégonflé a volonté, 4 I'exception de ce

dernier résultat.

Le par. 12 contientle critere de Mac-Lane et ses variantes, et les propriétés essentielles
des produits tensoriels de corps, traités tres imparfaitement par Bourbaki. Le critere de
Mac-Lane s’énonce ici en disant qu’une algebre commutative A sur un corps k est sé-

. . -1 ’ .
parable si et seulement si A ®j, kP est réduite.

Enfin, le par. 13, en plus du critere différentiel de séparabilité d’une extension et
du théoreme sur les bases de transcendance séparantes, est étoffé par I'introduction des
modules d’imperfection d’une algebre et par I’égalité de Cartier sur les extensions de type

fini, ainsi que par la suite des p-bases.

Le plan adopté, consistant a faire passer le bloc galoisien avant I’étude générale de la

séparabilité et les questions différentielles, a pour conséquence que les résultats sur les



extensions séparables, et en particulier les criteres de séparabilité, sont répartis dans trois
paragraphes : par. 8 (cas des algebres entieres, i.e. des extensions algébriques), par. 12
(critere de Mac-Lane et variantes), par. 13 (critere différentiel, bases de transcendance
séparantes). Cela était également le cas dans le texte publié, et ne me semble offrir aucun

inconvénient sérieux.



COMMENTAIRES DE DETAIL

Le texte publié sera changé entiérement a partir du paragraphe 7. Pour les par. 126,
nous signalons plus bas les modifications de détail qui semblent nécessaires. Nous avons
groupé dans un appendice quelques résultats épars de théorie des anneaux, dont la place
naturelle pour la plupart semblerait aux Chapitres I et IV, mais dont certains pourraient
étre insérés peut-étre au cours du Chap. V. Bourbaki décidera. On référera aux énoncés

de I’Appendice par des sigles tels que App 3.27.
Par 1.

N° 1. La notion de caractéristique introduite au Chap. I, a laquelle on réfere haut de
p- 71, est canularesque et sera vidée dans la prochaine édition. Il faut donc rédiger sans
utiliser cette terminologie. Dégager le raisonnement “deux cas peuvent se présenter” en

un.

Lemme. — Soit n un entier > 0. Alors Z/n’Z est integre sssonan = 0 oun et un

nombre premier ; dans ce deuxiéme cas (et seulement dans celui-la) Z/nZ est un corps.

Enoncer le théoréme 1 sans terminologie de caractéristique, en disant que les corps
premiers sont ceux isomorphes aux corps Q ou F,, (p premier), ces corps-types étant
d’ailleurs deux a deux non isomorphes. Les remarques 2 et 3 tombent ou sont reportées

apres la notion de caractéristique, que je propose d’introduire dans le méme n° ainsi :

Proposition A. — Soit A un anneau (pozs nécessatrement commumﬂf mats ﬂxsocz'dtz'f

et unitaire comme il se doit), et soit p un nombre premier. Les conditions suivantes sont



équivalentes :
(1) p-1a =04 (01t 14 et 04 sont resp. les élément unité et nul de A).
(17) pA =0, i.e pourtoutx € A,onapr = 0.

(ii7) A peut étre muni dune structure de ¥,-algébre compatible avec sa structure

d’annean.

De plus, si ces conditions sont vérifiées, la structure d’algébre mentionnée dans (iii) est

uniquement déterminée.

Proposition B. — Soit A un annean (pas néc comm,). Les conditions suivantes sont

équivalentes :
(1) Pour tout entier n > 0, lapplication x ~ nx dans A est bijective.

(i17) A peut étre muni d’une structure de Q-algébre compatible avec sa structure

d’annean.

De plus, si ces conditions sont vérifiées, la structure d’algebre envisagée dans (iii) est

uniquement déterminée.

Définition C. — Soit p un entier > 0, qui est soit nul, soit un nombre premier. On dit
qu’un annean A est de caractéristique p, si A satisfait aux conditions de la prop. A dans

le cas ot p est premier, resp. a celles de prop. B si p est nul.

Proposition D. — Un anneau A non nul a au plus une caractéristique, qui est ausst
Ventier n= > 0 caractérisée par la relation J = nZ, on J est l'idéal annulatenr de
Uhomomorphisme n ~ n.14 deZ dans A. L'annean nul admet comme caractéristique

tout entier premier ou nul.

Proposition E. — Un corps a une caractéristique bien déterminée, égale a celle de tout
sous-corps et de tout sur-corps. Pour tout entier p comme dans déf. C, il existe des corps (en
fait des corps premiers) de caractéristique p. Pour deux corps premiers de caracteristique p,

il existe un isomorphisme unique de l'un sur lantre.



Remarque F. — Soit p comme dans déf. C, et soit P le corps premier type de car-
actéristique p (donc égal A F, sip # 0,2 Qsip = 0). Alors un anneau A est de carac-
téristique p si et seulement si il peut étre muni d’une structure de P-algebre compatible
avec sa structure d’anneau, et alors cette structure de P-algebre est unique. La Mémere-
catégorie des anneaux de caracteristique p est donc isomorphe, si on ose ainsi s’exprimer, a
la Pépere-catégorie des P-algebres associatives et unitaires.

Remarque F’. — Si A est un anneau non nul de caractéristique p, il contient un sous-
corps isomorphe au corps premier P. Sip = 0, donc P = Q, alors P est infini, donc
un anneau non nul de caractéristique nulle est infini. En particulier, tout corps fini est
de caractéristique p > 0.

N° 2. Prendre des anneaux au lieu de corps.
Par 2.

Dans'introduction dela notion d’extension, il faut dire qu’une extension d’un corps
K estune K-algebre L qui se trouve étre un corps. En effet, il est contraire aux bons yogas
de structure, et aussi a 'usage que Bourbaki lui-méme fait de ce terme, de se borner au
cas ou L est vraiment un sur-corps de K, i.e. K une partie de L. Définir aussi ’extension
triviale : X' — L est un isomorphisme (pas nécessairement une identité !).

N° 1. Il n’y a aucune raison de ne donner un sens au symbole [E : K| que lorsqu’il
est fini, au contraire il est parfois commode d’utiliser la notation en tous les cas. Ligne 12,
la référence est canularesque, ligne suivante référence changée en Chap. II, par. 1, prop.
25. Dans le théoreme 1, supprimer le passage “si 'un des nombres...est défini, il en est de
méme de 'autre”, tout est toujours défini. On aura remarqué que pour des extensions
de corps, le degré est un entier > 1 ou +00, donc les deux membres de I’égalité du th. 1
sont toujours bien définis.

Dans la proposition 1, on peut supprimer les hypothéses de commutativité. Dans
le corollaire de la proposition 1, supprimer I’assertion sur I’égalité des éléments unités,
qui est canularesque. De méme, le passage “nous ne considérons que des représentations
non nulles, c’est-a-dire telles que f(1) = 17...Il doit étre entendu une bonne fois (au
besoin dans le chapeau du chapitre) que les algebres sont associatives et unitaires, les ho-
momorphismes d’anneaux et d’algebres respectent les unités. Ily a aussi deux références
au Chap. II qui doivent étre changées.

N° 2. Page 77, dans la note de bas de page, “les axiomes...ne font intervenir que des



parties finies...” ne veut rien dire. On aurait intérét a vider cette brillante note. Page 78,
Seme ligne avant la fin du n®, lire “réunion filtrante”.

N° 3. Référence au Chap. III changée. Page 79, ligne 1, supprimer “(par exemple)”.
Dans le texte précédant prop. 5, prendre pour A et B des parties (pas nécessairement des

sous-anneaux) engendrant les extensions E resp. F'.
Par 3.

Il faudrait rédiger systématiquement en termes d’algebres entieres (ou algébriques, si
Bourbaki préfere — le rédacteur ne préfere pas), au lieu d’extensions algébriques. Ainsi,
des la définition 1, prendre pour F une algebre (qu’on noterait plutét A), pas méme
commutative, et introduire la notion “transcendant” et “entier = algébrique”, (la formu-
lation de cette deuxieme notion devrait étre changée si on commence par ne pas sup-
poser non plus que k soit un corps). Kif-kif pour définition 2, pour le théoré¢me 1 (re-
formulé en conséquence, en supprimant le mot “corps” ot il le faut) etc. Dans la re-
marque 2 la fin du n° 1, 4¢me ligne avant la fin, lire “et si f est # 0 et qu’on désigne
par 1 son degré”. Dans prop. 1, ajouter qu’alors foutes les racines de f sont simples, et

f(X)=(X —2)...(X —x,),oules z; sont les conjugués de z.
Par 4.

Remplacer le titre par : “Isomorphismes et automorphismes de corps. Extensions
quasi-galoisiennes”.

N° 1. Remplacer exemple 2 en petits caracteres, par une proposition en forme, sous
la forme suivante : Un corps algébriquement clos est infini.

N° 2. Dansle th. 1 et son corollaire, lire “extension algébriquement close” au lieu de
“cloture algébrique”. La démonstration du corollaire est amoureuse, et ce corollaire ne
doit sa raison d’étre qu’a la définition amoureuse adoptée par Bourbaki pour la notion

d’extension.
Par S.

Page 95, fin de la remarque, référence au Chap. II changée ; ligne - 13, au lieu de
“algébriquement indépendants” il faudrait lire “mutuellement algébriquement indépen-
dants”, ou ne rien dire du tout.

Page 98, supprimer la note en petits caracteres apres le th. 2.



N° 3. Enoncer le th. 3 et la déf. 4 sans hypothese de finitude. Dans définition
4, supprimer la terminologie “dimension algébrique” et la notation dim alx E, que per-
sonne n’a jamais employée, et la notation dimg F, terriblement ambigué ; introduire
deg. tri L. Vider le noble laius en petits caracteres apres déf. 4. Dans le théoreme 4,

supprimer “si 'un des nombres...est défini, il en est de méme de I'autre”.
Par 6.

N° 1. Page 109, lignes 7 et 8, la notion d’extension universelle, introduite fort Iégere-
ment et par la bande, est bonne pour le vidage. Dans le cor. a prop. 1, lire “degré de
transcendance” ; le corollaire semble d’ailleurs bon & vider. Vider la remarque en petits
caractéres a la fin dun® 1.

N° 2. Dans déf. 1, prendre pour £ et F' des parties quelconques. Dans la note en
petits caracteres au bas de p. 110, vider la premiére phrase, et remplacer le mot “classes
d’intransitivité” par “orbites”. Dire que la méme remarque s’applique pour la relation de
conjugaison entre parties. Page 111, petits caracteres, aprés “intrinseque” ajouter “a K
et £”.

N° 3. Le titre devient : Extensions quasi-galoisiennes. Remplacer ensemble des

propositions 5 et 6, qui font un bonnet blanc-blanc bonnet bien désagréable, par la

Proposition 5. — Sozent K un corps, E une extension algébrique de K, ) une extension

algébriquement close de E. Les conditions suivantes sont équivalentes :
(1) Tout K-homomorphisme de E dans ) applique E dans lui-méme.

(1) Tout K-automorphisme de ) applique E dans lui-méme (donc, en vertu de prop. 4,
induit un K-automorphisme de E).

(111) Pour tout élément x de E, tous les conjugués de x sur K (dans ) appartiennent a
E.

(7v) Tout polyndme irréductible de K[X|, ayant une racine dans E, se décompose en

Jfacteurs linéaires (distincts on non) dans E[X].

Comme tout K-homomorphisme de £ dans 2 ne prolonge un K-automorphisme de

Q2 (prop. 2, cor. 2), Péquivalence de (i) et (ii) est claire. D’autre part, les polyndmes
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irréductibles f de K[X], ayant une racine dans £, sont exactement (2 des constantes
multiplicatives pres) les polyndmes minimaux des éléments  de I, les racines de f étant
justement les conjugués de x (prop. 3). Comme f se décompose dans E[X | en produit
de facteurs linéaires si et seulement si toutes les racines dans €2 se trouvent dans £, cela
montre équivalence de (iii) et (iv). Comme par définition les conjugués sur K (dans €2)
d’un élément x de £ sont précisément les transformés par les K -automorphismes de €2,

I’équivalence de (ii) et (iii) est également claire, ce qui prouve la proposition.

Définition 2. — Soient K un corps, E une extension de K. On dit que E est une exten-
sion quasi-galoisienne de K si elle est algébrigue, et si elle satisfait a la condition (iv) de la

prop. S (équivalente, une fois choisie une cloture algébrique () de E, anx autres conditions

(i) a (iii) de la prop. 5).

On peut encore dire qu’une sous-extension £ d’une extension algébriquement close
(2de K est quasi-galoisienne si et seulement si elle est algébrique, et identique 4 toutes les
extensions conjuguées (définition 1) de F dans §2. Par exemple, toute cléture algébrique
de K est une extension quasi-galoisienne de K.

Jene pense pas qu’il y ait lieu de garder la prop. 7, qui constitue une simple redite. Il'y
alieu par contre d’étoffer le corollaire des extensions quasi-galoisiennes. On peut garder
les prop. 8 et 9 actuelles (elles deviennent 7 et 8), et les corollaires de cette derniere, tels
quels, sauf qu’il faut remplacer partout “normale” par “quasi-galoisienne”. Il faut enfin

ajouter deux propositions.

Proposition 9. — Soient K un corps, ) une extension de K, E et K' deux sous-

extensions de ). Si E est quasi-galoisienne sur K, alors E' = K (E') est quasi-galoisienne
sur K.

En effet, en vertu du théoreme de Steinitz on peut supposer € algébriquement close,
et comme tout K -automorphisme de {2 est un K-automorphisme, il applique £’ dans
lui-méme, donc ' = K'(F) dans lui-méme, ce qui prouve que E’ est une extension

quasi-galoisienne de K’, compte tenu qu’elle est algébrique en vertu de par. 3, n° 2,

prop. 7.

Proposition 10. — Soient K un corps, E une extension de K, K " une sous-extension

de E. Si E est quasi-galoisienne sur K, elle est quasi-galoisienne sur K'.

11



En effet, soit 2 une extension algébriquement close de E, alors tout K'-
automorphisme de €2 est un K -automorphisme, donc applique £ dans lui-méme, ce
qui prouve que E est une extension quasi-galoisienne de K’ (compte tenu qu’elle est
algébrique sur K, I'étant sur K).

Pour d’autres commentaires au n° 3, cf. §6,n° 1, le N. B.

Je suggere de faire du th. I’Artin un n® 4au §6:

N° 4. Le théoréme d’Artin.

Le résultat du présent numéro, de nature surtout technique, nous servira au §8 a
prouver un résultat clef de la théorie de Galois, et au par. 12 a démontrer le critere de
séparabilité de Mac Lane. Il ne sera pas utilisé directement 4 d’autres endroits du présent

livre.

Théoreme 1 (Artin). — Sodent K un corps, G un ensemble d’automorphismes de K,
stable par multiplication et contenant l'automorphisme identique, k le corps des invariants
de G,V unepartiede K, nun entier > 0. Munissons K comme structure d espace vectoriel
surk, et l'ensemble des applications de V dans K de sa structure naturelle d’espace vectoriel
sur K. Pour que lensemble des restrictions a'V des w € G soit de rang n sur K, il faut et

i suffit que la partie V de K soit de rang n sur k.

N. B. — La démonstration est celle de la présente édition, ou il faut simplement
changer la référence a I'ancienne édition du Chap. II. On pourrait aussi, tant qu’a faire,
mettre tout de suite la version non commutative, qui ne cotite pas plus cher. Le rédacteur
pense qu’il ne faut pas expliciter ici la prop. 1 page 117 de la présente édition du Chap.
V, trop triviale pour mériter un tel honneur. Je pense qu’il faut garder les quatre lignes de
lafus préliminaires ci-dessus, qui seront bien utiles au lecteur pour I'encourager a oublier
le théoreme d’Artin. Vérifier il y a quelque part la justification du terme “corps des
invariants”, je ne I’ai trouvée nulle part.

Enfin, je suggere de faire un

N°5. Théoremes d’indépendance linéaire et algébrique d’isomorphismes de corps.

Le premier de ces deux théorémes me semble sans doute qu’un rappel d’un énoncé
plus général figurant au Chap. IV (cf. App. 5,6), il sera utilisé au §8 pour la théorie de
Galois. Le théoreme d’indépendance algébrique ne servira plus dans le livre d’Algebre, et
le rédacteur avait qu’il n’en est encore jamais servi lui-méme. Aussi il propose de mettre

ce théoreme en petits caracteres.
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§ 7. — ALGEBRES ENTIERES SEPARABLES SUR UN CORPS.
CLOTURE SEPARABLE ET CLOTURE PARFAITE D’UN
CORPS

1. — Algebres diagonalisables

Définition 1. — Soient k un anneaun (le chapean du Chapitre impliquera qu’il est com-
mutatif), A une k-algeébre. On dit que A est diagonalisable s’il existe un entiern > 0 tel
que A soit isomorphe a l'algébre produit k.

Par exemple, I'algebre 0, ainsi que & muni de sa structure canonique de k-algebre,
sont diagonalisables ; tout produit fini d’algebres diagonalisables est diagonalisable. Une

algebre diagonalisable sur £ est de degré fini sur k.

Proposition 1. — Sozent k un corps, A une k-algébre de degré fini n, P(A) l'ensemble
des k-homomorphismes de A dans k, Q) une extension algébriquement close de k. Les con-

ditions suivantes sont équivalentes :
(1) Aest diagonalisable (déf. 1).
(iz) A est réduit, et pour tout k-homomorphismew : A — Q, ona u(A) C k.
(17 bis) A est réduit et ses extensions résiduelles (App. n° 5) sont triviales.
(i1i) card(P(A)) = n.

(iv) A a exactementn idéanx maximaunx.



Ce n’est autre que App. 5.7.

Proposition 2. — Soit k un corps.

(1) Soit A une k-algébre. Si A est diagonalisable, il en est de méme de toute sous-algebre
et de toute algébre quotient de A.

(iz) Soit (A;)icr une famille finie de k-algébres. Pour que le produit A de cette famille
soit diagonalisable, il faut et il suffit que chacune des A; le soit.

(i17) Soient A et B deux k-algébres. Si A et B sont diagonalisables, il en est de méme
de A ®y, B. Inversement, si A Qi B est diagonalisable et A # 0, alors B est
diagonalisable.

(tv) Soit A une k-algébre, engendrée par une famille de sous-algébres A; (i € I). Pour
que A soit diagonalisable, il faut et il suffir qu elle soit commutative et de degré fini,

et que chacune des A; soit diagonalisable.

(v) Soit A une k-algébre diagonalisable, alors pour toute extension k' de k, A ®y, k' est

une k'-algébre diagonalisable.

Démonstration.

(i) Si A est diagonalisable, il résulte aussitdt du critere (i bis) de prop. 1 que toute
sous-algebre I’est également. D’ailleurs la connaissance des idéaux d’un produit de
corps (App. 1.14) montre aussitdt que toute algebre quotient de k™ estisomorphe
a une algebre k™ (m < n), ce qui prouve que si A est diagonalisable, il en est de

méme de toute algebre quotient.

(ii) Siles A; sont diagonalisables, il en est de méme de leur produit, comme il ré-
sulte trivialement de la définition. Inversement, si le produit A est diagonalisable,
comme les A; sont isomorphes a des algebres quotients de A, elles sont diagonal-

isables en vertu de (i).

(iii) Si A et B sont diagonalisables, il en est de méme de A ®;, B, comme il résulte
trivialement de la définition et du calcul du produit tensoriel d’algebres produits.

Inversement, si A ®j, B est diagonalisable et A # 0, alors B est diagonalisable
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en vertu de (i), car isomorphe 4 une sous-algebre 14 ®;, B de A ®; B, qui est

diagonalisable.

(iv) La nécessité de la condition résulte aussitot de (i). Inversement, supposons les A;
diagonalisables et A commutative et de degré fini sur k, alors il existe une sous-
famille finie de (A, );e; qui engendre déja A, donc A est isomorphe a une algebre
quotient du produit tensoriel d’une sous-famille finie de (A4, ), donc diagonalisable
en vertu de (iii), en utilisant une récurrence sur le cardinal de 'ensemble d’indices

de cette sous-famille.

(v) Est triviale sur la définition.

Proposition 3. — Soient k un corps, f € k[X| un polynéme en une indéterminée X, a
cocfficients dans k, non identiguement nul, A = k[ X/ fk[X]. Alors Aest diagonalisable
si et seulement si f se décompose en factenrs linéaives tous distincts, i.e. peut seécrive sous la

forme

f:C H (X_ai)7

1<i<n

ounestledegréde f, cetlesa; (1 < i < n)sontdansk, et les a; sont tous distincts.

Cela résulte en effet aussitét de App. 5.8, compte tenu que pour un polynéme uni-
taire irréductible f;, le corps k[X |/ fk[X] est une extension triviale de & si et seulement
si f; estdelaforme X — a;, et que deux polyndmes de la forme X — a, X — b sont égaux

si et seulement si @ et b le sont.

Corollaire. — Soient A une algébre sur un corps k, (x;);c; une famille génératrice
d’éléments de A. Pour que A soit diagonalisable, il faut et il suffit que A soit de degré fini,
et que pour tout t € 1, le polyndme minimal f; de x; sur k (§3, n°1, déf. 3) se décompose

en facteurs linéaires tous distincts.

En effet, A est engendré par ses sous-algebres A; = k[z;], isomorphes aux

k[X]/ fik[X], et on conclut par Proposition 2 (iv) et Proposition 3.

Corollaire. — Soient k un corps, V' un espace vectoriel de dimension finie sur k. Soit
w un endomorphisme de V'; on dit gue w est diagonal par rapport & une base (e5)ses de

V, si sa matrice par rapport a cette base est diagonale, i.e. si pour tout s € S, il existe un
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As € ktel que u(es) = Ases ; on dit que w est diagonalisable si on peut trouver une base
deV par rapport a laquelle u soit diagonal. Une famille (u;);cr d'endomorphismes de V
est dite diagonalisable si on peut tronver une base (e5)scs de V. telle que pour tout i € 1,

w; soit diagonal par rapport a cette base.

On notera que si A est une partie de Endy,(V), considérant A comme définissant la
famille des endomorphismes © € A de V, la définition précédente donne un sens a la
locution : “A est diagonalisable”. Nous allons voir que lorsque A est une sous-algebre de
Endy,(V), cette derniére définition est compatible avec la définition 1, i.e. A est diago-
nalisable, en tant que partie de Endy,(V'), si et seulement si elle est diagonalisable en tant

que k-algebre :

Proposition 4. — Sozent k un corps, V un espace vectoriel de dimension finie sur k,
(wi)ier une famille d'endomorphismes de V', A la sous-algébre de Endy, (V') quelle engen-

dre. Les conditions suivantes sont équivalentes :
(1) La k-algebre A est diagonalisable (cf: déf. 1).
(i) La partie A de Endy, (V') est diagonalisable (cf: déf. 2).
(1ii) La famille (u;);c est diagonalisable (cf. déf. 2).
(iv) Les u; sont diagonalisables et commutent deux a deuc.

(v) Les u; commutent deux a deux, et pour tout v € I le polynéme minimal (§3, n°1,

def. 3) de u; se décompose en facteurs linéaires tous distincts.

Comme A est commutative si et seulement si les u; commutent deux A deux,
I’équivalence de (i) et (v) est un cas particulier du corollaire 4 la prop. 3. D’autre part
(i) implique (ii) en vertu de App. 1.24, et (ii) implique que A est isomorphe 4 une sous-
algebre d’une algebre diagonalisable (I’algebre des matrices diagonales, qu’on aurait pu
donner en exemple des apres la définition 1), donc est diagonalisable en vertu de prop.
2 (i). Donc (i), (ii), (v) sont équivalentes. Appliquant ceci au cas d’une famille réduite a
un seul élément, on conclut que si u est un endomorphisme de V/, alors u est diagonal-
isable si et seulement si son polyndme minimal se décompose en facteurs linéaires tous

distincts, ce qui prouve que (iv) équivalait a (v). L’équivalence de (ii) et (iii) est claire, car
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pour une base donnée de V/, les matrices des ; sont toutes diagonales si et seulement si

il en est ainsi des matrices de tous les u € A. Cela acheve la démonstration de prop. 4.

Corollaire. — Soit A une algébre sur un corps k. Pour que A soit diagonalisable, il
faut et il suffit que pour toute représentation linéaive de A par des endomorphismes d’un
espace vectoriel V' de dimension finie sur k, la famille correspondante (indexée par A)
d’endomorphismes de V' soit diagonalisable, et il faut et suffit gu'on puisse trouver une

représentation linéaire fidéle de A ayant cette propriéte.

Si A est diagonalisable, donc isomorphe a une algebre k", alors la connaissance ex-
plicite de ses représentations linéaires (App. 1.24) montre la nécessité de la condition
énoncée dans le corollaire. Inversement, si A admet une représentation linéaire fidele
satisfaisant a la condition de diagonalisabilité du corollaire, alors A est une algebre di-
agonalisable en vertu de prop. 4, (ii) = (i). Notant que toute algebre de degré fini sur
k admet une représentation linéaire fidele (par exemple la représentation réguliere), on
achéve la démonstration du corollaire.

Remarque. — On fera attention que sous les conditions préliminaires de la prop. 4,
il est possible que tout élément de A soit un endomorphisme diagonalisable de V/, sans

que A soit commutatif, donc sans que A soit diagonalisable, cf. exerc....

2. — Algebres étales sur un corps

Proposition 5. — Soient k un corps, A une algebre commautative de degré fini sur k, Q une

extension algébriquement close de k. Alors les deux conditions sont équivalentes :
(1) A ®y, Q est une algebre diagonalisable sur Q) (cf. def. 1).
(i1) A ®y ) est un annean réduit.

De plus, ces conditions sont indépendantes de Uextension algébriquement close S envisagée
de k. Si K est une sous-extension de §Q telle gue pour tout k-homomorphismeu : A — €,
on ait u(A) C K, alors les conditions (i) et (iz) sont équivalentes anx conditions qu'on en

déduit en 'y remplagant ) par K.

Notons que la condition envisagée sur K s’exprime en termes de la /{-algebre B =

A ®j, K par le fait que pour tout {-homomorphisme v : B — (},onav(B) =
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K, ce qui en vertu de App. 5.4 et de §4, n°2, th. 1 équivaut au fait que les extensions
résiduelles de la K-algebre B sont triviales. D’apres la prop. 1, on sait bien qu’alors B est
diagonalisable si et seulement i elle est réduite ; en vertu de prop. 2 (v) la Q2-algebre B® k¢
(1, isomorphe 3 A® (), sera alors diagonalisable, et 'inverse est vrai, car B estisomorphe
a un sous-anneau de B ®x (1, donc réduit si ce dernier I'est. Il reste a prouver que les
conditions (i) et (ii) ne dépendent pas de 'extension algébriquement close {2 choisie de
k. Or si €2’ est une autre telle extension, on peut trouver une extension algébriquement
close 2" de k et des k-isomorphismes de €2, {2’ sur des sous-extensions de 2" (§4, prop.
2 et th. 2); il résulte alors de ce qui précede que les conditions envisagées pour €2, €2/
sontéquivalentes séparément aux conditions analogues pour €2, donc équivalentes entre

elles. Cela acheve la démonstration de la proposition.

Définition 3.— Soient k un corps, A une algébre sur k. On dit que A est étale (ou étale
sur k, si une confusion est a craindre sur le corps de base), si A est commutative, de degré

fini, et si elle satisfait aux conditions équivalentes de la prop. 5.

Cette définition a un sens grice au théoréme de Steinitz, (§4, th. 2), assurant que k

admet bien une extension algébriquement close.

Proposition 6.— Soit A une algébre commutative de degré fini sur le corps k. Pour
que A soit étale, il faut et il suffit que pour toute extension K de k, A ®y, K soit un anneau

réduit. En particulier, si A est étale, A est un annean réduit.

Cest trivialement suffisant sur la forme (ii) des conditions de prop. 5. Inversement,
si A est étale, prouvons que A ®;, K est réduit pour toute extension K de k. En effet,
prenons pour ) une extension algébriquement close de K, alors par hypothese A @4, 2

est réduit, donc aussi A ®j, K qui est isomorphe 4 un sous-anneau de celui-ci.

Proposition 7. — Avec les notations de la prop. S, les conditions (i) et (i1) équivalent

aussi a la condition suivante :

(171) Le cardinal de l'ensemble des k-homomorphismes de A dans C) est égal an degré n
de A.

Quitte & remplacer A par la Q-algebre A ®, €2, on peut supposer que 2 = £, et on

conclut par la prop. 1.
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Proposition 8. — Sozt k un corps.

(1) Soit A une k-algebre. St A est érale, il en est de méme de toute sous-algebre et de toute
algebre quotient de A.

(iz) Soit (A;)ier une famille finie de k-algébres. Pour que le produit A de cette famille
soit étale, il faut et il suffit que chacun des A; le soit.

(i11) Soient A et B des k-algebres. St A et B sont étales, il en est de A @y, B. Inversement,
si A ®y Bestétaleersi A # 0, B est étale.

(1v) Soit A une k-algébre, engendrée par une famille (A;) de sous-algébres. Pour que A
soit étale, il fant et il suffit qu elle soit commutative, de degré fini, et que les A; soient

étales.

(v) Soit A une k-algébre, k' une extensiondek, A' = A®y k' la K'-algébre déduite par
changement du corps de base. Pour que A soit étale, il fant et il suffit que A’ le sort.

Démonstration. — Tout d’abord, (v) est immédiat sur le critere de la prop. 5, comme
on voit en choisissant une extension algébriquement close {2 de K, et en la considérant
également comme une extension de k. Ceci noté, pour prouver les énoncés (i) a (iv), on
choisit une extension algébriquement close {2 de k, et on est ramené par changement de
base a prouver les mémes assertions sur un corps algébriquement clos. Or dans ce cas, une
algebre sur £ est étale si et seulement si elle est diagonalisable, et nos assertions résultent

des assertions analogues de la prop. 2.

Corollaire 1. — Soit A une algebre sur le corps k. Pour que A soit étale, il faut et il
sufffit que A soit isomorphe au produit d’une famille finie d’extensions étales de k.

La suffisance résulte de (ii), et la nécessité également, compte tenu du fait qu’une
algebre commutative de degré fini sur & est isomorphe au produit d’une famille finie
d’algebres locales de degré fini sur k (App. 3.5), et que si ces dernieres sont étales, elles

sont réduites (prop. 6) donc des corps (App. 3.7).

Corollaire 2. — Soient K une extension du corps k, A une K-algébre. Pour que A soit
étale en tant que k-algebre, il sufffit que lextension K soit étale et que la K -algébre A soit

étale, et ces conditions sont également nécessaires lorsque A # 0.
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Supposons K étale sur k et A étale sur K, et prouvons que A est étale sur k. Soit
k' une cloture algébrique de k, alors par hypothese K’ = K ®j, k' est isomorphe au
produit d’une famille finie de k’-algebres K isomorphes a k. L’algebre A" = A @, ¥’
sur K’ se décompose alors en produit d’algebres A sur les facteurs K (App. 1.25), ces
dernieres n’étant autres d’ailleurs que A} = A ® K/, donc diagonalisables puisque A
est étale sur K et que K est une extension algébriquement close de K. Il en résulte que
A', en tant que k'-algebre, est un produit fini d’algebres diagonalisables A} sur k', donc
diagonalisable, ce qui prouve que A est une k-algebre étale. Inversement, supposons A
étale sur k et A # 0. Comme alors K est isomorphe 4 une sous-algebre de A, il résulte
de prop. 8 (i) que K est étale sur k. Reste 2 prouver que A est étale sur /(. Orsi k' est
une extension algébriquement close de k, alors A ®x K’ est isomorphe a une algebre
quotientde A ®x K, et cette derniere est diagonalisable puisque A est étale sur k, donc
il en est de méme de A ® ¢ K’ en vertu de prop. 2 (i), ce qui prouve que A est étale sur
K.

Remarque. — Le corollaire 1 montre que la classification des algebres étales sur un
corps donné k se ramene completement a celle des exzensions étales de k. Nous mon-
trerons au §8 comment on peut effectuer cette classification en termes d’ensembles a

groupes d’opérateurs, grice a la théorie de Galois.

Proposition 9. — Soient k un corps, f € k[X| un polynéme & une indéterminée X a
cocfficients dans K, non identiquement nul. Pour que l'algébre A = k[ X|/(fk[X]) sur
k soit étale, il faut et il suffit que les racines de f (dans une extension algébriguement close
donnee()de k) soient simples (véf.), ou encore que f se décompose en un produit de polynémes
irréductibles distincts dont chacun n’a que des racines simples (ref.) dans Q. Lorsque f est
irréductible, ces conditions signifient aussi que l'on ait f ¢ k| XP| (o p désigne l'exposant

caractéristique de k).

Le premier critere, qui s’énonce aussi en disant que f, considéré comme polynéme
a coefficients dans €2, se décompose en facteurs linéaires distincts, est une conséquence
immédiate de la déf. 3 et de la prop. 3. Le deuxieme critere résulte du premier, compte
tenu de la décomposition de A en facteurs locaux correspondants a la décomposition
de f en produit de puissances de polynémes irréductibles (App. 5.8) du fait que A est
réduit si et seulement si les exposants dans la décomposition de f en facteurs sont tous

égaux a 1 (App. 5.9), et que A étale implique A réduit (proposition 6). Enfin, lorsque f
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estirréductible, ces conditions équivalent a f ¢ k[X?] en vertu de §3, prop. 1.

Définition 4. — Soit k un corps. On dit qu’un polyndme f, a coefficients dans k, est
ctale, ou encore séparable, sl est non nul et sl satisfait aux conditions équivalentes de la
proposition 9. Un élément x d’une algébre A sur k est dit étale sur k, si la sous-algébre kx|

de A engendrée par x est étale sur k.

On notera que si K est une extension de &, alors pour que f soit étale en tant que
polyndme 2 coefficients dans £, il faut et il suffit qu’il le soit en tant que polynéme a
coefficients dans K, comme il résulte par exemple de prop. 8 (v). C’est pourquoi il est
inutile dans la premicre partie de la définition 4 de préciser “étale sur k”, comme il est

parfois prudent de le faire pour la notion d’algebre ou d’¢lément étale.

Corollaire 1. — Soient k un corps, A une k-algébre, (x;);cr une famille génératrice
d’eléments de A. Pour que A soit érale, il fant et il suffit qu'elle soit de degré fini, commu-
tative (i.e. que les x; commutent deux a deux), et que pour tout i € 1, x; soit étale sur k.
Pour gu'un élément x de A soit étale sur k, il fant et il suffit qu’il soit algébrique sur k (§3,
n°l, déf. 1) et que son polyndme minimal (§3, n°1, déf. 3) soit séparable.

La premicre assertion n’est autre que prop. 8 (iv), la deuxieme n’est autre que la
prop. 9, compte tenu de'isomorphisme k[z] >~ k[X]/ fk[X], ou f désignele polyndme

minimal de x sur k (§3, n°1, th. 1).

Corollaire 2. — Soient k un corps, K une extension de k, x un élément de K qui est

racine simple d’un polyndme f € k|X|, alors x est étale sur k.

En effet, le polynéme minimal g de x divise f (§3, th. 1) donc « est racine simple de
g, donc les racines de g dans une cl6ture algébrique de K (qui sont conjuguées de ) sont

toutes simples, donc en vertu du corollaire 1, x est séparable sur k.

Corollaire 3. — Sozent k un corps, () une extension de k, K une sous-extension de (0.

Tout élément x de C) qui est étale sur k est étale sur K.

En effet, si f estle polyndme minimal de x sur £, les racines de f (dans une extension
algébriquement close de §2) sont simples, et on a f(x) = 0, d’ott la conclusion en vertu

du corollaire 2.
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Proposition 10. — Soient k un corps, V un espace vectoriel de dimension finie sur k,
(wi)ier une famille d'endomorphismes de V', A la sous-algébre de Endy, (V') qu 'elle engen-
dre, Q) une extension algébriquement close de k. Alors les conditions suivantes sont équiva-

lentes :

(1) La famille des endomorphismes u; Qi Q (i € I)de V Qy, Q est diagonalisable (def.
2).

(1) L'algébre A est étale.

Comme par définition, A est étale si et seulement si A ®, {2 est diagonalisable sur €2, et
que cette dernitre algebre n’est autre que la sous-algebre de Endq (V' ®y, §2) engendrée
parles u; ®y, €2, la prop. 10 est un cas particulier de I'équivalence des conditions (i) et (iii)
dansla prop. 4. — Lorsque les conditions équivalentes de prop. 10 sont vérifiées, on dira
parfois que la famille (w;);e; est absolument diagonalisable ; on fera attention qu’une
famille diagonalisable est manifestement absolument diagonalisable, mais que I'inverse
n’est pas vrai en général, cf. exerc. . .. Avec la terminologie qu’on vient d’introduire, on

prouve comme pour le corollaire a prop. 4 :

Corollaire. — Soient k un corps, A une algebre sur k. Pour que A soit étale, il faut
et il suffit que pour toute représentation linéaire de A par des endomorphismes d’un es-
pace vectoriel de dimension finie V sur k, la famille correspondante (indexée par A)
d’endomorphismes de V' soit absolument diagonalisable, et il faut et il suffit qu’on puisse

tronver une représentation linéaire fidéle de A ayant cette propriéte.

3. — Algebres séparables sur un corps &

Définition 5. — Soit A une algébre commutative sur un corps k. On dit que A est séparable

(ou séparable sur k, si une confusion surle corps de base est a craindre) si pour toute extension
Kdek, AR®y K est réduit.

Proposition 11. — Soit A une algébre sur un corps k. Pour que A soit séparable, il
faut et il suffit que pour toute algébre réduite B sur k, le produit tensoriel A @y, B soit un

anneau réduit.
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La condition est manifestement suffisante, prouvons qu’elle est nécessaire, i.e. sup-
posons A séparable, et prouvons que si I3 est une algebre réduite sur £, A®j, B est réduit.
En vertu de App. 2.12, dire que B est réduit signifie que I'intersection des idéaux pre-
miers p de B est réduite 4 zéro, ou encore, introduisant les corps des fractions K des
anneaux intégres A/p, que B se plonge dans un produit de corps, soit P = [[._; ;.
Par suite, A ®, B se plonge dans A®;, P = A®y, (Hiel Ki), donc en vertu du Lemme
1 ci-dessous, il se plonge dans I'algebre produit [ [, ;(A ®; K;). L’hypothese sur A im-
plique que les A ®;, K; sont réduits, donc il en est de méme de leur produit (App. 2.11,

remords), donc aussi de A ®;, B. Il reste a prouver le

Lemme 1. — Soient k un anneau, A un k-module, (K;);c1 une famille de k-modules,
considérons ’homomorphisme canonique (vef. ?)
icl il

Si A est libre, cet homomorphisme est injectif.

(N. B.— Devrait figurer au Chap. II, par exemple en respect avec ’hypothese “I fini”
au lieu de “A libre”). En effet, choisissant une base (a;) jc; dans A, la source de la fleche
envisagée s’identifiea ([ ], ; K;) (J), donc se plonge dans ([ ;. ; K;) = [T,c; K/, tan-
dis que le but s’identifie 2 [, (K;)") ; or le terme général de ce produit se plonge dans
K/, donc le produit lui-méme se plonge dans [ [,_; K7 (réf.). Avec ces identifications,
on vérifie immédiatement que ’homomorphisme envisagé dans le lemme est induit par

Papplication identique de [ [, ; K7/, ce qui prouve qu’il est injectif.
Proposition 12. — Sozt k un corps.

(1) Soit A une k-algébre commutative. Si A est séparable, il en est de méme de toute
sous-algeébre. Inversement, si A est réunion filtrante croissante de sous-algébres qui

sont séparables, alors A est séparable.

(iz) Soit (A;)icr une famille de k-algébres commutatives. Pour que l'algébre produitr A
soit séparable, il faut et il suffit que chacune des A; le soit.

(i11) Soient A et B deux k-algébres commutatives. Si A et B sont séparables, il en est de
méme de A Ry, B. Inversement, si A # 0 et st A ®y, B est séparable, alors B est

séparable.
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(1v) Soient Aune k-algébre, k' une extension de k. Pour gue A soit une k-algébre sépara-

ble, il faut et il suffit que A' = A ®y, k' soit une k'-algébre séparable.

(v) Soient E une extension de k, et A une F-algébre. Si E est séparable sur k, et A

séparable sur E, alors A est séparable sur k.

Démonstration. —

(i)

(i)

(iv)

(iif)

La premiere assertion résulte de ce que pour toute sous-algebre B de A, et toute
extension K de k, B ®;, K s’identifie 4 une sous-algebre de A ®;, K, donc est
réduite si cette derniére est. De méme, si A est réunion filtrante croissante de
sous-algebres B;, alors A @, K est réunion filtrante croissante de sous-algebres
isomorphes aux B; ®;, K (réf.), donc est réduite si ces dernieres le sont, ce qui

prouve la deuxieme assertion de (i).

Utilisant le lemme 1 ci-dessus, on voit que pour toute extension K de k, A ®;, K
sidentifie & une sous-algebre de [ [, (A; @) K); donc si les A; sont séparables,
donc les A; ®;, K réduits, il en est de méme de leur produit (App. 2.11), donc
A®y, K est également réduit, ce qui prouve que A est séparable. Inversement, si A
est séparable, les A; qui sont isomorphes a des sous-algebres de A, sont séparables

en vertu de (i).

Pour toute extension K’ de k', A’ ®;s K’ est k'-isomorphe 2 A ®;, K’ (réf.), donc
est réduite si A est séparable, ce qui implique qu’alors A’ est séparable. Pour prou-
ver inverse, il suffit de noter que toute extension K de k se plonge dans une ex-
tension convenable K’ de k' (§4, n° 2, prop. 2),or A @ K ~ A’ @y K’ étant
réduit, il en est de méme de A ®;, K, isomorphe 4 un sous-anneau de celui-ci, ce

qui prouve que A est séparable.

Supposons A et B séparables, prouvons que A ®j, B lest, i.e. que pour toute
extension K de k, (A ®y B) @y, K estréduit. Or cette algebre est canoniquement
isomorphe a Ax @k By, o0 Ax = A®y K, Bk = B ®;, K (réf.), or en vertu
de (iv) déja prouvé, Ak est une K -algebre séparable, d’autre part B est une K-

algebre réduite, donc A @k Bi est réduite en vertu de prop. 11.
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(v) Soit K uneextension de k, alors on a un isomorphisme A®, K ~ AQp(E®,K)
(réf.), or d’apres ’hypothese sur F, F ®;, K est réduit, ce qui implique, grice a
prop. 11 qu’il en est de méme de son produit tensoriel avec I’algebre séparable A,

donc A ®j, K est réduit. Cela prouve que A est séparable sur k.

Corollaire. — Soit A une algébre commutative sur un corps k. Pour que A soit séparable,
il faut et il suffit que toute sous-algebre de type fini le soit. Lorsque A est une extension de
k, pour que A soit séparable, il faut et il suffit que toute sous-extension de type fini le soit.

Cela résulte aussitot de prop. 12 (ii).

Proposition 13. — Sozent k un corps, A une k-algebre integre, E son corps des fractions.

Pour que A soit séparable sur k, il faut et il suffit que E le soit.

Si E est séparable, il en est de méme de A en vertu de prop. 12 (i). Inversement,
supposons que A soit séparable, et prouvons que F I'est. Compte tenu de la définition
de F, c’est un cas particulier du résultat plus général suivant (N. B. qu’on pourrait élever

au rang de proposition, prop. 13 devenant corollaire) :

Corollaire 1. — Soit A une algébre séparable sur un corps k, alors pour toute par-
tie multiplicativement stable S de A, lanneau des fractions AS™" de A par rapport & S
(Chap. 1...) est séparable sur k.

Cela résulte aussitdt de la définition, et des deux lemmes suivants :

Lemme 2. — Sozent k un annean commutatif, A une k-algebre commutative, S une
partie multiplicativement stable de A, k' une k-algebre commutative, A' = A @y, k', S’
Uimage de S par I'homomorphisme canoniqgue A — A'. Alors on a un isomorphisme
canonique de k'-algeébres :

(AS™H @, K ~ A'S™L.

C’est un remords au Chap. I, dont je laisse la démonstration au rédacteur définitif.

Lemme 3. — Soient A un anneawn, S une partie multiplicativement stable de A. St A
est réduit, il en est de méme de l'annean des fractions AS -1
En effet, tout élément x de AS™! s’écrivant sous la forme ¢(y)p(s) ™! avecy €
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Ase Soup: A— AS lest ’homomorphisme canonique, si  est nilpotent on
doit avoir ¢(y™)¢(s™) ™! = 0 pour un entier n > 0 convenable, donc il existeunt € S
tel que ty™ = 0 eta fortiori t"y" = (ty)" = 0, ce qui implique ¢(y) = 0 et a fortiori
xz=0.

Corollaire 2. — Sodent k un corps, (X;)icr une famille d’indéterminées. Alors
Lanneaun des polyndmes k[(X,;)ier), et le corps des fractions rationnelles k((X;)icr), sont

séparables sur k. En particulier toute extension transcendante pure de k est séparable.

Envertu de prop. 13, il suffit de prouver que I’algébre de polyndomes A = k[(X;);e/]
est séparable, or pour toute extension K de k, A ®;, K est canoniquement isomorphe
a l'algebre de polynomes K [(X;)ics] (réf.), qui est integre (réf.), et a fortiori réduite, ce
qui prouve que A est séparable sur k.

Remarque. — En plus des résultats du présent numéro, et du numéro suivant (ces
derniers relatifs aux algebres séparables entieres), le lecteur trouvera des compléments im-
portants sur les algebres séparables aux §11 (critere de Mac-Lane et ses conséquences) et
12 (criteres différentiels de séparabilité, et étude des bases de transcendance séparables).

N.B. — Laprop. 13 est bien éculée, la forme satisfaisante est celle-ci: A est séparable
sur k si et seulement si A est réduite, et pour tout idéal premier minimal p de A, le corps
des fractions de A/p est une extension séparable de k.

Si on le veut ici, on doit pouvoir I’avoir sans mal ; si on juge que le lieu serait plutot

en Géométrie Algébrique, on peut du moins inclure ce résultat en exercice.

4. — Algebres entieres séparables sur un corps

N. B. — Conformément a ce qui a été dit dans les “commentaires”, le sorite des algebres

enti¢res est supposé fait au §3, n°1.

Proposition 14. — Soient k un corps, A une algébre commutative entiéresurk, (z;)ier
une famille génératrice d’éléments de A, ) une extension algebriqguement close de k. Les

conditions suivantes sont équivalentes :
(1) Aest séparable.

(i bis) Lanneau A ®y () est réduit.
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(11) Toute sous-algébre B de A qui est de degré fini sur k est étale.

(1iz) Pour tout i € I, x; est étale sur k, i.e. la sous-algébre k|x;| de A engendrée par x;
est étale, ou encore (cor. de la prop. 9) les racines du polyndme minimal de x; sur k

sont simples.

Notons que dire que A est enti¢re sur k revient a dire que la famille filtrante croissante
des sous-algebres B; de A de degré fini sur k a pour réunion A, qui s’identifie par suite
a leur limite inductive (§3, n°1!). Donc pour toute extension K de k, A ®;, K estla
réunion de la famille filtrante croissante de sous-algebres B; ®j, K, d’ot on conclut que
A ®j, K est réduit si et seulement si il en est de méme des B; ®;, K. Cela montre que
pour que A satisfasse la condition (i) (resp. (i bis)), il faut et il suffit que chacun des
B la satisfasse. En vertu de la déf. 3 (resp. dela prop. 6), cela signifie que les B; sont
étales, ce qui prouve que chacune des conditions (i), (i bis) est équivalente a (ii). Dans ce
raisonnement, il est d’ailleurs loisible de remplacer la famille des B; par n’importe quelle
famille cofinale de sous-algebres de degré fini de A. Désignant, pour toute partie finie
J de I, par A la sous-algebre de A engendrée par les ; pour i € J, et appliquant la
remarque précédente, on voit que les conditions envisagées équivalent aussi a dire que
les A sont des algebres étales sur k. En vertu de prop. 8 (iv) appliqué & chacun des A,

cela signifie aussi que les x; sont étales sur k, i.e. équivaut a (iii).

Corollaire 1. — Soient k un corps, A une algeébre commutative entiére sur k. Si A est

séparable, il en est de méme de toute sous-algébre et de toute algébre quotient de A.

Le cas d’une sous-algebre n’a été mis que pour mémoire, étant déja donné dans prop.
12 (i). Soit donc B une algebre quotient de A. On sait déja que, puisque A est entiere,
il en est de méme de B (§3, n°1). Supposons de plus A séparable, donc (prop. 14) réu-
nion filtrante croissante de sous-algebres étales A;. Alors’algebre B est réunion filtrante
croissante des sous-algebres B; images des A;, qui sont étales en vertu de prop. 8 (i), donc

B est séparable en vertu de prop. 14 (ou de prop. 12 (i), au choix).

Corollaire 2. — Soient k un corps, A une k-algébre commutative entiére, (A;)icr une
famille de sous-algébres de A engendrant A. Pour que A soit séparable, il faut et il suffit

que les A; le soient.
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Appliquant prop. 14 en prenant comme famille génératrice de A celle définie par la

réunion des A;, la conclusion résulte aussitdt du critére (iii) de la prop. 14.

Corollaire 3. — Soient k un corps, E une extension de k, K et L deux sous-extensions
de E. Si K est algébrigue séparable sur k, alors L(K) est algébrique séparable sur L ; la

reciproque est vraie si KK et L sont linéairement disjointes sur k.

Comme K est algébrique sur k, il s’ensuit que L(K) est la sous-L-algébre de E en-
gendrée par K, (§3, n°2, prop. 7). Donc L(K) est isomorphe a une algebre quotient de
la L-algébre K ®), L, donc est séparable sur L en vertu de prop. 12 (iv) et du corollaire

précédent. La réciproque résulte de méme de prop. 12 (iv).

Corollaire 4. — Soient k un corps, E une extension de k, (K;);cr une famille de sous-
extensions algébriques de E, K extension engendrée par cette famille. Pour que K soit

séparable sur k, il faut et il suffit que les K; le soient.

C’est un cas particulier du corollaire 2, compte tenu que K est aussi la k-algebre

engendrée par les K;, puisque ces dernieres sont algébriques sur .

Corollaire 5. — Soit A une algébre entiere sur un corps k. Alors il existe une plus
grande sous-algébre A de A séparable sur k, et Ay est formée des éléments de A qui sont

séparables sur k.
Nous appellerons A la fermeture séparable de k dans A.

Corollaire 6. — Sozent A une algebre enticre séparable sur un corps k, Q) une extension
algébriquement close de k, P(A) l'ensemble des homomorphismes de k-algébres de A dans
Q. Alorson a

[A: k] =card P(A),

en particulier, pour gue A soit de degré fini sur k, il faut et suffit que P(A) soit fini.

Compte tenu de la prop. 7, on est ramené a prouver la derniere assertion, et plus
précisément le fait suivant : si A est de degré infini sur k, alors P(A) est infini. Or A
est réunion filtrante croissante de ses sous-algebres de degré fini A;, qui sont étales sur £,

donc on a une bijection canonique

P(4) — lim P(4,),
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ol dans le systéme projectif formé des P(A;), les applications de transition sont sur-
jectives, et les P(A;) sont finis. Il s’ensuit que les applications canoniques P(A) —
P(A;) sont surjectives (Top. Gén.!!), donc que card P(A) > card P(A4;), or comme A
est de degré infini sur &, on aura évidemment card P(A4;) — 400, d’oti card P(A) =
0o. (N. B. - Le rédacteur s’apergoit qu’il vient d’utiliser la notation card dans un sens peu
orthodoxe savoir en lui attribuant une valeur unique 0o pour un ensemble infini, et qu’il

utilise Top. Gén. qui vient apres. Next Redactor !).

Proposition 15. — Sozent k un corps, A une algebre entiére surk, et K une sous-algebre
de A qui soit un corps. Pour que A soit séparable surk, il faut et il suffit que K soit séparable
sur k, et que A soit séparable sur K.

Si A est séparable sur £, il en est de méme de la sous-algebre K (prop. 12, (i), d’autre
part, pour tout élément = de A, x est étale sur k (prop. 14 appliqué a la k-algebre A),
ie. la sous-k-algebre k[x] de A engendrée par x est étale ; or la sous-K -algebre K [z]
de A engendrée par x est isomorphe 3 une K -algébre quotient de k[z] ®;, K, donc est
étale (prop. 8, (v) et (i)), ce qui en vertu de prop. 14 prouve que A est étale sur K. La
réciproque est un cas particulier de prop. 12 (v).

Remarque. — Nous prouverons au §11 que prop. 15 reste vraie lorsqu’on sup-
pose seulement que K (mais pas nécessairement A) est entiére sur k. Sans cette derniere
restriction, nous verrons cependant que la réciproque devient inexacte (réf. exerc. au

§11...).

5. — Extensions radicielles

Proposition 16. — Soient k un corps, d’exposant caractéristique p, K une extension de k,
x un élément de K, f € k[X| son polyndme minimal, e le plus grand des entiers h tels
que f € K[XP"].

(i) Ona f(X) = g(XP"), 01t g € k[ X] est un polynéme uniquement déterminé, et i
g & k[XP), g est irréductible, et identique au polyndme minimal dey = x*".

N Tl e ) . hoo
(1) Lélémenty = xP est étale sur k, et e est le plus petit des entiers h tels que xP° soit

étale sur k.
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(iii) Lapplication z ~ 27" induit une bijection de l'ensemble des conjugués de x (dans

une extension algebriguement close fixee 2 de k) sur lensemble des conjugués de y.

Démonstration. — Les assertions de (i) sont triviales, le fait que g est le polynéme min-
imal de y provenant (en vertu du § 3, th. 1) du fait qu’il est unitaire (comme on vérifie
aussitot), irréductible, et satisfait g(y) = 0. Plus généralement, pour tout entier i < e,
onaura f(X) = gn(X?"), ot g € k[X], g, est irréductible, et de facon précise est le
polynéme minimal de 2P". En vertu de prop. 9 et son corollaire 1, il s’ensuit que z"
est étale sur k si et seulement si g, ¢ k[X?], ce qui équivaut manifestement 2 h = e.
Cela prouve (ii). Enfin (iii) résulte aussitot de la définition et du fait que Iapplication
2 ~~ 2P est une application bijective de {2 dans elle-méme, commutant a tous les k-

automorphismes de €.

Définition 6. — Soit K une extension d’un corps k d’exposant caractéristique p. Un
élément v de K est dit radiciel sur k sl existe un entier n > 0 tel que 2P € k. On dit

que K est une extension radicielle de k, si tous ses éléments sont radiciels sur k.

Corollaire 1. — Sous les conditions de la définition 6, si K est algébriquement clos, un
élément x de K est radiciel si et seulement si il est invariant par tous les k-automorphismes
de K. En tous cas, si x est un élément de K radiciel sur k, et si e est le plus petit des entiers

h tels que =" € k, alors le polynéme minimal de @ sur k est X — a, 0i 0 = 2" € k.

En effet, dire que x est invariant par tous les k-automorphismes de I'extension al-
gébriquement close K de £, revient a dire que « est algébrique sur & et que le nombre de
ses conjugués est égal a 1, ou encore que son polyndme minimal n’a qu’une seule racine
(§6, n° 2, prop. 3 et cor. a prop. 3). Avec les notations de la prop. 16, cela signifie
donc que y n’a qu’un seul conjugué (prop. 16, (iii)), i.e. que son polynéme minimal g
n’a qu’une seule racine. Comme ces racines sont simples, cela signifie que g est de de-
gré 1, i.e. dela forme X — a, ce qui prouve que f est de la forme X P° _ a, donc on
ax?” = a € k. Inversement, s’il existe un entier n > 0 tel que 2P" € k, alors pour
tout k-automorphisme u de K, ona u(a?") = 2" i.e. u(z)?" = x¥", ce qui implique
u(xr) = x (§1, prop. 1, cor. 1) donc x est invariant par tout k-automorphisme de K.
Cela prouve la premiére assertion du corollaire. Pour prouver la seconde, on peut sup-

poser que K est algébriquement clos (quitte 4 le remplacer par une cléture algébrique),
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. \ . 7 . . 7 \ n
et il reste & prouver, avec les notations de la démonstration qui précede, que 27 € k

implique n > e. Or cela résulte évidemment de la partie (ii) de la prop. 16.

Corollaire 2. — Une extension K d’un corps k qui est radicielle et séparable est triv-

iale.

En effet, il revient au méme de dire que tout élément d’une extension K de £, qui est
radiciel et étale sur £, est dans k. Or avec les notations du corollaire 1, cela signifie que
e = 0, et résulte en effet du fait que dans une cloture algébrique €2 de £, le polynéme
X?° —a doitavoir des racines simples, et qu’il sécrit d’autre part sous la forme (X —b)*",

ot h € Qest tel que oP° = a.

Corollaire 3. — Soient k un corps, K une extension de k, K' une sous-extension de K
telle que K soit radicielle sur K', enfin L une sous-extension de K algébrique et séparable

surk. Alors L est contenue dans K.

En effet, il est immédiat par définition que K étant radiciel sur K”, L est radiciel sur
L N K', d’autre part il est séparable sur L N K’ (prop. 15) donc identique 3 L N K’ en

vertu du cor. 2, ce qui prouve que L C K.

Corollaire 4. — Sozent k un corps, K une extension algebrique de k, K la fermeture
séparable de k dans K (prop. 14, cor. 5). Alors K est une extension radicielle de K, de
Sfagon plus précise, K est la plus petite sous-extension de K sur laquelle K soit radicielle, et

la seule sous-extension séparable de K sur laquelle K soit radicielle.

Si p est 'exposant caractéristique de £, dire que K est radiciel sur K signifie en effet
que pour tout x € K, existe un entier n > 0 tel que 2P e Ky ie. tel que 2P" soit étale
sur k, ce qui résulte de prop. 16 (ii). Soit L une sous-extension de K telle que K soit
radiciel sur L, alors en vertu du cor. 3ona Ky C L. Side plus L est séparable sur £, i.c.

L C Ky, onauradonc L = K. Cela prouve le corollaire.

Corollaire 5. — Soit K une extension radicielle de degré fini d’un corps k, d’exposant

caractéristique p. Alors le degré de K sur k est une puissance de p.

Par récurrence sur le degré de K sur k et utilisant la formule de transitivité des degrés,
on est ramené au cas ot1 /{ est une extension monogene k(z) de k, donc son degré est égal

au degré du polyndme minimal de x sur k. Comme ce polynéme est de la forme X?* —a
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en vertu du cor. 1, donc de degré p°, cela prouve le corollaire.

Remarque 11. — Au §11, nous généraliserons la notion d’extension radicielle en la
notion d’algebre radicielle sur un anneau, et donnerons diverses autres caractérisations
des extensions radicielles d’un corps, ainsi qu’une généralisation du cor. 4 ci-dessus au

cas ou K est une algebre enti¢re sur un corps k.

6. — Corps parfaits. Cloture parfaite d’un corps

Proposition 17. — Soit k un corps. Les conditions suivantes sont équivalentes :
() Toute extension de degré fini de k est etale.
(i) Toute algebre réduite de degré fini sur k est érale.
(iii) Toute extension algébrique de k est séparable.
(iv) Toute algebre enticre réduite sur k est séparable.

(v) La cloture algebrigue ) de k est séparable sur k.

En effet, on a d’abord trivialement les implications

(iv) (iii) (v)

o

(i) == (@),

d’autre part (i) implique (ii) puisque toute algebre réduite de degré fini sur & est isomor-
phe 4 un produit fini d’extensions de degré fini de £, de sorte qu’on peut appliquer la
prop. 8 (ii). D’autre part (ii) implique (iv) par le critere de la prop. 14 (ii). Enfin (v) =

(iii) puisque toute extension algébrique de k est isomorphe a une sous-extension de 2.

Définition 7. — On dit qu’un corps k est parfait sil satisfait aux conditions équiva-

lentes de la prop. 17.

Remarque. — Nous verrons au §12 que si k est un corps parfait, alors toute algebre
réduite sur k (pas nécessairement entiere), en particulier toute extension de k (pas néces-

sairement algébrique), est séparable.
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Signalons tout de suite qu’un corps algébriquement clos est évidemment parfait.

Pour d’autres exemples, cf. cor. 1 du th. 1 ci-dessous.

Proposition 18. — Toute extension algébrique K d’un corps parfait k est un corps
parfait.

En effet, si K est une extension algébrique de K, c’est une extension algébrique de
k, donc séparable sur k puisque £ est parfait, donc séparable sur K en vertu de prop. 15.
On notera que la proposition précédente ne s’étend pas au cas ou /' n’est pas une

extension algébrique de k, cf. cor. 2 au th. 1 ci-dessous.

Théoreme 1. — Sodent k un corps, p son exposant caractéristique, () une extension

algebriquement close de k. Les conditions suivantes sont équivalentes :
() Le corps k est parfait.
(iz) Onak = kP.

(i47) Le corps k est identique an corps des invariants du groupe des k-automorphismes de

Q.

La condition (ii) signifie que pour z € (), la relation 27 € k implique x € k ; par
suite, pour tout entier . > 0, la relation " ek implique z € k, comme on voit par
récurrence sur n. Ainsi (ii) signifie que tout élément de €2 radiciel sur k est dans k, ce qui
équivaut a (iii) en vertu de prop. 16, cor. 1.

D’ailleurs comme la sous-extension kP~ de ) formée des éléments radiciels sur &
est radicielle sur k, elle ne peut étre séparable sur k que si elle est triviale (prop. 16, cor.
2), ce qui prouve que (i) = (iii). Reste a prouver que (ii) = (i).

Or supposons k = kP, et soit £/ une extension de degré fini de k, prouvons que F
est étale, ou encore que pour tout © € F, le polyndme minimal f de z sur & admet
comme racine simple (prop. 9, cor. 2). Envertu de §3, n° 1, prop. 1, il suffit pour cela de
vérifier que f n’appartient pas 2 k[ X?], i.e. ne s’écrit pas sous la forme >, @; X?. Or un
polyndme g de cette forme ne peut étre irréductible, car par 'hypothese k = kP, chaque
a; s’écrit sous la forme bf, avec b; € k,donconad_ a; X = (3 b; X")P. Comme f est

irréductible, cela achéve la démonstration.
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Corollaire 1. — Tout corps de caractéristique nulle est parfait. Tout corps fini est par-

fait. Tout corps premier est parfait.

La premiere assertion résulte trivialement du critére (ii) ci-dessus. Pour la deuxieme,
on note que P'application x > 2P de k dans lui-méme est injective ; elle est bijective
si k est fini, ce qui prouve I'assertion. La derniere assertion en résulte, compte tenu du

théoreme 1 et du fait qu’un corps premier est fini ou de caractéristique nulle (§1, n° 1).

Corollaire 2. — Soit k un corps. Les conditions suivantes sont équivalentes :
() Le corps k est de caractéristique nulle.
(i) Toute extension de k est parfaite.

(11z) L'extension transcendante pure k(X)) de k est parfaite.

Ona (i) = (ii) en vertu du théoreme 1, puisque toute extension de k est de caractéristique
nulle si k est. L’implication (ii) = (iii) est triviale, il reste a prouver que (iii) = (i), donc
que si k est de caractéristique p > 0, alors k(X)) n’est pas parfait. En effet notez que X
n’est pas dans k(X ), i.e. ne peut s’écrire sous la forme (f/g)P avec f, g € k[X], g # 0,

car autrement on aurait une identité
FX)P = Xg(X)",

ce qui est impossible, car le premier (resp. le deuxi¢me) membre ne fait intervenir que
des puissances de X d’exposant congrua 0 (resp. 2 1) (mod p), donc I’égalité ne peut
avoir lieu que si les deux membres sont nuls, ce qui contredit ’hypothese g # 0.
Remarque. — On verraau §13, que les conditions du corollaire 2 équivalent encore a
Pexistence d’une extension de type fini non algébrique quisoit parfaite, en d’autres termes
: si k est de caractéristique non nulle, alors toute extension de type fini non algébrique est
non parfaite. Cela montre que sur un corps de base k de caractéristique non nulle (méme
si k est parfait, ou méme algébriquement clos), les “corps de fonctions” qui s’introduisent

le plus fréquemment en Géométrie Algébrique sont non parfaits.

Corollaire 3. — Soient K un corps, (K;)icr une famille de sous-corps, k son intersec-

tion. Si les K; sont parfaits, il en est de méme de k.
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En effet, €2 étant une cloture algébrique de K, il suffit de noter que si les K; sont
. . -1 . A . A .
stables par 'application  + 2P = de () dans lui-méme, il en est de méme de leur inter-

section.

Définition 8. — Soit k un corps. Une extension k' de k est appelée une cloture parfaite

de k si c’est une extension parfaite de k, et si tout sous-extension parfait de k' est identique

ak'.

Proposition 19. — Sozt k un corps. 1l existe une cloture parfaite de k, et étant donné
deux clotures parfaites de k, il existe un unique k-isomorphisme de l'une sur lautre. Si Q)
est une extension parfaite de k, alors la sous-extension kP~ formée des x € Q) radiciels sur

k est une cloture parfaite de k.

Si K est une sous-extension parfaite de {2, on a K = KP?, donc par récurrence sur
n,ona K = K" pour n > 0, d’ou évidemment kP~ C K. D’autre part, on a
évidemment k7 = k' (posant k¥’ = kP "), donc k' est une extension parfaite de k.
C’est donc la plus petite sous-extension parfaite de €2, donc c’est une cléture parfaite de
k. Soient maintenant k', k" deux clotures parfaites de k, prouvons qu’il existe un unique
k-isomorphisme de £’ sur &”. En vertu de §4, n° 2, prop. 2 on peut supposer que &’ et k”
sont des sous-extensions d’une méme extension €2 de k, qu’on peut d’ailleurs supposer
algébriquement close, donc parfaite. Mais alors &’ et k” sont identiques d’apres ce qui
précede. Il reste a prouver seulement que tout k-automorphisme u de &’ est I'identité.
Or pour tout z € K, il existe un entier n > 0 tel que a = 2P" € k, donc on aura
u(z)P" = a,ie u(z)?" = 2", ce qui implique u(z) = z, donc u est bien l'identité.
Cela acheve la démonstration.

Compte tenu de la prop. 19, il n’y a pas d’inconvénient a identifier canoniquement
les diverses clotures parfaites du corps k, et nous désignerons généralement cette cloture
parfaite par le symbole kP~ oup désigne exposant caractéristique de k. Bien entendu,
sip = 1lie. kestde caractéristique nulle,ona k¥ = = k. Notons aussi la caractérisation

suivante des clotures parfaites :

Proposition 20. — Sozent k un corps, K une extension de k. Pour que K soit une
cloture parfaite de k, il faut et il suffit qu'elle soit radicielle, et que pour toute extension
radicielle k' de k, il existe un k-homomorphisme de k' dans K.
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Soit en effet €2 une extension algébriquement close de K ; alors la premiére condi-
tion exprime que K est contenue dans la sous-k-extension k¥~ de (2, la seconde que
toute sous-k-extension radicielle de €2, ou encore, la plus grande sous-k-extension radi-
cielle k7~ de €2, est contenue dans K (compte tenu qu’une extension radicielle &’ de
k, étant algébrique sur k, est isomorphe 4 une sous-extension de §2). La conjonction des

deux conditions signifie donc que K = kP " i.e. que K est une cloture parfaite de k.

7. — Cléture séparable d’un corps

Proposition 21. — Soit k un corps. Les conditions suivantes sont équivalentes :
(i) Toute extension étale de k est triviale.
(i) Toute extension algebrique séparable de k est triviale.
(i11) Toute algébre étale sur k est diagonalisable.
(iv) La cloture algébrigue de k est radicielle sur k.

(v) La clture parfaite de k est algébriquement close.

On a évidemment (it) = (i) et (¢4¢) = (i), d’autre part (i) = (i%) puisque
toute extension algébrique séparable de £ est réunion de ses sous-extensions étales, et
(i) = (i4¢) puisque toute algebre étale sur k est isomorphe au produit d’une famille finie
d’extensions étales. L’équivalence des conditions (iv) et (v) résulte aussitdt de la con-
struction de la cloture parfaite k¥~ de k en termes d’une cléture algébrique €2, (prop.
17). D’autre part (i¢) = (iv) en vertu du corollaire 4 & prop. 16, et (iv) = (i) en

vertu du cor. 2 a prop. 16.

Définition 9. — Un corps est dit séparablement clos 5’5l satisfait aux conditions équiv-

alentes de la prop. 21.
Par exemple, un corps algébriquement clos est évidemment séparablement close.

Corollaire. — Sozent k un corps, () une extension séparablement close de k, K une

extension algébrique séparable de k. Alors K est isomorphe a une sous-extension de (.
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En effet, si €' est une cloture algébrique de €2, on sait que £’ est radicielle sur €2, et
que K est isomorphe a une sous-extension K’ de '. En vertu de prop. 16, cor. 3on a

K' ' CQjce qui prouve notre assertion.

Proposition 22. — Soient k un corps, K une extension de k, () une extension sépara-

blement close de k. Les conditions suivantes sont équivalentes :
(1) K est une extension algébrigue séparable et un corps séparablement clos.

(1) K est une extension algébrique séparable, et route extension algébrique séparable k'

de k est isomorphe a une sous-extension de K.

(iii) K est k-isomorphe a la fermeture algébrique séparable ks (prop. 14, cor. 5)de k
dans (.

Les implications (7) = (i7) et (4i1) = (i) résultent aussitdt du corollaire précédent.
Il suffit donc de prouver que deux extensions K, K’ de k satisfaisant 2 (i¢) sont isomor-
phes. Orsoientu : K — K'etu' : K' — K des k-homomorphismes, alors
uu' et w'u sont des k-endomorphismes de K resp. K, donc des automorphismes de ces
extensions (§6, prop. 4), donc u et v’ sont des isomorphismes, ce qui prouve notre as-
sertion. (N. B. — Il y aurait lieu, apres §6, prop. 6, de signaler en corollaire que deux
extensions algébriques dont chacune est isomorphe a une sous-extension de 'autre sont

isomorphes).

Définition 10. — Une extension K de k, satisfaisant aux conditions équivalentes de

la prop. 22, est appelée une cloture séparable de k.
On conclut aussitdt de cette définition :

Définition 10. — Soit k un corps. Il existe une cloture séparable de k, et deux clotures
séparables sont isomorphes. Si§) est une extension séparablement close de k, la sous-extension

ks, fermeture séparable de k dans ), est une cloture séparable de k.

Par abus de langage, on désigne souvent par k une cloture séparable quelconque de
k. On fera attention cependant qu’en général, étant données deux clotures séparables du
corps k, il peut exister plusieurs k-isomorphismes distincts de 'une surI’autre, en d’autres

termes, le groupe des k-automorphismes de kg n’est pas en général réduit a I’élément
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neutre. De fagon précise, comme £ est une extension quasi-galoisienne de £, on conclut
de prop. 16, cor. 1 et cor. 2, que le groupe des k-automorphismes de £, n’est réduit au
groupe unité que si k; est radiciel sur £, donc égal a k, i.e. si et seulement si k est déja

séparablement clos.

Proposition 23. — Soit k un corps. Pour que k soit algébriquement clos, il faut et il
sufffit qu’il soit parfait et séparablement clos.

Il est trivial qu’un corps algébriquement clos est parfait et séparablement clos. In-
versement, si k est séparablement clos (i.e. sa cloture algébrique €2 est radicielle sur k) et
parfait (donc €2 est séparable sur k), il s’ensuit par la prop. 16, cor. 2 que k = {2 donc

que k est algébriquement clos.

Corollaire. — Soit k un corps. Pour que k soit parfait, il faut et il suffit que sa cloture

séparable kg soit algébriguement close.

Si k est parfait, il en est de méme de k, en vertu de prop. 18, donc k; est algébrique-
ment clos en vertu de prop. 23. Réciproquement, si k; est algébriquement clos i.e. la

cloture algébrique de k est une extension algébriquement close de k, £ est parfait.
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§ 8. — EXTENSIONS GALOISIENNES ET THEORIE DE GALOIS

1. — Extensions galoisiennes

Proposition 1. — Soient K un corps, E une extension algébrique de K, G le groupe des

K-automorphismes de E. Les conditions suivantes sont équivalentes :

() Le corps des invariants de G dans E est identique a K.
(i7) E est quasi-galoisienne et séparable.

(i1i) Pour tout v € E, le polyndme minimal de x sur K a toutes ses racines (dans une

cloture algébrique donnée ) de E) simples et contenues dans E.

La condition (ii) équivaut a (iii) en vertu du critere §6, n° 3, prop. 5 (iv) (cf. com-
mentaires a la rédaction), suivant lequel E est quasi-galoisienne si et seulement si les
polynémes minimaux de ses éléments ont toutes leurs racines dans E, et du critere §7,
n° 3, prop. 11 (iii), suivant lequel £ est séparable sur K si et seulementsi ces racines sont
toutes simples. Montrons que (i) implique (iii).

En effet, soitx € Eetsoientz; (1 < i < n) les éléments distincts de 'ensemble des
conjugués de x contenus dans /. Tout K-automorphisme « de £/ permute entre eux
les z;, donc le polyndme g(X) = [ [, .-, (x — x;) € E[X] estinvariant par G, i.e. ses
coefficients sont invariants par G, donc en vertu de ’hypothese (i) appartiennent 3 K.
Comme g(z) = 0, g est un multiple du polyndme minimal f de x sur K (§3, th. 1),
ce qui montre que f a toutes ses racines simples et contenues dans £. Prouvons enfin

que (iii) implique (i). Soit en effet  un élément de £ non dans K ; comme le polynéme



minimal f de z sur K a toutes ses racines simples et contenues dans F, et qu’il est de
degré > 1, il S’ensuit qu’il existe au moins un élément y de £ conjugué de x et distinct de
x. Comme nous savons déja que £ est une extension quasi-galoisienne de K, donc que
tout K-automorphisme de €2 induit un K-automorphisme de F, il s’ensuit qu’il existe
unu € G tel que u(x) = y, ce qui prouve que le corps des invariants de G dans E est

réduit a K, et acheve la démonstration de la proposition.

Corollaire. — Supposons que E soit de degré fini n sur K, et soit G le groupe des K-

automorphismes de E. Alors les conditions précédentes équivalent aussi a la condition :

(iv) On a card(G) = n (ou seulement : card(G) > n).

En effet, en vertu de §7, prop. 7, dire que £ est séparable (i.e. ici étale) sur K re-
vient a dire qu’il y a exactement n K-homomorphismes de F dans €2, et dire que £
est quasi-galoisienne revient a dire que ces K-homomorphismes sont en fait des K-

automorphismes de £, d’ou I’équivalence de (ii) et (iv).

Définition 1. — Soient K un corps, E une extension de K. On dit que E est ga-
loisienne si elle est quasi-galoisienne et séparable, c‘est-a-dire si elle satisfait les conditions
équivalentes de la prop. 1. Le groupe des K-automorphismes de E s appelle alors le groupe
de Galois de F (ou le groupe de Galois de F sur K, si une ambiguité est a craindre sur le

corps de base). Il sera noté Gal(E | K).

Proposition 2. — Soit E une extension d’un corps K, K " une sous-extension de F. Si

E est galoisienne sur K, elle est galoisienne sur K', et Gal(E/K') est un sous-groupe de
Gal(E/K).

La premiere assertion résulte de la définition et des assertions analogues relatives aux
extensions quasi-galoisiennes resp. séparables (§6, n° 3, prop. 10 — cf. “commentaires”
— et§7,n° 3, prop. 14). Le fait que Gal(E/ K') soit alors un sous-groupe de Gal( £/ K)

est trivial sur les définitions.

Corollaire 1. — Sous les conditions de la prop. 2, soit w € Gal(E/K), alors le groupe
de Galois de E sur u(K') est le conjugué par v du groupe de Galois de E sur K :

Gal(E/u(K')) = uGal(E/K")u™".
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C’est évident par transport de structure.

Corollaire 2. — Sous les conditions de la prop. 2, pour que K' soit une extension ga-
loisienne de K, il faut et il suffit que le sous-gronpe Gal(E | K") de Gal(E | K) soit un sous-
groupe distingué de ce dernier. Dans ce cas, I’homomorphisme u ~~ u|K' de Gal(E/K)
dans Gal(K' | K) estsurjectif de noyau Gal(E | K'), donc fournit un isomorphisme canon-
ique

Ga(K'/K) ~ Gal(E/K)/ Gal(E/K").

La premitre assertion résulte aussitdt du corollaire 1. Lorsque K’ est galoisienne,
tout K -automorphisme de E induit bien un K-automorphisme de K, et d’autre part
tout K -automorphisme de K’ peut se prolonger en un K-automorphisme de £ (§6, n°
3), ce qui prouve la deuxieme assertion.

N. B. — Le rédacteur s’apergoit qu’il serait commode de disposer de la terminolo-
gie “groupe de Galois” également dans le cas quasi-galoisien, et qu’il serait commode de
donner également dans ce cas la proposition 2 etles deux corollaires précédents, de nature
purement soritale. Il laisse au rédacteur définitif le petit réajustage a faire au §6, n°3.

On dit qu’une extension F d’un corps K est abélienne si elle est galoisienne et si son

groupe de Galois est abélien. On déduit donc de la proposition 2 de son corollaire 2 :

Corollaire 3. — Soit E une extension d’un corps K, K' une sous-extension de E. St E

est abélienne, il en est de méme de K', et E est abélienne sur K.

Proposition 3. — Soient K un corps, Q une extension de K, (E;);cr nne famille de
sous-extensions de §2. St les E; sont galoisiennes, il en est de méme de leur intersection, et de

Lextension engendrée par les E;.

Cela résulte des énoncés analogues concernant les extensions quasi-galoisiennes resp.
les extensions entieres séparables, (§6, n° 3, prop. 7 — cf. commentaires — et §7, prop.
13 (i) et (iii)).

Corollaire 1. — Sozent K un corps, () une extension algébriguement close de K, S une
partiede (), et B la sous-extension quasi-galoisienne de Q) engendrée par S (§3, n° 3). Alors

E est galoisienne si et seulement si les éléments de S sont séparables sur K.

En effet, si G estle groupe des K -automorphismes de €2, £ est 'extension engendrée
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par la réunion T des u(.S), pour u € . Comme cette extension est quasi-galoisienne,
il reste & prouver qu’elle est séparable, ce qui revient 4 dire que les éléments de 7" sont
séparables sur K (§7, n° 3, prop. 11). Comme un élément y conjugué d’un élément =
algébrique sur K est évidemment séparable sur K si et seulement si  est, la condition
obtenue équivaut aussi a dire que les éléments de S sont séparables sur K, ce qui prouve

notre affirmation.

Corollaire 2. — Soit (f;)ier une famille de polyndmes séparables de K[ X| (§7,n° 2,
déf. 4). A lensemble de leurs racines dans lextension algébriquement close Q) de K, alors

K (A) est une extension galoisienne de K.

N. B. — On peut, si on le juge bon, recopier ici le laius de Iédition actuelle fin de §10,
n° 3, page 149. Le rédacteur n’y tient pas particulierement. Il propose aussi de laisser
tomber le corollaire qu’une extension composée d’extensions abéliennes est abélienne

(qu’on peut néanmoins, si on y tient, rajouter en un corollaire 3 ici méme).

Théoreme 1. — Sozent K un corps, Qune extension de K, E et K' deux sous-extensions
deQ), E' = K'(E) lextension composée et L = E N K'. Supposons E galoisienne sur K.
Alors E' est galoisienne sur K', et K' et E sont linéairement disjointes sur L. De plus,
tout K'-automorphisme de E' induit un L-automorphisme de E, et [’bomomorphisme de

restriction u ~~ u|E ainsi obtenu est un isomorphisme :

Gal(E'/K') = Gal(E/L).

Corollaire 1. — Pour toute sous-extension F' de la K'-extension E', posant F' = F' N
E,onaF' = K'(F).

En effet, en vertu de prop. 2 £’ est galoisienne sur F”, et son groupe de Galois sur
F" est un sous-groupe H' du groupe de Galois Gal(E’/K"). Soit H I'image de H' par
isomorphisme Gal(E'/K') — Gal(E/L) du th. 1, alors le corps des invariants de
H n’estautre que F' = E N F’, compte tenu que F” est le corps des invariants de H'.
Identifiantalors, griceau th. 1, K'(E) 4 E® g K’ etles opérations de H' aux opérations
u®kidgr, (u € H), on constate aussitdt que 'ensemble des invariants de H' n’est autre

que F' ® i K, ce qui signifie aussi que F' = K'(F).

Le Corollaire ne se généralise pas au cas ot E et K’ sont deux extensions
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linéairement disjointes de /', mais ot1 on ne suppose pas I galoisienne (ex-

erc....).

Corollaire 2. — Sozent Fy et E'y deux extensions galoisiennes d’un corps K, telles que E'y N
Ey = K. Alors Ey et Ey sont linéairement disjointes, E = K (Ey U Ey) est une extension
galoisienne de K, et 'bomomorphisme w ~» (u|Ey, u|Ey) induit un isomorphisme de
groupe

Gal(E/K) — Gal(E,/K) x Gal(Ey/K).

On sait par le th. 1 que F; et F sont linéairement disjointes, par la prop. 3 que E est
galoisienne, et il est immédiat que ’homomorphisme envisagé dans le cor. 2 est injectif.
Pour prouver qu’il est surjectif, il suftit de noter que, puisque E et £; sont linéairement
disjointes, F s’identifie a I'algebre £y ® g Eo, et siuy (resp. ug) estun K -automorphisme
de Fy (resp. L) alors u = u; ® ug est un K-automorphisme de £y ® g E induisant

Uy et uy sur les deux sous-algebres Fy et Fs.

2. — Applications aux extensions quasi-galoisiennes

N. B. — Ce n° pourrait étre mis en petits caracteres ; il ne resservira pas dans la suite du

livre.

Proposition 4. — Soient K un corps, E une extension quasi-galoisienne de K, Ey la
fermeture séparablede X dans E (§7, prop. 14, cor. S), Ey le corps des invariants du groupe
Gal(E/K) des K-antomorphismes de E. Alors :

(1) E\ estla plus grande sous-extension radicielle de E.

(i) Ey est une extension galoisienne de K, linéairement disjointe de Ey, et E = K (EyU
E), donc Ubomomorphisme canonigue Ey @ By — E est un isomorphisme.

(1iz) E est une extension galoisienne de Er, et l'application de restriction Gal(E/E;) =

Gal(E/K) — Gal(Ey/ K) est un isomorphisme.

Soit 2 une cloture algébrique de . Comme tout K -automorphisme de F se prolonge en
un K-automorphisme de 2, et que par ’hypothese quasi-galoisienne sur F, E est stable

par les -automorphismes de €2, Fy n’est autre que I'intersection de F avec le corps des
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invariants du groupe des K-automorphismes de €2, et I’assertion (i) résulte donc de §7,
prop. 16, cor. 1. D’autre part,ona FyNE; = K, car EyNE; estune extension séparable
et radicielle de K, donc triviale en vertu de §7, prop. 16, cor. 2. D’autre part, comme £
est stable par les /{-automorphismes de €2, il en est évidemment de méme de Fj, qui est
donc une extension quasi-galoisienne de K, et comme elle est séparable, elle est galoisi-
enne. Il résulte alors du th. 1 que Ej et F; sont linéairement disjoints sur K. D’autre
part, en vertu de §7, prop. 16, cor. 3, E est radicial sur E, donc ses éléments sont invari-
ants par les Fjy-automorphismes de  (§7, prop. 16, cor. 1), d’ot1 on conclut aussitot que
tout K -automorphisme de Fj se prolonge de fagon unique en un K'-automorphisme de
E ; il est trivial d’ailleurs par définition que £ est une extension galoisienne de Fy, ce
qui établit (iii). Soit enfin £/ = E}(E)), alors en vertu de th. 1 E” est une extension
galoisienne de E; et 'application de restriction Gal(E'/E;) — Gal(Ey/K) est un
isomorphisme. Comme il en est de méme, par (iii), de 'application composée des ap-
plications de restriction Gal(E/E,) — Gal(E'/E,) — Gal(Ey/K), on voit que
application de restriction Gal(E/E;) — Gal(E’/E}) est un isomorphisme, ce qui
signifie en vertu de prop. 2 cor. 2 que Gal(E/E') est le groupe unité, de sorte que E est
une extension galoisienne de £’ dont le groupe de Galois est le groupe unité, donc E est
une extension radicielle et séparable et par suite triviale de £ (§7, prop. 16, cor. 1 et cor.
2). Donc E = Ej, ce qui prouve (ii) et achéve de prouver la proposition.

On conclut de la partie (i) de la proposition qui précede une généralisation partielle

du th. 1 au cas des extensions quasi-galoisiennes :

Corollaire 1. — Sozent K un corps, Q une extension de K, E et K' deux sous-extensions
de Q) E' = K'(E) l'extension composée et L = E N K'. Si E est une extension quasi-
galoisienne de K, E' est une extension quasi-galoisienne de K', et I’homomorphisme de

restriction u ~ u|E de Gal(E' | K") dans Gal(E / L) est un isomorphisme.

On sait déja que E’ est une extension quasi-galoisienne de K’ et que E est une ex-
tension quasi-galoisienne de L (§6, n° 3) ; donc c’est une extension galoisienne d’une
extension radicielle £y de L. Soit Ef = K'(FE}), alors E] est une extension radicielle
de K, car engendrée par les éléments de Fy, qui sont radicielles sur L, donc sur K’ qui
contient L. D’ailleurs £/ N E; est une sous-extension radicielle de /, donc par construc-
tion de F; est contenue dans £j, donc égale 3 F;. Appliquons maintenant le th. 1 aux

extensions £ et £ de E';. On trouve que £’ est une extension galoisienne de E7, et que
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homomorphisme de restriction Gal(E'/E]) — Gal(E/E;) est un isomorphisme.
Or comme E (resp. E7) est une extension radicielle de L (resp. K'), les groupes précé-
dents ne sont autres que les groupes Gal(E/L) et Gal(E’/K") et ’homomorphisme
envisagé ’homomorphisme de restriction envisagé dans le corollaire 1. Cela prouve le

corollaire 1. De plus :

Corollaire 2. — Sous les conditions du corollaive 1, soit Fy (vesp. 1) la plus grande
sous-L-extension séparable (vesp. radicielle) de E, et soient de méme E\ (E ) la plus grande
sous-extension séparable (resp. radicielle) de E' sur K'. Alorson a E|, = K'(Ey), E] =
K'(EY), Ey et K' sont linéairement disjoints sur L et E et EY sont linéairement dis-
Joints sur Ey.  Pour que E et K' soient linéairement disjoints sur L, i.e. pour que
I’homomorphisme canonique E @1, K' — E' soit un isomorphisme, il faut et il suf-

fit que E et K’ soient linéairement disjoints sur L.

La relation £] = K'(E}) a déja été prouvée dans la démonstration du corollaire 1,
pour prouver larelation Ej) = K'(Ej), onnote que K’( Ey) est une sous-extension de £
séparable sur K’ (§7, prop. 14, cor. 3) et que E’ est radicielle sur K”(E)), car engendrée
par E dont les éléments sont radicielles sur Ey donc sur K’(Ey). En vertu de §7, prop.
16, cor. 3, cela montre que K'(Ey) = E{. Comme on a évidemment Fy N K’ = L
puisque £ N K" = L, on conclut par le th. 1 que Ej et K’ sont linéairement disjoints
sur L. D’ailleurs le méme th. 1 appliqué aux extensions E et E| de E prouve que E et
E7 sont linéairement disjoints sur . On en conclut que ’homomorphisme canonique
E ® K' — E' s’identifie 2 ’homomorphisme déduit, par changement du corps de
base £y — E, de 'homomorphisme canonique £} ®, K’ — E}. Donc le premier
est un isomorphisme si et seulement si le deuxieme Iest, ce qui acheve la démonstration

du corollaire 2.

Remarque. — Nous verrons au §12, avec le critere de Mac-Lane, qu’une extension
séparable d’un corps est linéairement disjointe de toute extension radicielle de ce corps.
Comme, avec les notations du cor. 2, I est une extension radicielle de L, il s’ensuit que
ni K’ est une extension séparable de L. E; et K’ sont linéairement disjoints sur L et par

suite £ et K’ sont linéairement disjoints sur L.
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3. — La théorie de Galois : classification des sous-extensions d’une ex-

tension galoisienne finie

Théoreme 2. — Soient E un corps, G un sous-groupe du groupe des automorphismes de E,
K le corps des invariants de G. Pour que E soit de degré fini sur K, il faut et il suffit que
G soit fini. Dans ce cas, I est une extension galoisienne de K, G est son groupe de Galots,

etledegréde F sur K est égal a lordre de G.

Si F estune extension de degré finin de K, c’est une extension algébrique, etil résulte
immédiatement de la définition qu’elle est galoisienne. De plus, en vertu de App. 5.5 le
groupe de tous les K -automorphismes de  a au plus n éléments, a fortiori 'ordre de G
estau plus n. Il reste a démontrer que si G est d’ordre fini m, alors E est de degré fini sur
Ket[E : K| < m. Or cest un cas particulier du théoreme d’Artin (§6, n° 4, th. 1).

Théoreme 3. — Soient E une extension galoisienne de degré fini d’un corps K, G son
groupe de Galois, K lensemble des sous-extensions de E, G l'ensemble des sous-groupes de
G. Pour tout sous-groupe H de G, soit k(H ) le corps des invariants de H, et pour toute sous-
extension F de E, soit g(F') son groupe de Galois, qui est donc un sous-groupe de G (prop.

2). On obtient ainsi deux applications :
k:G—K et Q:KHQ

Ces applications sont bijectives, et inverses l'une de l'autre. Pour tout couple (H, F), avec
HeGeaF =k(H),ona:

|H:e|=[F:F] , [G:H|=I[F:K]
En effet, le fait que k o g soit Papplication identique n’est autre que la prop. 2, et
le fait que g o k soit 'application identique est un cas particulier du th. 2. La formule

[H : €] = [E : F|estun cas particulier de th. 2, en particulier [G : e] = [E : K];la

deuxieme formule en résulte compte tenu des relations

[E:F|F:K|=[FE:K| e [G:H|H:e=[G:¢€

Corollaire 1. — Ordonnons G et K par inclusion. Alors les applications k et g sont

strictement décroissantes. Si (F})icr est une famille de sous-extensions de E, F leur inter-
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section, alors Gal(E | F') = g(F') est le sous-groupe de G engendré par les Gal(E [ F;) =
g(F3).

I est trivial que k et g sont décroissantes, d’oti il résulte aussitot qu’elles sont stricte-
ment décroissantes, compte tenu qu’elles sont inverses 'une de l'autre. Par suite, cha-
cune de ces applications induit un isomorphisme de 'ensemble ordonné source avec
'ensemble but, muni de la structure d’ordre opposée de sa structure d’ordre envisagée
dans le corollaire 1. Cela implique que chacune de ces applications échange entre elles

les opérations Inf et Sup, d’ot en particulier la derniere assertion du corollaire.

Corollaire 2. — Soit H un sous-groupe de G. Pour que le corps des invariants F de H

soit une extension galoisienne de K, il faut et il suffit que H soit distingué.
Cela résulte aussitot du th. 1 et de prop. 2, cor. 2.

Corollaire 3. — Soient F et Iy deux sous-extensions de E, Hy et Hy leurs groupes de

Galois. Pour que F et I soient linéairement disjointes, il faut et il suffit gu'on ait

[G . HlﬂHQ] = [G . Hl][G . HQ]

En effet, F' = K (Fy U F}), cette relation équivaut 2
[F: K| =[F,: K|[F,: K]
qui est un critere de disjonction linéaire (§2, prop. 4).

Corollaire 4. — Soit E une extension galoisienne de degré fini d’un corps K, G son
groupe de Galois, G et Gy deux sous-groupes de G, E (vesp. E) le corps des invariants de

G (resp. Go). Les conditions suivantes sont équivalentes :
(7)) Ona G NGy = (e)et Gy - Go = G.

(1 bis) Tout élément de G peut s'écrive, de fagon unique, sous la forme g s, avec g1 €

G1,92 € Ga.
(]tE?‘) Oi’lélGl N G2 = (6) €I[G : Gl ﬂGg] = [G : Gl][G : GQ]

(17) Les extensions Ey et Fy sont linéairement disjointes et engendrent F, i.e.
Uhomomorphisme naturel
E1 RK E2 — F
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est un isomorphisme.

L’équivalence des conditions (i) (i bis) (i ter) est une question de pure théorie des groupes,
etaétévue(?) au Chap. L Envertuduth. 3, GiNG, = (e) équivauta K (E1UE,) = E,
donc I’équivalence de (i ter) et de (ii) résulte du corollaire 3.

Notons qu’il résulte du cor. 4 et du cor. 2 que, pour que G5 soit invariant dans G et
que G soit le produit semi-direct de Gy et Gig, il faut et il suffit que la condition (ii) soit
satisfaite et que de plus E soit une extension galoisienne de K. Plus particuli¢rement,

on obtient :

Corollaire 5. — Avec les notations du corollaire 4, pour que G soit le produit direct des
sous-groupes G et Gy, il faut et il suffit que Fy et Fy soient deux sous-extensions galoisi-
ennes de I engendrant E, et que leur intersection soit K (ce qui implique déja qu elles sont
linéairement disjointes, donc gue ’bomomorphisme canonique £y @ Ey — E est un

isomorphisme).

Proposition 5. — Sozent K un corps, E une extension étale de K, n son degré. Alors il

ya au plus 2" sous-extensions de E.

En effet, soit £’ I'extension quasi-galoisienne engendrée par E dans une cloture al-
gébrique Q2 de E, alors E' est galoisienne (prop. 3, cor. 1) ; soit G son groupe de Galois,
et H le groupe de Galois de E’ sur E. En vertu du th. 3 etde son cor. 1,ily a une corre-
spondance biunivoque entre 'ensemble des sous-extensions de F, et ’ensemble des sous-
groupes de G contenant [. Ce dernier ensemble est en correspondance biunivoque avec
un sous-ensemble de 'ensemble des parties de G/ H. Comme card G/H = n (th. 1), 1la

prop. 5 en résulte.

N. B. — La prop. 5 me semble bonne pour étre mise en exercice. Il serait camula-
resque en tous cas de la donner sans la précision du 2", car pour ce qui concerne la seule
assertion de finitude, elle est pratiquement triviale sans théorie de Galois, et vraie pour
'ensemble des sous-algebres d’une algebre étale : on est en effet ramené au cas d’une al-
gebre diagonalisable par extension de la base, et dans ce cas on regarde (les sous-algebres
correspondent alors biunivoquement aux relations d’équivalence sur un ensemble a n

éléments).
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4. — Algebres galoisiennes sur un corps

Le présent n° et le suivant sont indépendants de la théorie de Galois (n° 3).

Soit k un corps, et G un groupe. Dans le présent numéro, nous étudions certaines
structures A de 'espece suivante : A est une k-algebre commutative de degré fini, sur
laquelle G opere par automorphismes de k-algebre. Nous savons (App. 3) qu’il y a une
correspondance biunivoque canonique entre I’ensemble des idéaux maximaux de A et
'ensemble des facteurs indécomposables (ou encore, locaux) de A. En vertu de App. 5,
A s’identifie canoniquement a un produit fini d’algebres B; 4 groupe d’opérateurs G, tel
que pour chaque B;, G opere transitivement sur I’ensemble des idéaux maximaux de B;.
De plus, si A # 0, pour que ce produit soit réduit 2 un seul facteur, i.e. pour que G
opere transitivement sur ensemble des idéaux maximaux de A, il faut et il suftit que A
soit isomorphe, comme algebre 3 opérateurs, 2 une algebre de la forme Homy (G, Ay),
ou Ay est une k-algebre de degré fini Jocale sur laquelle opére un sous-groupe H de G ;
de fagon précise, on peut alors prendre pour Ay un quelconque des facteurs locaux de
A, qui est un quotient de A, et pour H son stabilisateur, ou ce qui revient au méme, le
stabilisateur de I'idéal maximal correspondant. Bien entendu, sous ces conditions A est
réduit si et seulement si A I'est, i.e. si et seulement si A est un corps. Notons également
que, si {2 désigne une extension algébriquement close de £, alors 'application u ~ Ker u
de 'ensemble P(A) = Homy.y4(A, £2) des homomorphismes de k-algebres de A dans
(2, dans 'ensemble des idéaux premiers (c’est-a-dire maximaux) de A, est surjective, et
commute aux opérations de G' définies par transport de structure. Par suite si G opere
transitivement sur P(A), il opére transitivement sur 'ensemble des idéaux maximaux de

A, et on peut par suite appliquer les remarques qui précedent.

Proposition 6. — Soient k un corps, G un groupe fini, A une k-algébre a groupe

d’opérateurs. Les conditions suivantes sont équivalentes :

(1) A est diagonalisable, et G opere de fagon simplement transitive sur lensemble
Homk_dgg(A, ]f)

(11) A est isomorphe, comme algébre & groupe d opérateurs, i l'algébre k(G) du groupe

G, a coefficients dans k, sur laquelle G opére par translations a gauche, i.e. l'algebre
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des fonctions p : G — k, sur laquelle G opére par

(9¢)(x) = (g~ x).

En effet, on sait que 'ensemble des homomorphismes dans & de Ialgebre &7 des ap-
plications de I'ensemble fini / dans & est en correspondance biunivoque avec I par
Papplication qui, & tout ¢ € I, associe 'application ¢ ~~ ¢(i) de k' dans &k (App.
5.4). Cette bijection est évidemment compatible avec toute bijection de I sur lui-méme,
induisant un automorphisme de k&’ par transport de structure. Ceci montre aussitot que

(i) équivaut (ii).

Définition 2. — Une k-algébre A a groupe d’opérateurs fini G est dite galoisienne
triviale si elle satisfait aux conditions équivalentes de prop. 6. Elle est dite galoisienne si
lalgebre a groupe d’operatenrs G, déduite par extension des scalaires de k a une cloture

algébrique Q) de k, est galoisienne triviale.

Evidemment, cette condition ne dépend pas de la cléture algébrique choisie, en vertu
du théoreme de Steinitz. On peut méme, dans cette définition, remplacer la cléture al-
gébrique par n’importe quelle extension algébriquement close €2’ de & : en effet, on peut
supposer £ C €, et il suffit de prendre la forme (i) de la définition des algebres galoisi-

ennes triviales.

Corollaire. — Soent A, A’ deux k-algébres a groupe d opératenrs G galoisiennes. Tout
homomorphisme u d algébres de A dans A’ commutant aux opérations de G est un isomor-
phisme. Sio : A — Q est un k-homomorphisme de A dans une extension (2 de k, w est

uniquement determiné par la connaissance de o o u A — Q.

On peut supposer évidemment que €2 est algébriquement close, puis (quitte  faire

le changement de corps de base k) que & = 2. Alors le corollaire devient évident.

Proposition 7. — Soit k un corps, G un groupe fini, A une k-algebre a groupe
d’opératenrs G.

(z) Soient k' une extension de k, A' = A @y, k' la K'-algébre & groupe d opératenrs G
déduite de A par changement de corps de base. Si A est galoisienne (resp. galoisienne

triviale), il en est de méme de A'. Si A’ est galoisienne, A est galoisienne.
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(1) Soitw : G — G’ un bomomorphisme de G dans un groupe fini G'. Si A est ga-
loisienne, l'algébre A’ & groupe d'opératenrs G' induite, A’ = Homg(G', A), est
galoisienne. Réciproquement, si w est injectif et si A’ est galoisienne, A est galoisi-

enrne.

(i77) Soit H un groupe fini, B une k-algebre a groupe d’opérateurs H. Si A et B sont des
algebres a opératenrs galoisiennes (vesp. gal. triviales), il en est de méme de l'algebre
A®y, B a groupe d'opératenrs G x H. Le fonctenr (A, B) ~ A®y, B dela catégorie
produit des catégories des k-algebres galoisiennes a groupe d operateurs G (resp. H),
dans la catégorie des k-algebres galoisiennes a groupe d’operatenrs G X H, est une

équivalence de catégories.

La premiere assertion de (i), les assertions (ii), et la premiere assertion de (iii), se ramenent
aussitot, compte tenu des définitions, au cas des algebres galoisiennes triviales, ot la véri-
fication est triviale et laissée au lecteur. La deuxiéme assertion dans (ii), résulte aussitot
de la remarque faite apres la déf. 2. Reste a prouver la derniere assertion dans (iii). Pour
ceci, nous allons exhiber un foncteur quasi-inverse b du foncteur envisagé ¢ : c’est celui

qui associe 4 'algebre C' 4 groupe d’opérateurs G x H, le couple A, B avec
A =Homguy(G,C) , B =Homgxy(H,C).
On définit de fagon évidente des homomorphismes :
hbp —id , id— pbh

et il reste a vérifier que ce sont des isomorphismes. Cest trivial pour le premier (transi-
tivité de 'opération d’induction), pour le second on est ramené au cas ot le corps de base
est algébriquement clos, donc au cas des algebres galoisiennes triviales, ot1 c’est également
trivial.

N. B. — II faut certainement garder la partie (ii) de prop. 7, qui donne la loi fonc-
torielle de H' (k, G) par rapport a G. Quant i la partie (iii), qui servira 2 montrer que le
foncteur G ~ H'(k, G) commute aux produits, on peut éventuellement la rejeter en
exercice ; de toutes fagons, on retrouverait ce résultat au n° 6, grice a 'interprétation de

H'(k, G) en termes du groupe fondamental de k. Mais cela obligerait 2 rejeter a ce n°
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(et subordonner 2 des considérations topologiques) la structure de groupe sur H* (k, G)
lorsque G est abélien, ce qui semble peu naturel.

Bien entendu, il faut avoir fait au Chap. I les opérations induites dans le cas d’un
homomorphisme quelconque G — G’ de groupes, pas seulement I'inclusion d’un
sous-groupe comme dans App. n° 5, ot on avait en vue des phénomenes spéciaux au cas
d’une telle inclusion.

Remarques. —

a) La partie (i) de prop. 7 implique en particulier qu’une algebre 4 opérateurs ga-
loisienne triviale est bien galoisienne, ce qui justifie la terminologie. Il est évident
d’autre part que deux algebres a opérateurs galoisiennes triviales, relatives au méme

groupe G, sont G-isomorphes.

b) On voit aussitét, par réduction au cas galoisien trivial, que si A est une k-algebre
a groupe d’opérateurs G qui est quasi-galoisienne, alors G opére fidélement sur A

etona:

[A: k] =[G : €.

Proposition 8. — Soient k un corps, ) une extension algebriquement close de k, G un
p georq
groupe fini, A une k-algebre commutative a groupe dopératenrs G. Les conditions suiv-

antes sont équivalentes :
() Aest une algebre a opérateurs galoisienne.

(i7) A est une k-algebre étale, et G opere de fagon simplement transitive sur l'ensemble

P(A) = Homk_ﬂ[g(A, Q)

(i77) 1l existe une extension galoisienne finie K de k, un sous-groupe H de G, et un iso-
morphisme de H sur le groupe Gal(K [ k), tels que A soit isomorphe, comme algébre
a groupe d’opérateurs G, a l'algébre induite Hompy (G, K).

Ces conditions impliquent A # 0, donc lexistence d’un corps résiduel de A. Lorsquon
s'est donné un corps résiduel K = Ajmde A, et qu'on désigne par H le sous-groupe de G

stabilisateur de K, les conditions précédentes équivalent aussi a la condition suivante :
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(iv) Aest réduit, G opére transitivement sur 'ensemble des idéanx maximanx de A, K
est une extension galoisienne de k et lapplication canonique H — Gal(K /k) est

un isomorphisme.

Dire que A est une algebre étale signifie que A ®, {2 est une (2-algebre diagonalisable,
donc (ii) signifie que A ®y, §2 est galoisienne triviale, ce qui équivaut a (i) comme on a
observé apres la définition 2. Ces conditions impliquent manifestement que A est non
nulle. L’équivalence de (iii) et (iv) résulte aussitot des remarques préliminaires a la prop.
6. D’autre part (iii) = (ii), car en vertu de prop. 7 (ii) on est ramené a prouver qu’une
extension galoisienne K de £, de degré fini, de groupe de Galois GG, est une algebre a
opérateurs galoisienne, pour les opérations naturelles de G sur K, ce qui se voit en effet
trivialement sur la condition (ii). Enfin, prouvons (ii) = (iv). On sait déja, moyennant
(i), que A est réduit, et que GG opere transitivement sur 'ensemble des idéaux maximaux
de A. Cela implique déja que A estisomorphe, comme algebre 4 groupe d’opérateurs G,
a l'algebre induite Homp (G, K'), et compte tenu de prop. 7 (ii), on sait que K est une
algebre  groupe d’opérateurs H galoisienne. Cela implique que H opere fidélement sur
K, et que son ordre est égal au degré n de K sur k, en vertu de la remarque ci-dessous,
donc que K est une extension galoisienne de k et que G — Gal(K/k) est un isomor-
phisme, grice au cor. ala prop. 1.

On conclut de ce qui précede :

Corollaire. — Soient k un corps, K une extension de degré fini de k. Les conditions

suivantes sont équ ivalentes :

(1) K est une extension galoisienne de k (déf. 1).

(17) 1l existe un groupe fini G et une structure d’algebre a groupe d’opérateurs G sur K,
compatible avec la structure d’algebre déja donnée sur K, tels que K soit une algebre

a opérateunrs galoisienne (def. 2).

(iii) Désignant par 1 le groupe des k-automorphismes de K, et munissant K de sa struc-
ture naturelle d'algebre a groupe d operatenrs 1, K devient une algebre a opérateunrs

galoisienne (déf. 2).

De plus, si ces conditions sont vérifiées, alors avec les notations de (ii) et (iii),

Uhomomorphisme G — T, définissant les operations de G sur K, est un isomorphisme.
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En d’autres termes, la terminologie de la définition 2 est en accord avec celle intro-
duite dans la définition 1, et de plus, si K est une extension de degré fini galoisienne de £,
alors il existe sur K essentiellement une seule structure d’algebre a groupe d’opérateurs,
compatible avecla structure d’algebre déja donnée de K, et en faisant une algebre a opéra-
teurs galoisienne. De plus, la proposition 8 ramene I’étude des k-algebres a opérateurs

galoisiennes 2 celle des extensions galoisiennes de degré fini de k.

5. — Les ensembles ponctués H' (k, G) et H' (k, Q; G)

Définition. — Sozent k un corps, G un groupe fini, () une extension algebriguement close
de k. On appelle k-algébre a groupe G d’opératenrs Q-ponctuée un couple X = (A, ¢),
on A est une k-algebre a groupe d’opérateurs G, et on & est un k-homomorphisme de k-
algeébres de A dans Q). On dit que X est galoisienne (resp. galoisienne triviale) si l'algébre

a opérateurs A est galoisienne (vesp. galoisienne triviale).

La notion d’isomorphisme pour cette espece de structure (pour k, 2, G fixés) est
claire. L’intérét technique de la notion de ponctuation tient du fait qu’elle a pour ef-
tet de rigidifier la structure envisagée ; en d’autres termes, tout automorphisme d’une
algebre 4 groupe d’opérateurs G galoisienne ponctuée est I'identité. C’est ce que dit
le cor. 4 prop. 6, qui prouve méme que la catégorie de ces algebres 4 opérateurs est
discrete. On notera que si A est une k-algebre a groupe d’opérateurs G qui est galoisi-
enne, elle provient toujours d’une algeébre & opérateurs Q2-ponctuée X = (A, £), puisque
ensemble Homy, o, ( A, €2) est non vide ; de fagon plus précise, comme G opere de fagon
simplement transitive sur ce dernier ensemble, il opere de fagon simplement transitive
sur 'ensemble des structures de k-algebres 4 opérateurs ponctuées dont A est I'algebre a
opérateurs sous-jacente. Mais on notera que si X = (A, &) etY = (B, n) sont deux k-
algebres a groupes d’opérateurs GG ponctuées, galoisiennes, un isomorphisme de A avec
B n’est pas nécessairement un isomorphisme de X sur Y, et A et B peuvent fort bien étre
isomorphes (et méme égaux) sans que X et Y le soient (cf. prop. 10 plus bas). Cepen-

dant, on voit aussitdt que si X et Y sont triviales, elles sont isomorphes.
Proposition 9. — Soient k un corps, G un groupe fini.

(z) Soit R(X) la relation : “X est une k-algébre a groupe d’opérateurs G galoisienne”,
et soit S(X) la relation “R(X) et X = 7(R(X))”. Alors la relation S est collec-
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tivisante.

(iz) Soit () une extension algébriquement close de k. Soit R'(X) la relation : “X est
une k-algébre a groupe dopératenrs G, Q-ponctuée galoisienne”, et soit S'(X) la
relation “R'(X) et X = 7(R'(X))” Alors la relation S’ est collectivisante.

La démonstration est laissée 2 Bourbaki, d’autant plus que le style définitif de 'énoncé

et de sa démonstration dépend de décisions pendantes sur le livre des Ensembles.

Définition 4. — Les notations étant celles de la prop. 9, on désigne par H' (k, G) (vesp.
parH (k,Q; G))Uensemble des X satisfaisant la relation S(X) (resp. S'(X))de la prop.
9.

Comme d’habitude, si X est une k-algébre a groupe d’opératenrs G' galoisienne, on

appelle 'elément
d(X) =1y (R(Y)etY estisomorphea X) € H'(k,G)

(qui est lunique élément de H' (k, G) qui soit isomorphe a X ) la classe (ou si on veut preé-
ciser, la classe a isomorphisme prés) de X, et on adopte une notation et une terminologie
la cl. b de X, et on adopt: tation et une t log

analogues pour le cas des algébres a groupes d opératenrs bonctuées.
g g g

Nous allons considérer les deux ensembles de la déf. 4 comme ponctués par la classe
des algebres a opérateurs galoisiennes (resp. ponctudées) triviales.

La prop. 7 (ii) nous montre que expression H'(k, G) resp. H'(k, Q; G), pour
k (resp. k et Q) fixé(s), peuvent étre considérés comme la valeur, en GG, d’un foncteur
(covariant)

G~ H'(k,G) resp. G~ H'(k,Q;G),

allant de la catégorie des groupes finis dans celle des ensembles ponctués. La prop. 7 (iii)
implique que ces deux foncteurs “commutent aux produits de deux facteurs”, d’ailleurs
ils transforment évidemment objets finaux (les groupes réduits a I’élément unité) en ob-
jets finaux (ensembles réduits 4 un élément), donc “commutent aux produits finis”.
(N.B. — Le deuxieme foncteur est méme exact a gauche, ce qui équivaut au fait qu’il
est proreprésentable; mais il n’y a pas lieu de le démontrer ici, car ce fait résultera triviale-

ment du n°7).
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On a une application canonique, fonctorielle en G, déduite du foncteur associant a
toute algebre 4 opérateurs ponctuée I’algebre a opérateurs déduite par oubli de la ponc-

tuation :

H'(k,Q;G) — H'(k, Q).

Proposition 10. — Luapplication précédente est surjective. Faisons opérer G sur
lui-méme par automorphismes intérieurs, donc sur les deux ensembles H' (k,; G) et
H'(k, G) par la loi fonctorielle de ces expressions. Alors lapplication précédente est com-
patible avec les opérations de G, et pour que deux éléments de H' (k, Q; G) aient méme
image dans U (k, G), il fant et il suffit qu’ils soient transformés 'un de l'autre par une
operation de G.

En d’autres termes, l'application envisagée induit une bijection canonique (évidem-

ment fonctorielle en G) :
H'(k,Q;G)/G = H'(k,G)

permettant de reconstituer l'ensemble H' (k, G) a partir de la connaissance de l'ensemble

de H*(k,Q; G) et des opérations de G sur ce dernier.

Démontrons la proposition. L’assertion de surjectivité provient de la remarque, déja
faite apres la déf. 3, que toute algebre a opérateurs galoisienne provient d’une algebre
a opérateurs galoisienne ponctuée. Le fait que 'application envisagée commute aux
opérations de G provient du fait que cette application est fonctorielle. Enfin, soient
X = (A,€) et Y = (B,n) deux algebres a groupe G d’opérateurs ponctuées galoisi-
ennes; pour que les algebres 4 opérateurs A et B soient isomorphes, il faut et il suffit
évidemment que Y soit isomorphe 2 une Y’ = (A, £’), définie par une ponctuation £’
de A. Comme G opere transitivement sur ’ensemble des ponctuations de A par (2, cela
signifie aussi que Y est isomorphe 2 une Y’ de la forme (A, g - £),otg € Getoug - &
désigne la ponctuation & o g ' déduite de ¢ par transport de structure au moyen de g.4.
La proposition sera donc démontrée si nous démontrons que pour Y’ défini en termes

de X etde g de cette fagon, on a
CI(Y/) =9g- CI(X)a

en d’autres termes que Y est isomorphe a I’algebre a opérateurs ponctuée induite a partir

de X = (A,&) parv = int(g) : G — G. Il revient au méme de dire qu’il existe un
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isomorphisme u : A — A, satisfaisant aux relations :
u(v(h) -x) =h-u(z), heG,zecA,
g-£=¢&ou.
On prendra alors u = g4, desorte que la seconde relation est vérifiée par définition, et
la premiere s’écrit
g '(ghg™" @) =h(g™" - @),

qui est également vérifiée. Cela acheve la démonstration.

Corollaire 1. — Pour tout g € G, la permutation de H*(k, G) induite par
Lautomorphisme int(g) de G est lidentité.

Corollaire 2. — Supposons G abélien. Alors lapplication canonique
H'(k,Q; G) — H'(k, G) est bijective.

En effet, G opere trivialement sur lui-méme par automorphismes intérieurs, donc
opére trivialement sur H' (k, ; G).
Notons maintenant que si G est abélien, alors 'application (g, h) ~» ghde G x G

dans G est un homomorphisme de groupes, et induit donc une application
H'(k,G) x H'(k,G) — H'(k,Q),
compte tenu que le foncteur H* (£, —) commute aux produits finis.
Proposition 11. — Soient k un corps, G un groupe fini abélien. La loi de composi-
tion qu’on vient de définir sur H'(k, G) en fait un groupe abélien, admettant le point
marqué comme élément unité. Siv : G — H est un homomorphisme de groupes finis

abéliens, l'application correspondante H' (k, G) — H'(k, H) est un homomorphisme
de groupes.

La deuxie¢me assertion s’exprime encore en disant que H' (k, G) — H'(k, H) est
compatible avec les lois de composition internes mises sur ces deux ensembles, et provient

aisément par application du foncteur H' de la commutativité du diagramme

GxG —— G

L

HxH— 0,
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ou les fleches verticales sont u X w et u, et les fleches horizontales sont les applications
somme. Le fait que H'(k, G) soit un groupe commutatif pour sa loi de composition
se vérifie de fagon analogue. (N.B. — La vérification n’est autre que celle du fait général
qu’un foncteur commutant aux produits finis transforme monoides, resp. groupes, resp.
groupes commutatifs...de la premiere catégorie en animaux de méme nature de la sec-
onde. Bien entendu, c’est 13 un résultat constamment utilisé dans toutes sortes de con-
textes, 2 tel point qu’on omet généralement d’en donner la justification, ou méme de sig-
naler qu’il y aurait lieu d’en donner une. Les seules références existantes sont quelques
nobles et vagues affirmations, dans le style de celle-ci. Bourbaki juge-t-il que c’est son
r6le de donner un sorite utilisable sur les structures algébriques dans les catégories, ou
préfere-t-il se taper deux ou trois pages d’explications et diagrammes dans chaque situa-
tion particuliere qu’il rencontrera ? Quant au rédacteur, il se détourne avec horreur et
effroi d’une telle alternative). Cela achéve la démonstration.

Soit maintenant &’ une extension de k. Utilisant prop. 7, (i), on trouve une applica-

tion d’ensembles ponctués
H1<k7 G) — Hl (k/7 G)a

fonctorielle en le groupe fini G. Lorsque G est abélien, cette application est compati-
ble avec les structures de groupes envisagées sur les deux membres. Si d’autre part (2 est
une extension de k, {2’ une extension de £, et si on se donne un homomorphisme de

k-extensions {2 — 2/, de sorte qu’on a donc un carré commutatif :

k—— Q

]

K —
alors on définit de méme une application d’ensembles ponctués
H'(k,Q;G) — HY(K, Q' G).

Cette application est encore fonctorielle en (7, en particulier commute aux opérations de

G envisagées dans la prop. 10, d’autre part le carré d’applications
H'(k,Q;G) —— H'(k,G)

! |

H'(K,Q;G) —— H'(K,G)
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est commutatif.

Lorsqu'on se donne également une extension k” de k', alors I'application
H'(k,G) — H' (K", G) correspondante est la composée des applications de change-
ment de corps de base H!(k, G) — H'(K',G) — H!'(k”,G). On peut présenter
la variance de H' (k, ) par rapport aux deux arguments en disant que H' (k, G) est un
bifoncteur en le couple (k, G), contravariant en le premier argument et covariant en le
second, o1 & varie dans la catégorie des corps, G dans la catégorie des groupes finis, et
H'(k, G) est a valeurs dans la catégorie des ensembles pointés. Lorsque G est astreint 2
étre abélien, on peut considérer ce bifoncteur comme étant a valeurs dans la catégorie des

groupes abéliens.

6. — Groupe de Galois topologique et théorie de Galois des extensions

galoisiennes infinies
Le présent n° et le suivant utilisent certaines notions de Topologie Générale, qui ne
seront développées que dans le livre suivant. Comme les résultats donnés ici ne seront

utilisés, dans la suite de ce traité, qu’apres le livre de Topologie Générale, un cercle vi-

cieux n’est pas a craindre.

Propostion 12. — Soit G un groupe topologz’qm. Les conditions suivantes sont e’qm’vﬂ—

lentes :

() G est compact et totalement discontinu.

(i) G est compact, et il existe un systeme fondamental de voisinages de L'¢lément neutre

qui sont des sous-groupes ouverts.
(ii7) Comme (i1), mais en exigeant que les sous-groupes envisagés soient distingués.

(1v) On peut trouver un systeme projectif (G )i de groupes finis, indexé par un ensemble
ordonné filtrant I, tel que G soit isomorphe au groupe topologique limite projective
de ce systeme (les G; étant considérés comme groupes topologiques a laide de lenr

topologie discrete).

Par définition de la topologie de lér‘n G, il est évident que (iv) implique (iii), d’autre part

(iii) implique (iv), comme on voit en prenant le syst¢me projectif formé des groupes quo-
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tients G /U, ot U est un sous-groupe ouvert distingué de G. En effet, les groupes G /U
sont finis (car compacts et discrets), et 'homomorphisme naturel de G dans 1&1 G/U
est injective grice a (iii), et a une image dense, donc est un isomorphisme puisque G’ est
compact et l&n G/U est séparé. Ainsi (iv) équivaut 2 (iii), qui implique trivialement (ii).

D’autre part (ii) implique (iii) en vertu du :

Lemme 1. — Soit G un groupe, H un sous-groupe d’indice fini de G, alors l'ensemble

des sous-groupes de G conjugués de H est fini, et leur intersection H' est un sous-groupe

distingué d’indice fini de G.

En effet, soit £ = G/ H 'espace homogene défini par le sous-groupe H, et soit G’ le
groupe des permutations de ), qui est un groupe fini. On a donc un homomorphisme
naturel G — G’. On sait (Chap. I) que les conjugués de H sont les stabilisateurs
des éléments de I, et sont donc en nombre fini, et que leur intersection est le noyau de

G — @', qui est donc d’indice fini.

Corollaire. — 87 G est un groupe topologique, et H un sous-groupe onvert de G, d’indice

fini, alors H' est un sous-groupe onvert d’indice fini et distingué contenu dans H.

En effet, une intersection finie d’ouverts est ouverte.

On a donc prouvé I'équivalence des conditions (ii) 4 (iv). D’autre part (ii) implique
évidemment que la composante connexe I’élément unité e de G est réduite 2 {e}, donc
par translation que pour tout g € G'la composante connexe de g est réduite 2 {g}. Donc
(ii) implique (i), et il reste & prouver que (i) implique (ii). Nous utiliserons le lemme

suivant :

Lemme 2. — Soient G un groupe topologique, X un espace compact sur lequel G
opére contindiment & gauche (de sorte que, par définition, lapplication (g,x) — g.x de
G x X dans X est continue), R une relation d’équivalence dans X telle que les classes
d’équivalence mod R soient des parties onvertes de X. Alors le sous-groupe H de G, formé
des g € G qui laissent R invariante, est un sous-groupe onvert, et si de plus X est compact,
il existe une relation d’équivalence R, plus fine que R, satisfaisant a la méme condition

que R, et stable par les opérations de G.

Comme toute classe d’équivalence est le complémentaire de la réunion des autres

classes d’équivalence, il s’ensuit qu’elle est fermée. D’ailleurs, X étant compact,
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I'ensemble de ces classes est nécessairement fini, donc la donnée de R équivaut 2 celle
d’une partition (X;);e; de X en un ensemble fini de parties 4 la fois ouvertes et fermées.
Pour tout i € 1, soit U; 'ensemble des g € G tels que g(X;) C X;. Je dis que Uj est
ouvert : en effet, soit V; I'image inverse de X; par I'application (¢, z) +— g.x de G x X;
dans X. C’est une partie ouverte de G x X, etsip; : G x X; — G désigne la projec-
tion canonique, U; n’estautre que G — p; (G x X; — V;). Comme p; est propre, X; étant
compact (réf.), il transforme parties fermées en parties fermées, ce qui prouve que Uj est
ouvert. Il en est donc de méme de I'intersection des U;, I étant fini, or cette intersection

n’est autre que le groupe H stabilisateur de 12. Donc H est un sous-groupe ouvert.

Lorsque G est compact, cela implique que H est d’indice fini, donc que I'ensemble
des relations d’équivalence g.R transformées de R par des éléments de G est fini (cet
ensemble étant en effet en correspondance biunivoque avec les éléments de G/ H). Si
R’ est la relation d’équivalence borne supérieure des g.R, on voit alors que ces classes
d’équivalence sont ouvertes comme intersection finies de parties ouvertes, et de plus R’
est évidemment stable par G et plus fine que R. Cela achéve la démonstration du lemme

2.

Soit maintenant G un groupe topologique compact totalement discontinu, prou-
vons que tout voisinage ouvert U de I'élément neutre contient un sous-groupe ouvert
de G. On peut supposer déja U ouvert et fermé. Il suffit alors d’appliquer le lemme 2
au groupe G eta X = G, et a la relation d’équivalence définie par la partition de G
en les ensembles U et G — U (en supposant G — U # @, ce qui est loisible, car sinon
il suffit de prendre le sous-groupe G lui-méme) : si H est le stabilisateur de cette rela-
tion d’équivalence, H est un sous-groupe ouvert en vertu du lemme 2, etona H C U,

puisque H.U C U ete € U, ce qui achéve la démonstration.

N. B. — J’ai inclus le lemme 2 pour fournir une référence commode pour la démon-
stration du fait suivant, qui pourrait étre indiqué en exercice : si G est un groupe com-
pact opérant continiment sur un espace compact totalement discontinu, alors il existe
un systéme projectif (X;);e; d’espaces quotients finis discrets de X, stables par G, in-
dexé par un ensemble d’indices ordonné filtrant croissant, tel que I'application canon-
ique X — l&l X soit un isomorphisme d’espaces topologiques a groupe topologique
G d’opérateurs. Cela implique alors ceci : soient & un corps, G son groupe fondamental

relativement 4 une extension sép. close (2 de k, alors le foncteur A +— Homy.yg(A, Q)
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établit une antiéquivalence entre la catégorie des k-algebres entieres séparables, et la caté-
gorie des espaces topologiques compacts totalement discontinus a groupe topologique

G d’opérateurs.

Définition 5. — Un groupe topologique G satisfaisant les conditions équivalentes de

la prop. 12 est appelé un groupe profini.

Proposition 13. — Soit G un groupe topologique, H un sous-groupe. Si H est fermé et

d’indice fini dans G, alors H est ouvert, et la réciproque est vraie si G est compact.

St H est ouvert, G compact, alors G | H est compact et discret, donc fini, d autre part on
sait qu’un sous-groupe onvert est fermé. Si H est ferméi.e. G | H séparé, et si H est d’indice
fini ie. G/H fini, donc discret, H est ouvert puisqu’il est ['image inverse d’un point de
G/ H, lequel est onvert.

Proposition 14. — Soient G un groupe profini, H un sous-groupe fermé. Muni de
la topologie induite, H est un groupe profini. De plus, H est intersection des sous-groupes
onverts de G qui le contiennent. L'espace homogéne G | H est un espace compact totalement

discontinu, et si H est invariant, le groupe topologique quotient G/ H est profini.

La premz'ére assertion provient du faz’t que G étant compact et totalement discontinu,
il en est de méme de toute partie fermée. D'autre part, on sait que toute partie fermée est
Intersection de ses voisinages a la fois ouverts et fermés. Pour pronver que H est lintersection
des sous-groupes onverts de G qui le contiennent, il suffit de prouver que tout voisinage U
de H dans G qui est onvert et fermé contient un voisinage qui est un sous-groupe onvert de
G. Considérons une relation d’équivalence R dans G dont les classes sont onvertes, l'une
d’elles contenant H et contenue dans U (par exemple la velation ayant comme seules classes
U, et G — U si ce dernier est non vide). Appliquant le lemme 2 a H opérant sur X par
translations a gauche, on voit que l'ensemble des transformées de R par les opérations de H
est fini, donc quitte a remplacer R par la borne supérieure de ses transformées par H, on
peut supposer R invariante par les opérations de H. Appliguons maintenant le lemme 2 a
G opérant sur lui-méme par translations a gauche, et soit H' le sous-groupe de G stabilisa-
teurde R. C'est un sous-groupe ouvert de G, contenant H par hypothése, et contenu dans la
classe d’équivalence V contenant H (puisque HV C V et e € V), et a fortiori contenu

dans U. Ceci prouvé, on en conclut que l'image de l'élément neutre de G dans G| H admer
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un systeme fondamental de voisinages a la fois onverts et fermés, donc par translation on
voit qu’il en est de méme de rout point de G | H, qui est donc totalement discontinu. Comme

il est manifestement compact, cela achéve la démonstration de prop. 14.

Proposition 15. — Soit (G;);e1 un systéme projectif de groupes topologiques, et soit G le
groupe topologique limite projective de ce systeme. St les G sont profinis, il en est de méme

de G.

En effet, on sait qu'une limite projective d'espaces compacts est un espace compact, et
d’autre part la condition (i11) de prop. 12 est vérifice, comme on voit aussitdt en utilisant

la méme condition sur les G; et la description des voisinages de 'élément neutre dans G.

Deéfinition 6. — Soient K un corps,  une extension quasi-galoisienne de K, G son
groupe de Galois. On appelle groupe de Galois topologique de E (ou, s’il y a lieu de préciser,
de E sur K) le groupe G, muni de la topologie de la convergence simple, E étant considéré

comme muni de la topologie discréte.

Nous verrons un peu plus bas que cette topologie fait bien de G un groupe topologique
(réf.), ce qui justifiera la terminologie. Par la suite, on dira souvent “groupe de Galois”
au liew de “groupe de Galois topologique”, étant entendu que, lorsqu’un groupe de Galois
sera considéré comme groupe topologique, c’est toujours de la topologie qu’on vient de définir
qu’ilsagira. Signalons tout de suite que le groupe de Galois topologique de E sur K est égal
par définition au groupe de Galois topologique de E sur le corps des invariants K¢ de G;
c’est ce qui permettrait, dansétude des groupes de Galois topologiques, de se ramener au cas
des extensions galoisiennes. Signalons aussi que si E est une extension quasi-galoisienne de
degré fini de K, son groupe de Galois, qui est alors fini, est discret, car si S est un ensemble
génératenr fini de lextension E, pour tout g € G, Lensemble des g’ € G tels que g'(x) =
g(z) pour tout x € S est un voisinage de g réduit a {g}.

Proposition 16. — Sovit E une extension qumz’—galoz’sz’mne de K, réunion fz’ltmnte

d’une famille d’extensions quasi-galoisiennes E;. Alors [’homomorphisme naturel

Gal(E/K) — lim Gal(E,/K)

est un isomorphisme de groupes topologiques.

Cela résulte trivialement des définitions.
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Corollaire 1. — Le groupe de Galois topologique d’une extension quasi-galoisienne est
un groupe topologique pro-fini.

En effet, F est réunion filtrante croissante de ses sous-extensions quasi-galoisiennes
E; de degré fini sur K, donc prop. 16 implique que G est isomorphe a une limite pro-
jective de groupes finis discrets, ce qui montre a la fois que c’est un groupe topologique,

et que ce dernier est profini.

Corollaire 2. — Soit E une extension galoisienne du corps K, G son groupe de Galois

topologique. Les conditions suivantes sont équivalentes :
(1) Le groupe G est fini.
(i) Le groupe topologique G est discret.

(7ii) L'extension E est de degreé fini.

L’équivalence de (i) et (ii) provient du fait que G est compact (cf. prop. 13), celle de (i)
et (iii) provient du théoréme 2.

Rappelons quesiu : G — H estun homomorphisme de groupes topologiques, G
étant compact et H séparé (condition vérifie si G et H sont tous deux profinis), u(G)
et ker u sont fermés dans H et G et v induit un isomorphisme de groupes topologiques
de G/ ker u sur u(G), muni de la topologie induite par H ; en particulier, si u est injectif
(resp. bijectif), v induit un isomorphisme de groupes topologiques de G avec u(G) (resp.

de G avec H). De ceci, on conclut immédiatement les résultats suivants :

Proposition 17. — Soit E une extension galoz';z'mm‘ du corps K, F une sous-extension
de E. Alors Gal(E | F') est un sous-groupe fermé de Gal(F' | K). Si F' est galoisien, alors
lisomorphisme de groupes Gal(F /| K) ~ Gal(E/K)/ Gal(E/F') de prop. 2. cor. 2estun
isomorphisme de groupes topologiques.

Corollaire. — Sous les conditions du théoréme 1, I'isomorphisme
Gal(E'/K'") ~ Gal(E/K)

est un isomorphisme de groupes topologiques.
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Proposition 18. — Soient E une extension galoisienne du corps K, G son groupe de
Galois topologique, H un sous-groupe de G. Pour que le corps des invariants de H soit égal
a K, il faut et il suffit que H soit dense dans G.

La condition est suffisante, car si H est dense dans G, pour tout z € E, Porbite de
x sous G est égale a son orbite sous H, ce qui montre que le corps des invariants de /1
est égal 4 celui de G, cest-a-dire 2 K. Inversement, supposons que le corps des invari-
ants de [ soit réduit 2 K. Pour toute sous-extension galoisienne F' de degré fini de E,
Iensemble des restrictions 2 /" des g € H est alors un sous-groupe Hp du groupe G
des K -automorphismes de F' ; comme le corps des invariants est réduit a K, en vertu du

théoreme 3, cela implique que Hr = G ; donc que H est dense dans G.

Nous pouvons maintenant généraliser aux extensions galoisiennes éventuellement

infinies le théoréeme fondamental de la théorie de Galois :

Théoreme 4. — Soient E une extension galoisienne d’un corps K, G son groupe de
Galois, I U'ensemble des sous-extensions de E, G lensemble des sous-groupes fermés de G.
Pour tout sous-groupe H de G, soit k(H ) le corps des invariants de H, qui est un élément de
IC, et pour toute sous-extension F de E, soit g(F') son groupe de Galois, qui est un élément
de G. On obtient ainsi deux applications : k : G — K et g : K — G Ces
applications sont bijectives et inverses l'une de l'antre. Si H € G et F' € K se correspondent,
alors F est de degré fini sur K si et seulement si H est d’indice fini dans G, ou encore si et

seulement si H est un sous-groupe onvert de G, on a alors :

[G:H|=[F:K| (%

En effet, le fait que £ o g soit I'application identique n’est autre que la prop. 2, et le
fait que g o k soit I'application identique résulte aussitot de la prop. 18. Comme G/ H
est en correspondance biunivoque avec 'ensemble des K-monomorphismes de F' dans
E (ou ce qui revient au méme, dans une cléture algébrique donnée de F), cela montre
Iégalité (*) en tous cas, compte tenu de §7, prop. 14, cor. 6, ce qui implique que H est
d’indice fini dans G'si et seulement si H est ouvert dans G. Cela acheve la démonstration

du théoréme.
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7. — Groupe fondamental d’un corps, et structure de la catégorie des

algebres étales sur un corps

Définition 6. — Sozent k un corps, 2 une extension séparablement close de k. On appelle
groupe fondamental de k relativement a Q, et on notera 7, (k,2), le groupe de Galois
topologique de la fermeture algébrique séparable ks de k dans S).

Dans cette définition, €2 n’intervient que via la fermeture algébrique séparable k; de &
dans 2. Compte tenu de §7, prop. 22, cor., cette derniére ne dépend pas, a isomorphisme

pres, du choix de €2. On obtient donc :

Proposition 19. — Les groupes fondamentaux d’un corps k, relatifs a deux extensions

séparablement closes quelconques de k, sont isomorphes.

Remarques. — 1) On notera que I'isomorphisme 6 : 1 — 7’ construit dans la dé-
monstration de la prop. 19 dépend du choix d’un isomorphisme u entre deux clétures sé-
parables k; et k. de k. Ce dernier est évidemment déterminé modulo composition par un
automorphisme v de 'extension k.. Orv € 7', et désignant par int(v) 'automorphisme

intérieur de 7’ défini par u :

int(v)(w) = vwv ™,
. e A 5. . /. / RN . .
on voit aussitdt que 'isomorphisme 6" : m1 — 7’ associé a I'isomorphisme w : ks —
/ ’
k. est donné par

0" = int(v) 0 6.

On peut donc dire qu’on a défini une classe d’isomorphismes § : 7 — 7/, modulo
composition par des automorphismes intérieurs de 7’. Lorsque en particulier le groupe
fondamental 7 de k est abélien, on voit qu’on a défini un isomorphisme canonique entre
les groupes fondamentaux 7 et 7', relatifs 2 deux extensions séparablement closes quel-
conques de k.

2) En vertu de la prop. 19, on se permet parfois, par abus de langage, de parler du
groupe fondamental de k, qu’on note simplement 7y (k), sans préciser le choix d’une ex-
tension séparablement close. Ce langage ne présente pas d’inconvénients tant qu’il n’est

question que de propriétés de ce groupe qui sont invariantes par isomorphisme, mais
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doit étre évité en tous cas dans les questions ot interviennent les propriétés fonctorielles
du groupe fondamental.

Rappelons nous que, si k, est une cloture séparable de k, les extensions algébriques
séparables de k sontisomorphes a des sous-extensions de k, et deux telles sous-extensions
sont isomorphes si et seulement si elles sont conjuguées par un élément du groupe de

Galois de k5. On obtient alors, compte tenu du théoreéme 4 :

Proposition 20. — Sozent k un corps, () une extension séparablement close de k, et
G = m(k,Q) le groupe fondamental de k relatif a Q). Alors il y a une correspondance
biunivoque canonique entre les classes, a isomorphisme pres, d’extensions algébriques se-
parables de k, et les classes a conjugaison pres, de sous-groupes fermés de G. Aux classes des

extensions finies correspondent les classes des sous-groupes ouverts i.e. d’indice fini.

Il convient de préciser ce dernier énoncé, en donnant un théoréme de structure sur
la catégorie des algebres étales sur k. L’importance de la notion de groupe fondamental
d’un corps k tient en premier lieu au fait qu’elle permet de formuler un tel théoréme de

structure. Pour ceci, introduisons la

Définition 7. — Soit G un groupe topologique. Un ensemble E a groupe d opératenrs
G est dit admissible si lapplication (g, x) — g.x de G X E dans E est continue, lorsque
E est muni de la topologie discrete et G X E de la topologie produit.

Comme G x E estl’ensemble somme des G x {z}, pour x € E, on voit que cette
condition signifie aussi que pour tout x € I, Papplication g ~~ ¢g.z de G dans ' muni
de la topologie discrete est continue, ou encore que le stabilisateur G, de x dans G est un
sous-groupe ouvert. Ainsi, les ensembles a groupe d’opérateurs GG admissibles sont ceux
qui sont isomorphes 2 un ensemble de opérateurs somme d’espaces homogenes G/ H;, ot
(H;) est une famille de sous-groupes ouverts de GG. Notons que lorsque £ est fini, cela
signifie aussi (comme on voit grice au lemme 1 du n° 6) que 'on peut trouver un sous-
groupe ouvert distingué H, tel que II opere trivialement sur F, i.e. tel que la structure
externe de E' provienne d’une structure 2 groupe d’opérateurs G/ H.

Si GG est un groupe topologique, nous désignons par
Ensf(G)

la sous-catégorie pleine de la catégorie des ensembles a groupe d’opérateurs G, qui sont
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finis et admissibles. D’autre part, si k est un corps, nous désignons par
Et(k)

la catégorie des algebres étales sur k. Supposons maintenant choisi une extension sépara-

blement close {2 de k, et que 'on ait
G= (5! (l{?, Q)

Nous allons, sous ces conditions, définir une anti-équivalence entre les deux catégories

qu’on vient de définir, et de fagon plus précise, nous allons définir deux foncteurs
¢ : Et(k)® — Ens(G),

b : Ens(G) — Et(k)°,

quasi-inverses I'un de I'autre.

1) Définition du foncteur (. On posera pour toute k-algebre étale :
gO(A) = Hornk_alg(A, ]{35) ~ Hornk_alg(A, Q),

ou k; est la fermeture algébrique séparable de £ dans (2, et o1 le deuxieme membre est

considéré comme ensemble 4 groupe d’opérateurs G, en faisant agir ce dernier par
gu=gou (9 € G,uep(A)).

Cet ensemble 2 opérateurs est manifestement fini (de cardinal égal a [A : £]) et admissi-

ble. Siu : A — B est un homomorphisme de k-algebres étales, on définit

p(u) 1 p(B) — p(A)

par la formule
p(u)(v) = vou.
Il est immédiat qu’on définit bien ainsi un foncteur ¢ de Et(k)° dans Ensf(G).
2) Définition du foncteur h. On posera, pour tout ensemble a groupe d’opérateurs

G fini et admissible :
H(E) = Homg(E, k),
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ou le deuxieme membre est considéré comme k-algebre par la structure de k-algebre in-

duite par k; :
(Au)(x) = AMu(z)) (AN k,x € E, u € Homg(E, ky)).

Siu : E — F est un homomorphisme d’ensembles a groupe d’opérateurs G, finis et

admissibles, on définit
b(u) : H(F) — H(E)
par la formule

h(u)(v) =vou.

Il est immédiat qu’on définit ainsi un foncteur contravariant de la catégorie Ensf(G)
dans la catégorie des k-algebres. Prouvons que ce foncteur prend ses valeurs en fait dansla
catégorie Et(k), plus précisément, que h( ) est une algebre étale de degré égal a card(E).
Pour ceci, observons que by transforme sommes en produits, comme on constate aussitot;
compte tenu qu’un produit fini d’algebres étales est une algebre étale, on est ramené a
prouver que notre assertion dans le cas ot E' est de la forme G/H, ott H est un sous-
groupe ouvert de G. Mais alors h(E) est isomorphe au corps des invariants de H dans
ks, qui est une extension de degré fini de k, de degré G' : H, (théoreme 4), donc une
extension étale. Cela prouve en particulier que b définit bien un foncteur de Ensf(G)
dans Et(k)°.

3) Définition d’un isomorphisme fonctoriel :
ag: A— hp(A).
Pour toute k-algebre étale A, on désigne par a4 ’homomorphisme défini par
aa(z)(u) = u(zx) pourz € A, u € p(A) = Homyy4(A, k).

Il est immédiat que c’est un homomorphisme de k-algebres, fonctoriel en A. Prouvons
que c’est un isomorphisme. Pour cela, observons que le foncteur ¢ transforme man-
ifestement produits finis en sommes, et comme f transforme sommes en produits, il
s’ensuit que hy est un foncteur qui commute aux produits finis. Cela nous ramene au
cas ou A est une extension. Donc a4 est nécessairement injectif. Mais en vertu de ce quia

été ditdans 1) et 2), A et hf(A) ont méme degré fini sur &, donc ary est un isomorphisme.
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4) Définition d’un isomorphisme fonctoriel

Be : E— oh(E).

Pour tout ensemble F a groupe d’opérateurs G, fini et admissible, on désigne par B

’homomorphisme défini par

Br(z)(u) = u(x) pourz € E, u € h(F) = Homg(E, ks).

Il est immédiat que c’est un homomorphisme d’ensembles a groupe d’opérateurs G,
fonctoriel en E. Prouvons que c’est un isomorphisme. U'tilisant le fait que ¢b trans-
forme sommes en sommes, on est ramené au cas ot E est de la forme G/ H, ot H est
un sous-groupe ouvert de G. Mais alors h(E) est isomorphe au corps des invariants de
H dans kg, qui est une extension étale de &, d’ou résulte que G opere transitivement sur
©(h(E)), donc, comme E est non vide, que £ — ¢h(E) est surjectif. Or il résulte de
ce qu’on a dit dans 1) et 2) que E et ¢h(E) ont méme cardinal fini, donc I'application

considérée est bijective.

Remarque. — On vérifie aussitdt que les isomorphismes de foncteurs o et S5 sat-
isfont la condition de compatibilité habituelle pour deux foncteurs adjoints, cf. Ens.

Chap. ..§..n° ...

On conclut de ceci :

Théoreme S. — Sozent k un corps, ) une extension séparablement close de k, G' le
groupe fondamental de k relativement a Q). Alors les foncteurs @ et Yy précédents définissent
des équivalences, quasi-inverses l'une de l'autre, entre la catégorie des algebres étales sur k,
et la catégorie opposée de la catégorie des ensembles a groupe d operatenrs G qui sont finis et
admissibles. De plus, si l'algebre étale A sur k et Uensemble a opératenrs E se correspondent,

on a

[A: k] = card(E).

Théoreme S. — Supposons que A et E se correspondent. Pour que A soit une extension
dek, il faut et il suffit que E # & et que G opere transitivement sur F. Pour que A soit de
plus une extension galoisienne de k, il faut et il suffit que le stabilisatenr d’un (ou encore,

de tout) point de E dans G soit un sous-groupe distinguc.
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Corollaire 2. — Supposons que A et E se correspondent. Pour qu'on ait A = 0 (resp.
A ~ k)il faut et il suffit que E = & (resp. que E soit réduit a un point).

En effet, les objets finaux (resp. initiaux) de Et(k) correspondent aux objets initiaux
(resp. finaux) de Ensf(G). On peut aussi prouver ce corollaire directement sans utiliser

leth. 5!

Corollaire 3. — Les produits tensoriels finis dans Et(k) correspondent par les équiva-

lences et Yy aux produits finis dans Enst(G).

En effet, les produits tensoriels d’algébres étales sont les sommes, au sens de la
catégorie Et(k). (N. B. — Bien entendu, le fait que ¢ transforme produits tensoriels
d’algebres en produits ordinaires d’ensembles 4 opérateurs est trivial directement ; ce qui

Iest moins, c’est que b transforme produits ordinaires en produits tensoriels).

Corollaire 4. — Soient A une k-algébre étale a groupe I' d opérateurs (a gauche), de
sorte que p(A) est un ensemble & groupe d opératenrs G, fini et admissible, sur lequel T
opere par fonctorialité a droite (en commutant donc aux opérations de G). Pour que A soit
une algebre a groupe d’opératenrs I galoisienne, il faut et il suffit que 1" opére de fagon
simplement transitive sur 9(A). On obtient ainsi une équivalence de la catégorie des k-
algebres a groupe d’opérateurs ' qui sont galoisiennes, avec la catégorie des espaces princi-
paux homogenes (brrr) a droite sous U, munis du groupe d’opératenrs a gauche G, opérant

de fagon admissible.

La premiére assertion est une conséquence triviale de la définition 2 et du critere (i)
de prop. 6. Les autres assertions s’ensuivent aussitdt, grice au théoreme 5.

Proposons nous maintenant d’interpréter de méme la structure de k-algebre a groupe
d’opérateurs I" galoisienne munie d’une ponctuation relativement a €2 (déf. 3).

Par définition, en termes de 'ensemble £ 4 opérateurs G et I' correspondant, une
ponctuation correspond simplement au choix d’un point  de . Or un tel choix per-
met d’identifier I'espace principal homogene a droite & a I, 4 I'aide de I'application
v +— x.7. Cette identification faite, ’ensemble des automorphismes d’ensemble a
groupe I' d’opérateurs de F peut étre identifié a I', opérant sur I', par translation a
gauche, ce qu’on peut expliciter aussi en disant que pour tout v € I', il y a un unique

I"-automorphisme g = p(7y) de E tel que g.# = x.7, et qu’on obtient ainsi un isomor-
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phisme p de I' sur Autp(E). Par suite, la donnée, sur le [-ensemble £, d’une structure
d’objet a groupe d’opérateurs G équivaut a celle d’'un homomorphisme G — T, et
cette structure est admissible si et seulement si cet homomorphisme est continu. On a
ainsi, a toute k-algebre étale 4 groupe d’opérateurs G galoisienne et ponctuée, associé

canoniquement un homomorphisme continu
G —T,

et de ce qui précede il résulte immédiatement que : a) deux structures de I’espace précé-
dentsontisomorphessi et seulementsi elles définissent le méme homomorphisme G —
I', et b) tout homomorphisme continu G — I' provient d’une structure de espace
envisagée. Notons enfin qu’il résulte immédiatement des définitions que si A est une
algebre 4 groupe d’opérateurs I galoisienne ponctuée, et siI' — I" est un homomor-
phisme de I' dans un groupe fini I", alors ’homomorphisme G — I" associé a A’,
I’algebre a groupe d’opérateurs I'' galoisienne ponctuée déduite de A par extension con-
travariant du groupe structural, n’est autre que le composé G — I' — I. On obtient

donc:

Corollaire 5. — Le procédé qui précede définit un isomorphisme, fonctoriel en le groupe
finiT:
H'(k,Q; ') = Hom cont(G,T),

ou le deuxieme membre désigne l'ensemble des homomorphismes continus de G dans 1.
Utilisant maintenant la prop. 10, on trouve par suite :

Corollaire 6. — Pour tout groupe fini U, désignons par H* (G, T') l'ensemble quotient
de l'ensemble Hom cont(G, I') par les opérations du groupe T', en faisant opérer v € T
sur cet ensemble par composition avec l'antomorphisme intérienr int(vy). Alors on a un

isomorphisme fonctoriel en 1" :

H'(k,T) — HY(G,T).

De plus, nous rappelant que lorsque I est un groupe abélien, on a défini sur H' (k, T')
une loi de groupe abélien, en termes de la propriété de commutation du foncteur

[' ~ H!'(k,T) aux produits finis, et que la loi de groupe naturelle sur H'(G,T') —
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Hom cont(G,I") peut manifestement étre décrite par le méme procédé, (N. B. — un
foncteur d’une catégorie abélienne dans (Ens) qui commute aux produits finis se fac-

torise par (Ab) dune senle maniére). On en conclut :

Corollaire 7. — Lorsque I est un groupe fini abélien, [isomorphisme du corollaire 6

est compatible avec les structures de groupe naturelles sur les deux membres.

Remarque. — Le corollaire 5 permettrait de donner une description du groupe
profini G = m;(k, 2), indépendamment de la théorie de Galois, & isomorphisme unique
pres, comme proreprésentant le foncteur H (k, ; T') en le groupe fini I, cf. exerc. ...

(N. B. — On peut donner en exercice le sortie de la proreprésentation en général,
le lieu au groupe fondamental et a I'exercice suggéré dans le N. B. avant le déf. 5. On
peut également mettre en exercice la théorie de Galois axiomatique dans les catégories
(cf. SGA Vet SGAD X 7.5).)

Considérons maintenant un carré commutatif de corps
K — Y

(0) T T

k—— Q
ot 2 (resp. €2) est une extension séparablement close de k (resp. k). Soit k; (resp.
k!) la fermeture algébrique séparable de k (resp. k') dans € (resp. €2'), d’ott un carré

commutatif de corps correspondant
K —— k.
1) [
k —— ks

compte tenu que k' (k;) dans €’ est une extension algébrique séparable de &' (§7 ...), donc

contenue dans k.. Considérons alors le diagramme de corps
K —— k(ks) —— K.
L
k —— KNk, —— kg

Le diagramme (1), compte tenu que &, est une extension galoisienne de &, définit un

homomorphisme canonique

(3) Gal(K. /k') —> Gal(k, /k),
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qui, grice a (2), peut aussi se factoriser en
(4) Gal(k/k") — Gal(K'(ks)/K') — Gal(ks/K'ks) — Gal(ks/k),

ou le premier homomorphisme est surjectif (cor. 2 a prop. 2), le deuxi¢me bijectif
(théoreme 1), le troisieme injectif (prop. 2) ; en d’autres termes, (4) donne une interpré-
tation en termes de théorie des corps de la factorisation de ’homomorphisme canonique

(3) associé au carré (0). Cet homomorphisme, par définition, peut aussi s’écrire :
(5) m (K, Q) — m(k,Q),

etil S’appelle [homomorphisme sur les groupes fondamentaux induit par le carré (0).

Le plus souvent, on se borne a prendre une extension 2’ de £, et on désigne par 2
extension correspondante de k ; il est évident que le choix d’une autre sous-extension
séparablement close €2 de 2’ sur k ne modifie pas, 4 isomorphisme canonique prés, le
carré (1), donc ne modifie pas, 2 isomorphisme canonique pres, ’homomorphisme (5).

En vertu de prop. 17, ’homomorphisme (5) est continu, en particulier son image est

fermée. De plus, la factorisation canonique (4) donne :

Proposition 21. — Le noyau de I’homomorphisme (5) est canoniquement isomor-
phe an groupe de Galois topologique de k., sur k'(ks), et lespace homogéne quotient du
groupe but par 'image est en correspondance biunivoque canonique avec l'ensemble des k-
homomorphismes de ki dans ks, on ki = k' N ky est la cléture algébrique séparable de k
dans k. Pour que 'image de l’homomorphisme (5) soit d’indice fini dans 7, (k, Q) il faut
et il suffit que k' soit une extension de degré fini de k.

N. B. — On aimerait pouvoir dire : c’est le cas particulier si &’ est une extension de
type fini de k. Or il aurait fallu pour cela avoir dit qu’une sous-extension d’une extension
de type fini est de type fini. C’est la un résultat utile, que je propose d’inclure dans un
nouveau n° au §5, intitulé : extensions de type fini.

Il manque un résultat de transitivité sur les homomorphismes des groupes fonda-
mentaux de corps, permettant de dire que (£, €2) est un foncteur contravariant en
(K, 2), 2 valeurs dans la catégorie des groupes profinis, et de dire que, pour un carré (0)
donné, le foncteur “extension du corps de base” de Et(k) dans Ensf(k’), s’interpréte,

compte tenu des équivalences Et(k’) ~ Ensf(7) et Et(k’) ~ Ensf(n’) du théoreme 5,
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comme le foncteur restriction du groupe d’opérateurs ; comme corollaire, on obtient que
les bijections du th. 5, cor. 5 et 6, sont fonctorielles également en (k, §2), non seulement
en le groupe I'. Le rédacteur suppose que Bourbaki peut se faire une idée suffisamment
nette de I'allure qu’aurait un n° sur le groupe fondamental d’un corps, sans qu’il soit
nécessaire d’aller jusqu’au bout du sorite.

Autocritique du rédacteur. Il est manifeste qu’on comprend moins bien que si
on pouvait renverser les fleches et parler de schémas étales sur k, de sorte que I'anti-
équivalence du théoreme 5 devient une équivalence, et les algebres a opérateurs galoisi-
ennes deviennent les fibrés principaux homogenes. On pourrait essayer, dans un n°
heuristique, d’expliquer ce point de vue, et la relation entre la théorie de Galois et la
théorie des revétements ; on pourrait y dire aussi que les petits bouts de H! introduits
ici s’inserent dans la théorie générale de la cohomologie, permettant d’utiliser des suites
exactes diverses etc, ce qui fait 'intérét du formalisme. Evidemment, on peut proposer
également de vider purement et simplement le groupe fondamental et le théoreme 5, en
disant qu’il est toujours temps de faire cette théorie avec la généralité qui lui appartient
(sic) plus tard, quand on dispose d’un langage géométrique. Je pense cependant que le
cas des corps est assez important pour mériter un traitement séparé, utilisant les simplifi-
cations techniques spéciales a ce cas pour obtenir le théoréme de structure pratiquement
sans travail. — Le seul travail étant d’aligner dans un ordre agréable les sorties fonctoriels

utiles de la théorie.
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PROJECT DE REEDITION D’ALGEGRE, CHAP. V (CORPS
COMMUTATIEFS)

(suite et fin)
COMMENTAIRES

Contrairement a son intention premiere, le rédacteur s’est abstenu de faire figurer dans la
rédaction un paragraphe sur les algebres radicicielles. Aprés une rédaction au brouillon
sur ce sujet, il a jugé en effet que ce sorte peu substentiel est plus a sa place en Géométrie
Algébrique, ou il devient plus intuitif, que dans un Chapitre de théorie des corps (ou
d’Algebre Commutative). Compte tenu de la décision louable de Bourbaki de faire fig-
urer la sortie des normes et traces dans un Chapitre antérieur (et les énoncés spéciaux
au cas d’algebres ou extensions étales, dans les par. 7 et 8 du présent Chap. V), le plan
prévu pour la rédaction du Chap. V se présente donc maintenant ainsi (avec par. 136

ne variature) :
7. Algebres entieres séparables.
8. Théorie de Galois.
9. Racines de I'unité, corps finis, extensions kummeériens.
10. Algebres séparables transcendantes. Produits tensoriels d’extensions.

11. Dérivations et différentielles dans les corps.



On trouvera ici une rédaction a peu pres en forme du par. 10. Le rédacteur s’est dispensé
de reprendre la rédaction du présent par. 9; il suftira de faire par rapportau texte imprimé
quelques modifications, énumérées dans les commentaires a la rédaction n® 457 (page 3).
Je me suis également dispensé de faire une rédaction du par. 11, bien qu’il convienne ici
de faire des modifications subtantielles par rapport au texte imprimé, et me suis contenté
de proposer au Maitre un plan possible pour ce paragraphe, inspiré par EGA 1V, par.
18 4 21 (qui pourront fournir, pour le moins, une quantité respectable d’exercices pour

Iédition nouvelle du chap. V).
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§ 10. — ALGEBRES ENTIERES SEPARABLES SUR UN CORPS.
CLOTURE SEPARABLE ET CLOTURE PARFAITE D’'UN
CORPS

1. — Criteres de séparabilité de Mr N. bourbaki et de Mac-lane

Lemme 1. — Soient k un corps, Q une extension de k, V' un vectoriel sur k, (u;);cr une
famille d’homomorphismes de V' dans le k-espace vectoriel sous-jacent a ). Les deux con-

ditions suivantes sont équivalentes :

(i) L’homomorphisme V @y, Q0 — Q! déduit de la famille (u;) est injectif.

(1) Pour tout sous-espace vectoriel W de 'V, de rang fini n, le rang sur Q) de la famille
des restrictions w;|W : W — Qest égal a n.

On est réduit aussitot a prouver le lemme dans le cas out V' est lui-méme de rang fini sur
k, utilisant le fait que V' est limite inductive de ses sous-espaces vectoriels de rang fini W,
etque V ®j Q estalors la limite des W ®, €2. De plus, quitte a remplacer V par V ®, €2,
etles u; par leshomomorphismes V' ®, {2 — (2 correspondants, on peut supposer que
k = Q. Mais dire que (ii) est vérifiée, signifie aussi que les u; engendrent le dual V' de
V' (qui, on le sait, est en effet de rang égal au rang n de V'), ou encore que 'orthogonal
dans V' de la famille des u; est réduit a zéro ; or cet orthogonal n’est autre que le noyau

de ’homomorphisme envisagé dans (i), d’ot1 notre assertion.

Corollaire. — Soient k un corps, A une k-algébre, Q) une extension de k. Les conditions

sutvantes sont équivalentes :



(1) La Q-algébre A ®y, ) est isomorphe a une sous-algébre d’une algébre de la forme

QL 0a I est un ensemble d’indices convenable.

(1) Pour tout sous-k-espace vectoriel V' de A, de rang fini n sur k, le rang sur Q) de

Uensemble des restrictions a' V' des k-homomorphismes de A dans 2 est égal a n.

De plus, ces deux conditions équivalentes impliquent que A est une extension séparable sur

k.

L’équivalence des conditions (i) et (ii) est un cas particulier du lemme, obtenu en
prenant V = A, (u;);e; = famille de tous leshomomorphismes de k-algebres de A dans
(2. D’autre part, le fait que (i) implique que A est séparable sur k, résulte aussitot de (Par.
7,n° 3, prop. 12, (iv), (i) et (ii)).

Lemme 2. — Sodent k un corps d’exposant caractéristique p, A une k-algebre. Les

conditions suivantes sont équivalentes :
(1) A®y kP~ est réduit.
(1 bis) A @y kP~ est réduit.
(ii) Pour toute extension radicielle k' de k, A @y, k' est réduit.
(i bis) Pour toute sous-extension finie k' de kP, A @y, k' est réduit.

(1iz) Pour toute famille (x;);cr d’éléments de A linéairement libre sur k, la famille

(a?)icq est linéairement libre sur k.

(iii bis) 1l existe une base (x;)icr de A sur k telle gue la famille (27 soit linéairement libre

surk.

Comme pour toute sous-extension k” d’une extension £’ de k, A ®, k" s’identifie 2 un
sous-anneau de A ®y; k', et que lorsque &’ est réunion d’une famille filtrante croissante
de sous-extensions k,, alors A ®;, k' est réunion filtrante croissante des sous-anneaux
A ®y, kg, donc réduit si et seulement si ces derniers le sont, on voit aussitdt que 'on a
les implications (i) <= (it), (ibis) <= (iibis). De plus, (7) équivaut aussi

(pour la méme raison) 1 la condition (i) : A ®j kP~ est réduit pour tout entier naturel
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r > 1. Or pour un r donné, montrons que A ®y, kP~ réduit équivaut a chacune des
conditions (7i7) et (74i bis) ; comme ces dernieres sont indépendantes de 7, le lemme 2
en résultera évidemment. Notons d’abord qu’on voit aussitot, par récurrence sur r, que
chacune des conditions (77) et (i77 bis) reste inchangée, a équivalence pres, quand on 'y
remplace z” par 2¥". Ceci dit, montrons que (,.) implique (iid) : si B = A @ kP " est
réduit, ’homomorphisme x + 2" de B dans lui-méme induit un isomorphisme de B
sur BP" = k(AP") C A, dailleurs semi-linéaire relativement aux structures naturelles
d’algebres de B et BP" sur kP et k respectivement, et 3 ’homomorphisme A — AP
de k7" dans k. Sialors (z;);c; est une famille d’éléments de A linéairement libre sur k,
alors (7; ® 1);er est une famille linéairement libre de B = A ®; kP sur kP ', donc
par transport de structure la famille des (z; ® 1)?" = 2" est linéairement libre sur k,
d’otr (i77). Evidemment (i) implique (i7i bis), enfin (4ii bis) implique (i,), comme
on voit en reprenant en sens inverse le raisonnement précédent : (i77 bis) implique que
’homomorphisme = > 2P" de A dans lui-méme est injectif, puisque les images des x;,
étant linéairement indépendantes sur k, le sont a fortiori sur 7" Cela implique déja que
A est réduit, et I’hypothese que (2 ) est linéairement libre sur k s’interpréte en disant
que ’homomorphisme canonique AP ® o k — Aestunisomorphisme. Doncle pre-
mier membre est réduit. Par transport de structure i 'aide de  — x? ", on en conclut
que A ®j kP~ est également réduit. Cela achéve la démonstration du lemme 2.

Nous verrons un peu plus bas que les conditions envisagées équivalent a celle que A

soit séparable sur k. Bornons-nous pour I'instant a la précision suivante :

Corollaire. — Supposons que A soit une extension de k, et supposons A et kP - plongés
dans une méme sur-extension Q. Alors les conditions équivalentes du lemme 2 équivalent

AUSSL aux suivantes :

(iv) Aet kP~ sont linéairement disjoints sur k.

—y -1 C .y
(1v bis) Aet kP~ sont linéairement disjoints sur k.

On sait en effet que (iii bis) et (iv bis) sont équivalents ; plus généralement, pour tout
entier 7 > 1, la condition (iii bis) (ot1 on peut, on I’a déja signalé, remplacer x; par 2% )
équivaut a la disjonction linéaire de A et kP~" sur k. Ces derniéres conditions, pour 7
variable, sont donc équivalentes entre elles, et comme leur conjonction équivaut a (iv),

on voit que (iv) équivaut a (iv bis), ce qui acheve la démonstration du corollaire.
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Théoreme 1. — Sodent k un corps d’exposant caracteristique p, K une extension de

k, Q une extension algébriquement close de K, kP~ la cdéture parfaite de k dans C), et
-1 . . , s . .

kP la sous-extension de celle-ci formée des éléments dont la puissance p-éme est dans k.

Les conditions suivantes sont équivalentes :
(1) K est une extension séparable de k (par. 7, n° 3, def. 5).
(ii) K est linéairement disjoint sur k avec kP~ .
(17 bis) K est linéairement disjoint sur k avec kP -

(i7i) La Q-algebre K ®y, §) est isomorphe a une sous-algébre d'une algebre de la forme

0L pour un ensemble d’indices convenable 1.

(iv) Pour tout sous-k-espace vectoriel V de rang fini n de K, l'ensemble des restrictions a

V de la famille des k-automorphismes de Q2 a un rang sur Q) égal a n.

Les implications (iv) = (#i7) = (i) sont un cas particulier du corollaire au lemme 1.
L’équivalence de (iv) et (44) est un cas particulier du théoréme d’Artin (Par. 6, n° 4, th.
1) ot on fait K = k, G = ensemble des k-automorphismes de {2 ; on tient compte de
plusdu faitque k7~ estle corps des invariants du groupe G des k-automorphismes de
(Par. 7,n° 5, prop. 16, cor. 1), et que la disjonction linéaire de K sur £ avec une extension
k' (ici k' = kP~ ™) signifie que tout sous-k-espace vectoriel V' de K, de rang fini n, est de
rang n également sur k. Enfinona (i) = (i1) <= (it bis) en vertu du corollaire au
lemme 2, compte tenu que par définition, si K est séparable sur k, K ®j, kP~ est réduit.

Cela achéve la démonstration du théoréme 1.

Corollaire 1. — Soit k un corps parfait. Alors toute extension de k est séparable. Plus

généralement, pour toute algebre A sur k, A est séparable si et seulement si elle est réduite.

La premitre assertion résulte aussitot de 'implication (ii) = (7) du théoreme, et de
égalité k = kP~ exprimant que k est parfait. Il reste 2 en déduire que toute k-algebre
réduite A est séparable. Or en vertu de App. 2.12, dire que A est réduite signifie que A
se plonge dans un produit de corps, qui sont donc des extensions séparables de k d’apres

ce qui précede ; on en conclut que A est séparable sur £ grice a (Par. 7, n° 3, prop. 12,

(i) et (if)).
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Corollaire 2. — Soient k un corps, A une k-algébre, k' une extension parfaite de k.

Pour que A soit séparable sur k, il faut et il suffit que A ®y, k' soit un anneau réduit.

En effet (Par. 7, n° 3, prop. 12, (iv)) A est séparable sur £ si et seulement si A’ =
A ®y, k' Pest sur k', et on applique le corollaire 1.

Corollaire 3. — Sozent k un corps parfait, A et B deux k-algebres réduites, alors A ®y,
B est une k-algebre réduite.

C’est une conséquence du corollaire 1 et de (Par. 7, n° 3, prop. 11).

Remarques. — 1) Soit k un corps. Pour que k soit parfait, il faut et il suffit que toute
extension de £ soit séparable, ou encore que toute algebre réduite sur & soit séparable, ou
ce qui revient encore au méme, que le produit tensoriel de deux extensions de k (resp.
de deux algebres réduites sur k) soit un anneau réduit. La nécessité a été vue dans les
corollaires 1 et 3 précédents, la suffisance résulte trivialement de la définition des corps
parfaits (Par. 7, n° 6, déf. 7).

2) Comme tout corps de caractéristique nulle est parfait, (Par. 7, n° 6, th. 1, cor.
1), on conclut que le produit tensoriel de deux algebres réduites sur un tel corps est un

anneau réduit.

Proposition 1. — Soient k un corps d’exposant caractéristique p, A une k-algébre. Les

conditions suivantes sont équivalentes :
(1) Aest une k-algebre séparable.
(i1) A @y kP~ est un anneau réduit.
(i1 bis) A @y kP est un anneau réduit.
(ii ter) Pour toute sous-extension finie k' de kP, A @y, k' est réduit.

(177) 1l existe une extension Q) de k, telle que A ®y, §) soit Q-isomorphe a une sous-algebre

d’une algebre de la forme Q!, I un ensemble d’indices convenable.

(iv) 1l existe une extension Q) de k, telle que pour tout sous-k-espace vectoriel V de K, de
rang finin sur k, lensemble des restrictions a V' de la famille des homomorphismes

de k-algébres de A dans ) soit de rang sur Q) égal a n.
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(v) A est réduit, et pour tout entier premier minimal p de A, le corps des fractions de

A/p est une extension séparable de k.

En effet, 'équivalence des conditions (7i7) et (iv), et le fait que celles-ci impliquent la
condition (%), résulte encore du lemme 1 et de son corollaire. D’autre part il est trivial
que 'on a les implications (¢) = (74) = (it bis) <= (ii ter). Il reste 2 prouver les
implications (¢ bis) = (v) et (v) = (7). Or, utilisant (Par. 7, n° 3, lemmes 2 et 3),
on trouve que I’hypothese (i bis) est stable par passage de A 4 tout anneau de fractions
S~1A, relativement 4 une partie multiplicativement stable S de A. Prenant pour S un
ensemble de la forme A — p, p un idéal premier minimal de A, on trouve que S™' A
est isomorphe au corps des fractions k(p) et A/p (compte tenu que A est réduit, ce qui
résulte du fait que A est isomorphe 2 un sous-anneau de A ®y, kP, qui est réduit par
hypothese). Donc k(p) @5 kP est réduit, ce qui signifie aussi que k(p) est linéairement
disjoint de k? “'sur k (cor. aulemme 2), et implique en vertu du théoreme 1 (implication
(41 bis) = (7)) que k(p) est séparable sur k. Cela montre que (i7 bis) = (v).

Enfin, (v) implique que A est isomorphe 2 une sous-k-algebre de I'algebre produit
des k(p), ot p parcourt les idéaux premiers minimaux de A. Appliquant le théoréme 1
(implication (7) = (4i7)) 2 chaque k(p), et prenant une extension €2 de k contenant
pour chaque p une sous-extension k-isomorphe 2 une cloture algébrique de k(p), on
trouve que pour tout P, k(p) @y €2 est Q-isomorphe A une sous-algebre d’une algebre
produit Q/®), ot I(p) est un ensemble convenable. Prenant pour I un ensemble somme
des I(p), on voit que le produit des k(p) @, 2 se plonge dans 2/, d’autre part en vertu
de (Par. 7, n° 3, lemme 1) A ®j, € se plonge dans le produit des k(p) ®j, €2, donc aussi
dans Q7, ce qui montre la validité de la condition (744), et établit que (v) implique (4ii).
C.Q.ED.

N.B. — Autocritique. On a utilisé le fait que si A est un anneau réduit, et p un
idéal premier minimal de A, alors le localisé A, est canoniquement isomorphe au corps
des fractions de A/p. SiBourbaki tient 4 la proposition 1, il faudrait donc, soit donner
ici la propriété énoncée sous forme de lemme ad hoc, soit I'inclure antérieurement dans
le sorite sur les anneaux réduits, idéaux premiers etc. préconisé dans I’Appendice. (On
pourrait éventuellement faire un petit paragraphe a part, dans le Chapitre V de théorie
des corps, contenant les résultats d’algebre plus ou moins commutative dont on aimerait

pouvoir disposer et qui n’auraient pas trouvé leur place dans un Chapitre antérieur.) Si
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la prop. 1 est adoptée, il semblerait d’ailleurs plus raisonnable de la baptiser th. 1, le th.

1 actuel devenant corollaire (m. pour la disjonction linéaire !).

Corollaire 1. — Sozent k un corps, K une extension algébrique de k, A une K-algebre.
Pour que A soit séparable sur k, il faut et il suffit que K soit séparable sur k, et A soit
séparable sur K.

Le “il suffit” a été mis pour mémoire, étant établi sous des conditions plus générales
dans (Par. 7,n° 3, prop. 12, (v)). Pour le “il faut”, on note d’abord que si A est séparable
sur k, il en est de méme du sous-anneau [, en vertu de (Par. 7, n° 3, prop. 12, (i)). Reste
aprouver que A est séparable sur K, ou ce qui revient au méme en vertu de la proposition
1,que A®g K P~ est réduit. Or comme K /k est séparable, donc linéairement disjoint
de kP~ qui est algébrique sur £, on en conclut que K ®j, kP~ estun corps, isomor-
phe au composé K (k" ™) dans kP~ . Ce composé, étant algébrique sur k¥~ (puisque
K est algébrique sur k), est un corps parfait, comme il contient K et est contenu dans

K?™ ™, ilestisomorphe 3 K¥ . Par suite

oo

AR KP 7 ~ A@g (K@ k? 7))~ A@p kP,

etcomme le dernier terme est réduit, A étantséparable sur k, il en est de méme du premier

terme, ce qui prouve le corollaire.

Corollaire 2. — Soient k un corps d’exposant caractéristique p, A est une k-algébre, S
une famille d’éléments de A entiers sur k. Pour gue k[S] soit séparable sur k, il faut gue
Lon ait k[S] = Kk[SP), et cette condition est également suffisante lorsqu’on suppose S de

rang fini sur k.

Posons K = k[S), la relation k[S] = k[SP] s’écrit aussi K = k[KP]. On peut
évidemment dans la premiére assertion se borner au cas ot S est fini, donc on est ramené
au cas ou K est fini sur k. On peut alors remplacer K par une base linéaire S de K sur
k, S = (2;)ier. Pour que K soit séparable sur £, il faut et il suffit que S? = (a}) soit
libre sur £ (en vertu de prop. 1) ou encore que ce soit une base (puisque K est de degré
fini sur k), ce qui signifie X' = k[SP].

N.B. — Le rédacteur ne serait pas opposé a un vidage de ce corollaire, qui s’est borné

a copier sur I’état actuel de Bourbaki.
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2. — Fermature entiére et extension du corps de base

Théoreme 2. — Soient k un corps, A une k-algébre, B une sous-algébre de A, C' l'ensemble
des éléments de A entiers sur B, k' une extension de k, A', B', C" les k'-algébres déduites
respectivement des k-algébres A, B, C par extension du corps de base. On identifie B' et
C" a des sous-algébres de A', avec B' C C'.

Alors :

a) Silextension k' de k est séparable, alors C' est la fermeture intégrale de B' dans A'.

b) En tous cas, si D' désigne la fermeture entiére de B' dans A', on a C' C D', et
pour tout ' € D', il existe un entier r > 0 tel que 2P € C'onpest! exposant

caracteristique de k.

Il est trivial que 'on a C" C D'. Montrons I'implication inverse lorsque &’ est une ex-
tension séparable de k. Supposons d’abord k parfait. On voit aussitdt que si I'assertion
voulue est prouvée en remplacant & par une sur-extension k", elle est également vraie
pour k. Cela nous permet de supposer &’ algébriquement clos, ’hypothese & parfait
nous assurant que toute extension de k est séparable, donc que I’hypothese de séparabil-
ité n’est pas perdue. Nous savons alors (Par. 7, n° 6, th. 1) que k est identique au corps
des invariants du groupe des k-automorphismes de £’. Pour tout tel automorphisme
g, considérons 'automorphisme correspondant g = id4 ®;g de A’; on a évidemment
g(B') = B',d’ou résulte par transport de structure que g(D’) = D'. Comme cecialieu
pour tous les g, on conclut de (Chap. III...) que'ona D' = D ®; k',ou D = D' N A.
CommeonaD D Cetque D estévidemment entier sur C, on en conclut par définition
de C'que D = C, ce qui acheéve la démonstration dans ce cas. Lorsque £ est quelconque,
considérons la cloture parfaite £y de k (réf.), et posons k} = k1 ® k'. Comme £’ est
une extension séparable de k, k] est un corps, extension séparable de k (Par. 7, prop. 12,
(iv)). Définissons Ay, By, Cy resp. A, By, C] a partir de A, B, C' par le changement
de corps de base k — ky resp. k& — k. Utilisant ’énoncé déja démontré dans le
cas du changement de base k; — k1, pour la fermeture enti¢re D; de B; dans A;, on
trouve que la fermeture entiére de B} dans A} n’est autre que D} = D; ®y, kj. Par
suite la fermeture entiére D’ de B’ dans A’ est contenue dans D} N A, évidemment égal
a (D1 NA)® k. Or Dy N Aestégal 2 la fermeture entiere C' de B dans A (réf. Par.
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3), donc D’ est contenu dans C' = C' ®, k', ce qui prouve I'assertion a) du théoréme
2. (N.B. - On a utilisé le fait suivant, qui devrait donc figurer au Par. 7 dans le sorite
des algebres entiéres : si A est une algebre sur un corps k, B une sous-algebre, k1 une
extension de k, A; et By déduits de A, B par changement de corps de base, et si enfin
x € A, alors x est entier sur B si et seulement si il est entier sur B.)

Il reste & prouver, lorsque k' n’est plus supposé séparable sur k, que pour tout 2’ €
D', il existe 7 > 0 tel que 2" € C'. Quitte 2 remplacer k" par une sur-extension, on
peut supposer k' parfait, donc que k' contient une cloture parfaite k1 de k. Désignant
par D la fermeture entiere de B; = B ®j, ki dans A} = A ®y, ky, on sait d’apres ce
qui précede, appliqué a I'extension séparable &’ de k; et 3 la sous-algebre By de A3, que
D" = Dy ®y, k', ce quinous ramene aussitdt au casou k' = k; estla cloture parfaite de k.
Alors k' est limite inductive de ses sous-extensions finies k;, qui sont des extensions finies
radicielles de k, et A’ et B’ sont respectivement limites inductives des A} = A ®y, ki et
B} = B ®y, ki. Ainsi pour i assez grand, 2’ provient d’un A}, et de méme les coefficients
d’une équation de dépendance intégrale de 2’ sur B’ proviennent, pour ¢ assez grands,
d’un B{. Ceci nous raméne au cas ot &’ est une extension radicielle finie de k. Mais alors
il existe un entier r > 0 tel que pour tout A’ € k', on ait \NP" e k. 1l en résulte que
pour toutz’ € A’,onaz” € A.Sidoncz’ € A estentier sur B', alors 2’7 est entier
sur B'?", qui est contenu dans B, donc il est dans C, et a fortiori dans C”. Cela achéve la

démonstration du théoréme 2.

Corollaire 1. — Avec les notations du théoréme 2 pour k, A, K/, si k est algébriguement

fermé dans A, et si k' est une extension séparable de k, alors k' est algébriquement fermé

dans A\ = AR K.

Cela résulte en effet du fait que tout élément de A’ qui est régulier dans A’ est régulier

dans A”.

Corollaire 2. — Avec les notations précédentes, supposons que A soit un corps, et qu 'on

ait k' = k((z;)icr), ot (x;)ie1 est une base de transcendance de k" sur k. Alors 'anneau

total des fractions de A @y, k" = A" sidentifie a A((x;)ier) @i K.

En effet, avec les notations du corollaire 1, on a évidemment un isomorphisme
canonique A} =~ A((z;);er), et tout revient a prouver que A} @ k" est égal 4 son

propre anneau total des fractions, de sorte que notre corollaire se réduit au résultat suiv-
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ant:

Lemme 4. — Sozent k un corps, K une extension de k, k' une extension algébrigue de
k, alors K ®y, k' est égal a son propre anneau total des fractions, i.e. tout élément régulier

de cet anneaw est inversible.

En effet (par. 3), K’ = K ®, k' est entier sur K puisque £’ est entier sur k, d’ott
aussitot le résultat en écrivant K’ comme limite inductive de ses sous-algebres finies sur
K. (N.B. — Bien entendu, le lemme 4 est un remords du par. 3, qui de toutes fagons

devait étre réécrit.)

Proposition 2. — Soient k un corps, L une extension de k, K une sous-extension de
L, k' une extension de k, K' (resp. L') l'anneau total des fractions de K @y, k' (resp. L ®,

k'). Sous ces conditions :

1) Si K est algébriguement fermé dans L, et si lextension k' de k est séparable, alors

K est intégralement fermé dans L.

2) Sitout élément de L algébrique sur K est radiciel sur K, alors pour tout élément '
de L' entier sur K, il existe une puissance p"(r > 0) de lexposant caractéristique

pdek, telle que v € K.

On notera que cet énoncé a un sens grice au corollaire 2 du lemme 3, qui permet
d’identifier K’ 3 un sous-anneau de L. Démontrons la proposition 2 d’abord dans le
cas ou kK’ = k((x;)ier) est une extension pure de k, de sorte que 'on a alors L' =
L((z)ier), K = K((x;)icr). Dans ce cas, la proposition est essentiellement équiva-

lente au

Corollaire. — Soient K un corps, L une extension de K, (x;)ic; une famille
d’indéterminées alors la fermeture algébrique de K ((x;)icr) dans L((x;)icr) est égale
a M ((x;)ier), on M est la fermeture algébrique de K dans L.

\

Comme M ((z;)er) est évidemment algébrique sur K ((z;)icr), on est réduit a
prouver que tout élément f € L((z;);er) algébrique sur K’ = K ((2;);er) appartienta
M'" = M((z;)ier)- On est ramené aussitot au cas ou [ est fini, puis de proche en proche

au cas ou [ est réduit a un seul élément, de sorte que f est une fonction rationnelle en
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une variable z. Ecrivons f souslaforme P/Q, ot P et ) sont deux polyndmes étrangers
de L[z] (réf. Chap. IV 22 Cf. commentaires dans App. 4). Ecrivant une équation de
dépendance intégrale pour f sur K (z), et chassant les dénominateurs, il vient une rela-

tion
(*) GoP" + g P"'Q+ - + g.Q" = 0,

les g; € K[x], et go # 0. On conclut de cette relation que ) divise go ", donc étant
étranger a P, il divise go (réf....), de sorte que, quitte & multiplier P et () par un méme
facteur, on peut supposer () = go, donc Q € Kx]. Parsuite P = f() est algébrique
sur /{(x), et on est ramené & prouver que P € M|z}, i.e. on est ramené au cas o1 f est

un polynéme. Ecrivons donc
[ =apx" + -+ ay, a; € L,

et prouvons que les a; sont algébriques sur K. Nous procédons par récurrence sur le
degré de f, assertion étant triviale si ce dernier est < 0. Ceci nous rameéne a prouver que
le terme constant a,, est algébrique sur K (en appliquant alors ’hypothese de récurrence
a(f — ay,)/x). Or considérons 'équation de dépendance intégrale (*) (ol maintenant
P = f,QQ = 1), ony peut supposer que les g; ne s’annulent pas tous simultanément
a Porigine (quitte a diviser par une puissance convenable de ). Faisant la substitution
x = 0 dans cette équation, on trouve une équation de dépendance algébrique pour
an, = f(0) sur K, ce qui acheve de prouver le corollaire.

Pour prouver la proposition 2, 2° dansle cas général, on écrit k' comme une extension
algébrique d’une extension pure de k, ce qui, compte tenu du corollaire, nous ramene au
cas ou1 k' est une extension algébrique de k. Mais alors, en vertu du lemme 4, K” et L'
s’identifient respectivement aux produits tensoriels X ®j, k" et L ®j, k', et 'assertion
a prouver est un cas particulier du théoreme 2, b). Un argument analogue, invoquant
cette fois-ci le théoréme 2 a), prouve la validité de la conclusion de la partie 1°) de la
proposition 2, dans le cas particulier o1 £’ est une extension algébrique séparable d’une
extension pure de k. Or nous verrons au paragraphe suivant qu’il en est ainsi, chaque fois
que k' est une extension séparable de type fini de k. D’autre part, on se ramene aussitot au
cas ol 'extension envisagée k' de k est de type fini, en écrivant &’ comme limite inductive

de ses sous-extensions de type fini. Cela achéve la démonstration de la proposition 2, sous
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réserve (pour la partie 1°) de la démonstration du résultat du paragraphe suivant qu’on
vient d’invoquer ; le lecteur notera d’autre part que ledit paragraphe est logiquement
indépendant du paragraphe présent.

N.B. — Au concours : éliminer le résultat en question de la démonstration du 1° de
la prop. 2. Signalons que la démonstration (par Cartier) dans le vieux séminaire Cartan-
Chevalley du corollaire 4 la proposition 2 se faisait également par voie diftérentielle (en
utilisant le critere différentiel d’étalité d’une extension de type fini). Le rédacteur s’est
fatigué a trouver une démonstration plus directe, dans le but de rendre le présent para-
graphe (a 'exception de prop. 2, 1°, qu’on peut rejeter dans le par. suivant) indépendant

du tapis différentiel.

3. — Algebres géométriquement irréductibles et algebres géométrique-

ment intégres

Théoreme 3. — Soient k un corps, A une k-algebre, B l'annean réduit quotient de A par

son nilradical (vef.). Les conditions suivantes sont équivalentes :

() Pour toute extension k' de k, A ®y, k' est un anneaun irréductible, i.e. son quotient

par son nilradical est intégre.

(7 bis) 1l existe une extension séparablement close (véf.) k' de k, telle gue A @y, k' soit un

anneau trréductible.
(i ter) Pour toute extension étale k' de k, A Qy, k' est un anneau irréductible.
(1) Pour toute extension séparable k' de k, B ®y, k' est intégre.
(11 bis) 1l existe une extension séparablement close k' de k telle gue B ®y, k' soit intégre.
(17 ter) Pour toute extension étale k' de k, B @y, k' est intégre.

(117) B est intégre, et si K désigne son corps des fractions, K la fermeture algébrique de
kdans K (réf.), K est une extension radicielle (réf) de k.

Notons que si C' est un anneau, et J un nilidéal de C, alors C' est irréductible si et seule-
ment si C'/J Pest ; cela implique déja que chacune des conditions envisagées est invari-

ante quand on y remplace A par B, de sorte qu’on est ramené au cas ou A est réduit.
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Nous prouverons le théoreme 3 suivant le diagramme d’implications :

(ili) == (i).

Les implications (i) = (i bis), (¢) = (i ter), (i1) = (74 bis), (i7) = (i ter) sont triv-
iales. Comme pour toute extension séparable k' de k, A ®j, k' est réduit, donc integre
si et seulement si il est irréductible, nous concluons aussitot les implications verticales
(1) = (i), (¢ bis) = (iibis), (i ter) = (ii ter). Comme un sous-anneau d’un an-
neau intégre est intégre, on voit que les conditions (4 bis) et (¢7 ter) impliquent chacune
que A est integre. Soient alors K, K, comme dans 'énoncé de (iii), et prouvons que
K (sous 'une ou I'autre des conditions précédentes) est une extension radicielle de k.
Notons d’abord qu’en vertu de (Par. 7, n° 3, lemme 2), et compte tenu qu’un anneau
localisé d’un anneau integre est intégre, on trouve que I'une et 'autre hypothése (74 bis),
(41 ter) est stable par passage de A 2 K{. Les conditions envisagées étant également sta-
bles par passage 2 un sous-anneau, on voit que K| satisfait 2 la méme hypothese que A.
L’implication (77 bis) = (4i7) et (77 ter) = (74i) résulte alors de la partie “il suffit” du

corollaire suivant :

Corollaire 1. — Sozent k un corps, K une extension algébrique de k. Pour que K soit
une extension radicielle, il fant et il suffit que pour une extension k' séparable et séparable-
ment close de k, ou encore pour toute extension étale k' de k, l'annean K ®y, k' soit intégre

(donc un corps, étant entiére sur k').

Il nous suftira ici de démontrer le “il suffit”, pour notre preuve du théoreme 3, qui a
son tour implique trivialement le corollaire. Or si /K n’est pas radicielle, alors en vertu de
(Par. 7,n° 5, prop. 16, cor. 4) il existe une sous-extension étale L de K de degré > 2. Si
k' est, soit une extension séparablement close de k, soit une extension étale “assez grande”
de k, il résulte de (Par. 7, n° 2, prop. 5) que L ®j, k' est diagonalisable, et étant de degré
> 2, c’est donc un anneau non intégre, ce qui contredit ’hypothese (47 bis) resp. (74 ter).

Pour prouver le théoréme 3, il nous reste donc a établir 'implication (4i7) = (i), qui

est la partie non triviale de la preuve. Il suffit évidemment de prouver que les conditions
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(iii) sont stables par toute extension k' /k du corps de base, et pour ceci on est ramené 2 le
prouver séparément dans les deux cas suivants : 1°) &’ est une extension pure de k, et 2°)
k' est une extension algébrique de k. D’ailleurs, pour k" quelconque, quitte a remplacer
A par B, ce qui ne change pas la conclusion qu’on veut établir, on peut supposer déja A
integre. Comme alors A ®j, k’ est isomorphe 2 un sous-anneau de K ®, k', on peut de
plus supposer que A = K. Il faut prouver alors que K ®;, k' est irréductible, et que le
corps des fractions K’ de son quotient par son nilradical est tel que tout élément de K’
algébrique sur &’ est radiciel sur k. Or dans le cas 1°) c’est ce qu’aftirme le corollaire 4 la
proposition 2. Dans le cas 2°), un passage 2 la limite immédiat nous ramene au cas o1 &’
est une extension f7zie de k, de sorte que K @, k' est une algebre finie sur le corps K. En
vertu du théoréme 2, b), pour tout élément e de K ®j, k" qui est entier sur K, il existe
une puissance p” de I'exposant caractéristique p, telle que e”” € k. Appliquant ceci au
cas ol e est un idempotent de K ®y, k', on trouve que e € k' donc e = 1, ce qui prouve
que K ®, k" est irréductible. Si K’ est son quotient par son nilradical, K" est donc un
corps (extension finie de K). Soit alors 2’ € K’ algébrique sur K, etsoity’ € K ®j k'
relevant 2, alors y' est entier sur &’ (N.B. — sorite oublié dans par. 3), et en vertu du
théoreme 2, b), il existe un 7 > 0 tel que y"” " e I/, dotafortiori z’¥" € k. Celaacheve

la démonstration du théoréme 3.

Définition 1. — Sozent k un corps, A une k-algebre. On dit que A est géometriguement
irréductible (ou, si une confusion est a craindre, geométriguement irréductible sur k) si elle
satisfait les conditions équivalentes du théoréme 3. Une extension K de k est dite primarie

si elle est une algebre géométriquement irréductible.

N.B. — Le rédacteur a gardé la terminologie spéciale “primaire”, dans le cas parti-
culier d’une extension, par piété. Il ne serait pas opposé au vidage de ce terme. Noter
que Pexpression “algebre primaire” au lieu de “algebre géom. irr.” est manifestement

impossible (4 cause des confusions possibles avec les autres significations de “primaire”).

Corollaire 2. — Sozent k un corps, A une k-algébre. Les conditions suivantes sont équiv-

alentes :
(1) Aest séparable et géométriquement irréductible.

(1) Pour route extension k' de k, A ®y, k' est intégre.
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(11 bis) Pour toute k-algébre intégre A, A @y, A’ est intégre.

(112) 1l existe une extension algébriguement close k' de k, telle que A @y, k' soit intégre.
(117 bis) Pour toute extension finie k' de k, A @y, k' est intégre.

(iv) Aestintégre, et le corps des fractions K de A est une extension séparable et primaire

(déf 1) de k.

Cest clair, grice au théoreme 3 et prop. 1.

Définition 2. — Sozent k un corps, A une k-algebre. On dit que A est géometriguement

integre si elle satisfait aux conditions équivalentes du corollaire 2.

Corollaire 3. — Soit k un corps. Les conditions suivantes sont équivalentes :
() Le corps k est séparablement clos.

(i7) Si A et B sont deux k-algebres irréductibles, alors A ®y, B est une k-algébre irre-
ductible.

(17 bis) Si A et B sont deux k-algébres intégres, A ®y, B est irréductible.
(ii ter) Si K et L sont deux extensions de k, alors K ®y, L est irréductible.

(i17) Toute extension de k est primaire.

Cest clair, grice au théoreme 2. (N.B. — Si Bourbaki désire vider la variante (ii bis) et (ii

ter) du corollaire, le rédacteur n’objecte pas.)

Corollaire 4. — Soit k un corps. Les conditions suivantes sont équivalentes :
() Le corps k est algébriguement clos.
(1) Si A et B sont deux k-algebres intégres, A @y, B est intégre.
(17 bis) Itou, avec A et B deux extensions finies de k.

(iii) Toute extension de k est géométriguement integre (def. 2), i.e. primaire et séparable.
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Comme k algébriquement clos signifie : k séparablement clos et £ parfait (Par. 7,n° 7,
prop. 23), le corollaire 4 résulte de la conjonction du corollaire 3 et de la remarque du n®
1.

A Tl'usage des membres fondateurs, s’il en reste :

Corollaire 5. — Soient K une extension d’un corps k, ) une surextension algebrigue-
ment close. Pour que K soit une extension primaire de k, il faut et il suffit que K soit
linéairement disjointe de la_fermeture séparable kg de k dans ) (Par. 7, n° 4, prop. 14,

cor. 5), ou encore gue K soit linéairement disjointe de toute sous-extension étale k' de ).

Comme les k" envisagées sont précisément les sous-extensions finies de k; (Par. 7, n°
7, prop. 22, cor.), les deux conditions énoncées de disjonction linéaire sont bien équiv-
alentes (réf.). D’autre part, comme k; est une extension algébrique de k, la disjonction
linéaire de K et k; sur £ signifie simplement que K ®y, k est integre, ce qui en vertu du
critere (ii bis) du théoréme 2 équivaut au fait que K est une extension primaire de k. On

rouve de méme, i I'aide du cor. 2:
p

Corollaire 6. — Soient K, k, ) comme dans le cor. 5. Pour que K soit une extension
primaire séparable de k (i.e. soit une k-algebre geometriquement intégre), il fant et il suffit
que K soit linéairement disjointe de la fermeture algébrique k de k dans Q, on encore que

K soit linéairement disjointe de toute sous-extension finie k' de Q.

N.B. — La notion “extension primaire et séparable” est appelée chez Weil “exten-
sion réguliere”. On ne peut adopter cette terminologie, qui conflicte avec celle d’anneau
régulier, qu’on ne peut plus guere songer a changer. Il ne semble pas que la notion soit
assez importante pour qu’il faille absolument trouver un nom lapidaire, plus court que
“géométriquement integre” utilisé par le rédacteur de ses lignes (qui se trouve fort bien
de cet usage, comme de bien entendu).

Pour terminer, n’en déplaise aux canons esthétiques du Maitre, voici le sorite des

notions introduites dans le présent numéro, résumé en une proposition a six points :

Proposition 3. — Sozt k un corps.

(1) Soit Aune k-algebre. St Aest géométriquement irréductible (vesp. géométriquement

integre) il en est de méme de toute sous-algebre de A, et de toute algebre de fractions

de A.
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(1) Toute limite inductive filtrante de k-algébres géométriguement irréductibles (resp.

géometriquement integres) est itou.

(111) Soit (A;)icr une famille de k-algébres, A l'algébre produit. Pour que A soit
géometriquement irreductible (vesp. géométriquement integre) il faut et il suffit

que pour touti € I, A; le soit.

(iv) Soient A et B deux k-algébres. Si A et B sont géométriguement irréductibles (resp.
géometriquement integres) il en est de méme de A ®, B, et la réciproque est vraie si

A et B sont non nulles.

(v) Soient Aunek-algébre, k' une extension de k. Pour gue A soit géométriquement irre-
ductible (resp. géométriquement intégre) il faut et il suffit que la k'-algébre ARy k'

le soit.

(vi) Soit K une extension de k, et A une K-algebre. Si K est géométriquement irre-
ductible (vesp. géométriquement integre) sur k, et A est géom. irr. (vesp. géom.

integre) sur K, alors A est géom. irvéd. (vesp. géom. intégre) sur k.

Le lecteur admirera (déplorera) la symétrie avec la prop. 12 du par. 7, n° 3, déparée seule-
ment par Poubli dans ladite de la limite inductive filtrante. La démonstration se fait par
le méme 4ne qui trotte. Le (i) résulte de la définition et du fait qu’un sous-anneau ou un
localisé d’un anneau irréductible (resp. integre) est itou. Argument analogue pour (ii).
Dans (iii), méme argument, en utilisant le par. 7, n° 3, lemme 1, et pour la réciproque
le (i) déja établi. Pour (v), voir la démonstration de son homologue dans loc. cit. Cela
nous ramene dans (iv) au cas ou & est algébriquement clos, et a prouver alors que le pro-
duit tensoriel de deux k-algebres irréductibles (resp. integres) est irréductible (resp. inte-
gre). On est ramené aussitot, pour cela, 2 'énoncé respé, qui est contenu dans le cor. 4
précédent. La réciproque dans (iv) est conséquence immédiate de (i). Pour (vi), compte
tenu de P'assertion analogue dans loc. cit., on est ramené 4 prouver I'assertion non re-
spée, et pour ceci, que pour toute extension étale k' de k, A ®, k' est irréductible. Or
ARk = A®k (K ® k'), et ’hypothese de primarité sur K /k implique que K ®y, &’
est un corps, extension étale de K, donc A ® i k' estirréductible d’apres ’hypothese faite
pour A/ K, C.Q.E.D.
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Corollaire 1. — Soient k un corps, A une k-algébre (vesp. une extension de k). Pour
que A soit géométriquement irréductible (vesp. géomeétriquement intégre) il faut et il suffit
que toute sous-algebre (resp. toute sous-extension) de type fini de A le soit.

Cela résulte aussitot de la conjonction de (i) et (ii).

Corollaire 2. — Soient k un corps, K une extension algébrique de k, A une K -algébre
non nulle. Pour que A soit géométriguement irréductible (vesp. séparable, resp. géom.
integre) sur k, il faut et il suffit que K soit géom. irréd. (vesp. séparable, resp. géom. inte.)

sur k, et que A soit géom. irved. (vesp. séparable, resp. géom. intégre) sur K.

Le il suffit a déja été vu dans (vi) et par. 7, prop. 12 (v), prouvons la réciproque. La
conclusion sur K /k est contenue dans (i), reste & voir que si A est géom. irréd. (resp.
séparable, resp. géom. integre) sur k, il est sur K. Dans le cas non respé, désignant par
ks une cloture séparable de k, le fait que K soit algébrique et géom. irréd. sur k (donc
radicielle sur k) implique que K ®j, k5 est un corps, extension algébrique de k;, donc
séparablement clos comme k;, et comme A @y ks = A @k (K ®y, ks) estirréductible,
il résulte du critere (i bis) du th. 3 que A est géométriquement irréductible sur /. Dans
le premier cas respé, désignant par k,, la cloture parfaite de £, le fait que K est algébrique
séparable sur k implique que K ®j, k,, est un corps, extension algébrique de corps parfait
k,, donc un corps parfait (par. 7, n° 6, prop. 18). Cecidit, A® k, = AQk (K Q4 k))
est réduit d’apres ’hypothése de séparabilité pour A/k, ce qui implique que A/ K est
également séparable en vertu du critere de prop. 1(ii). Enfin, le deuxi¢me cas respé résulte

aussitot de la conjonction des deux cas déja traités.
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§11. — DERIVATIONS ET DIFFERENTIELLES DANS LES
CORPS (PLAN)

1. — Algebres formellement lisses, non ramifiées, resp. étales
Tous les anneaux et algebres sont commutatifs.

Définition 1.2. — Une algébre B sur l'annean A est dite formellement lisse (vesp.
formellement non ramifiée, resp. formellement étale) si pour toute algébre C sur A, toute
extension E de C par un idéal nilpotent J, et tout homomorphisme de A-algeébres v :
B — C, il existe au moins un (vesp. an plus un, resp. exactement un) homomorphisme

de A-algébresu : B — E qui reléve w,.

Proposition 1.2. — Dans cette définition, on peut se borner au cas C = B, ug = idp,
et J de carvé nul, donc a demander Uexistence (vesp. 'unicité, resp. existence et 'unicite)

d’une trivialisation pour une extension de A-algebres de B par un idéal de carré nul.

C’est immédiat.

Remarque 1.3. — Formellement étale = formellement lisse + formellement non ram-
ifide.

Exemple 1.4. — Soit (X;) une famille d’indéterminées, alors I'algebre de polynomes

A[(X;)ier] est formellement lisse sur A.

Sorite 1.5. —

(i) Stabilité par changement de base A — A’



(1) Transitivité : si C' est formellement lisse (vesp....) sur B et B formellement lisse

(vesp....) sur A, alors C est formellement lisse (vesp....) sur A.

(iii) Stabilité par localisation en baut (passagede Ba S—'B).

C’est tout immeédiat.

Corollaire 1.6. — 87 k est un corps, toute extension pure de k est formellement lisse sur

k. (Elle est formellement étale sss lextension est triviale.)

Résulte de 1.4 et 1.5 (iii).

2. — Propriétés différentielles des algebres formellement lisses

Proposition 2.1. — Soit B formellement lisse sur A, A une algébre sur k. Alors la suite

d’homomorphismes canoniques
0— Quy®aB— Qpj, — Qpy — 0

est exacte et splitte.

Cf. EGA 07y 20.5.7.
N.B. — Un complément intéressant, mais qu’on ne peut donner dans Bourbaki faute

de disposer de la notion voulue, est que Q}B /4 €Stun B-module projectif.

Proposition 2.2. — Soient B une algébre sur A, J un idéal de B, C = B/J, et

supposons C' formellement lisse sur A. Alors la suite d’homomorphismes canoniques
0— J/J? — Qp @5 C — Qp iy — 0

est exacte et splitte.
Cft. EGA 07y 20.5.12.

Proposition 2.3. — Soit B une A-algébre. Pour que B soit formellement non ramifiée
sur A, il faut et il sufffit que l'on ait Q}B A= 0, z.e. que toute A-dérivation de B dans un
B-module M soit nulle.
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Cela provient du fait que, sous les conditions de 1.2, les splittages de ’extension envis-

agée forment un ensemble vide ou principal homogene sous le groupe des A-dérivations

de B dans J.

Corollaire 2.4. — Soit B une A-algébre formellement étale, A étant une k-algébre.

Alors 'homomorphisme canonique Q}L‘ /i ®a B — QE I estun isomorphisme.

On conjugue 2.1 et 2.3.

3. — Caractérisation différentielle des algebres étales sur un corps

Théoreme 3.1. — Soient k un corps, Aune k-algébre de type fini. Conditions équivalentes :
(i) Aestétale.
(1) A est formellement étale.

(111) A est formellement non ramifiée, i.e. Q114/16 =0

Démonstration. — (i) = (ii). On peut supposer A une extension étale de k, donc de la
forme k[X|/Fk[X], ou F' € k[X] est un polyndme séparable. Soit z € A défini par
X, etsoit F une extension de A par un idéal J de carré nul, 2 montrer que x se releve en
un élément y satisfaisant F'(y) = 0. On choisit “au hasard” un élément a relevant z, et
on cherche z € J tel que F'(a + z) = 0,ie. F(a) 4+ F'(a)z = 0, ce qui se résout par
z = —F(a)/F'(a), compte tenu que F' étant séparable, ona [ (a) = F'(z) # 0.
L’implication (ii) = (iii) étant triviale, il reste & prouver (iii) = (i). Faisons d’abord
la démonstration lorsque A est déja supposé finie sur k. Quitte a faire une extension
sur le corps de base k, on peut supposer £ algébriquement clos, puis on peut supposer
A local, donc extension de k par un idéal nilpotent m. Mais m/ m?, étant isomorphe a
Qi‘ / x®ak,estnul,doncm = 0,donc A = k, ongagne. Restea prouver que la condition
(iif) implique que A est fini sur k. Quand on dispose d’un peu d’Algebre commutative,
on peut encore procéder comme dessus, en se ramenant au cas k alg. clos et notant que
pour tout idéal maximal m de A, I'anneau local noethérien Ay, est tel que m/ m? = 0,
donc est réduit a son corps résiduel, donc tout point fermé de Spec(A) est isolé, et on
gagne. Dans le cadre du chap. V, on peut donner une démonstration par récurrence

sur le nombre n de générateurs de A sur k, le cas n < 1 étant immédiat. Sin > 2,
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soit z1 le premier générateur, et soit B = k[x1] C A, a prouver qu’il n’est pas possible
que 1 soit transcendant sur k. Sinon, soit en effet B’ = k(z1) le corps des fractions
de B,et A = A®p B’ C B’. Alors la relation Qi‘/k = 0 implique 934/3 = 0,
donc par changement de base Q}B, A= 0, donc par hypothese de récurrence B’ est
étale sur A’, d’ot1 on conclut que Q}q, o~ Q}B/ i Op A’ en vertu de 2.4. Comme
Q5 = Q5 Ik @B B’ est libre de rang 1 donc non nul, et que A" D B’ est non nul,
on conclut que QY, Ik # 0, or le premier membre est localisé de O J qui est nul par

hypothese, d’ot1 une contradiction.

Corollaire 3.2. — Soit ko un sous-corps parfait de k (par exemple le corps premier),

alors les conditions de 3.1 équivalentes encore a la suivante :

(iv) Q ko Ok A — QL Ik €5t un isomorphisme, i.e. pour tout A-module M, toute k-
dérivation k — M se prolonge de fagon unigue en une ko-dérivation A — M.

En effet, (ii) implique (iv) en vertu de 2.4, et (iv) = (iii) puisque 2, /1, €St isomorphe au

conoyau de ’homomorphisme envisagé dans (iv).

Corollaire 3.3. — Extension de 3.1 au cas on A, au lien d’étre une algébre de type fini

sur'k, est localisée S~ B d’une telle algebre B (par exemple lorsque A est une extension de

type fini de k).

Cela résulte facilement de 3.1 sous la forme envisagée, compte tenu qu’on aura

1 _ Ol _ o101 1 S
QA/k = QB/k ®p A =S QB/k, et comme QA/k est un module de type fini, s’il
devient nul par localisation par rapport a .S, il existe f € S qui I'annule, de sorte que

'on peut appliquer 3.1 a I'algébre de type fini A;.

Proposition 3.4. — Soient k un corps, A une algébre entiére sur k, J le nilradical de
A Ay = AJJ, A (resp. Ap) la cléture séparable de k dans A (resp. dans Ag). Alors le
morphisme canoniqgue A — Ag induit un isomorphisme ® : A" — A{. Pour tout
x € A, O (x) est lunique élément de A relevant x et séparable sur k, a fortiori

est Lunique homomorphisme de k-algébres de Ajy dans A qui reléve linclusion de A dans

A,.

Démonstration. — Comme P est évidemment injectif (A’ étant réduit), pour prou-

ver que c’est un isomorphisme il suffit de prouver que tout élément = de A{) provient
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d’un élément de A’ (manifestement unique), ce qui prouvera 3.4. Or il suffit pour ceci

d’appliquer a I'algebre k[z] 'implication (i) = (ii) de 3.1. On conclut aussitdt de 3.4 :

Proposition 3.5. — Toute algébre entiére séparable sur un corps k est formellement
étale sur k.
4. — Caractérisation différentielle des extensions séparables : cas des

extensions de type fini

Théoreme 4.1. — Soient k un corps, K une extension de type fini de k. Alors Qk I estun

vectoriel de dimension finie sur K, et on a
(%) degtr Kk < mngKQ}{/k,.
De plus les conditions suivantes sont équivalentes :
(1) K est une extension séparable de k.
(1) L’inégalité (%) est une égalité.

(i77) K est une extension étale d’une sous-extension pure.

On prouve d’abord le
Corollaire 4.2. — Sodent x1, ..., Ty, € K, alors les dy j1x; engendrent Q}(/k siet
seulement si K est une extension étalede k(z1, ..., x,) = K.

En effet, on utilise le critere différentiel d’étalité 3.3, en notant que Q}( /K €St iso-
morphe a Q}( Ik divisé par le sous-espace vectoriel engendré par les d /7.

Le corollaire 4.2 implique aussitot I'inégalité (*) et 'implication (ii) = (ii1).
D’autre part (7i¢) implique trivialement (7), et il reste & prouver que (2) implique (4%).
Pour ceci, voir le texte Bourbaki imprimé, p. 142.

On pourra, si on veut, introduire (comme dans 'ancienne rédaction) la terminolo-

gie : base de transcendance séparante ; cela ne semble pas indispensable. Notons aussi :
Corollaire 4.3. — Les conditions précédentes impliquent la suivante :

(iv) K est formellement lisse sur k.
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Cela résulte en effet de la transitivité 1.5 (ii), de 1.6 et de 3.1.

Corollaire 4.4. — Soit ko un sous-corps de k. Alors les conditions de 3.1 impliquent la

sutvante :

(v) L’homomorphisme ), Jko Ok I — 0 Iy €5t injectif, i.e. toute ky-dérivation de
k dans K se prolonge en une ko-dérivation de K dans K.

On utilise 4.3 et 2.1.
Remarque 4.5. — Nous verrons au n° 7 que les conditions (iv) et (v) sont méme
équivalentes 2 la condition (), pourvu que dans (v) on suppose que ky est parfait (et

sans supposer nécessairement K de type fini sur k).

5. — p-bases

Dans le présent n® et le suivant, p désigne un nombre premier, et sauf dans 6.9 tous les

anneaux envisagés sont de caractéristique p.

Définition 5.1. — Soient A un annean, B une A-algébre, (x;)ics une famille
d’éléments de B. On dit que cette famille est une famille p-génératrice sur A (resp. est
p-libre sur A, resp. est une p-base sur A) si la famille des mondmes

H ' (oi (n;) € ZD 0 < my < p pour tout i)
i€l
est une famille génératrice (vesp. libre, resp. une base) du A-module sous-jacent a B. Si

A =F,, on omet la référence a A, et on dit aussi famille p-génératrice (resp....) absolue.

Remarque 5.2. — Pour que (z;) soit une famille p-génératrice, il f. ets. qu’elle

engendre B comme algebre sur A[BP].

Proposition 5.2. — Soient A — B — C' des homomorphismes d anneaux, tels
gue Im(B — C) D CP, M une partie de B, N une partie de C.

a) Si M est p-génératrice dans B sur A, et N est p-génératrice dans C sur B, alors
M U N est p-génératrice dans C sur A.

b) Si M est une p-base de B sur A, alors N est p-libre sur B si et seulement si M U N
est p-libre sur A.
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C’est immédiat, cf. EGA 07y 21.1.10.

Théoreme 5.3. — Soient k un corps, K une extension de k, S une partie p-génératrice
de K surk, L C S une partie p-libre de K sur k. I existe alors une p-base B de K sur k
telleque L C B C S. En particulier, toute extension de k admet une p-base sur k.

Démonstration par application facile de Zorn (cf. EGA 07y 21.4.2), en utilisant le

Lemme 5.4. — Pour qu'un élément x de K soit p-libre sur k, il f. et suffit que x ¢
k(KP).

Corollaire 5.5. — Pour qu'une famille (x;);c; d éléments de K soit p-libre sur k, il f.

¢t 5. que pour tout i, T; n appartienne pas au corps K; engendré par k(KP) et les xj avec

J# i
6. — Dérivations et différentielles en caractéristique p

Proposition 6.1. — Soient A un annean, B une A-algébre. Alors :

a) Pour tout B-module, toute A-dérivation D de B dans M s'annule sur BP, donc est

une A[BP)-dérivation. Si A et B sont des corps, D est méme une A( BP)-dérivation.
b) L’homomorphisme canonique
Qp 0 —
B/A B/ A[BP]
est un isomorphisme. De méme, si A et B sont des corps, ’homomorphisme

QlB/A — QJIB/A(BP)

Par suite, en car. p > 0, pour l'étude des propriétés des dérivations resp. différentielles
d’une A-algébre B, on se rameéne généralement au cas on A est un sous-anneau de B con-

tenant BP.

Proposition 6.2. — Soient B un annean, A un sous-anneau contenant BP, (z;);cr

une p-base de B sur A, L un A-module. Alors :

a) Pour qu’une dérivation D de A dans L se prolonge en une dérivation de B dans L,
il faut et suffit que D s’annule dans BP.
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b) Lorsqu’il en est ainsi, pour toute famille (y;)icr d éléments de L, il existe une déri-
vation D' et une seule de B dans L, prolongeant D, et telle que D' (x;) = y; pour

tout 1.

Cf. EGA 07y 21.2.3,, ol cette proposition est présentée comme cas particulier d’une
autre plus générale, concernant le prolongement d’un relévement partiel A — E, ou
E est une extension de B par un idéal nilpotent. — Le dictionnaire habituel en termes

de différentielles donne :

Corollaire 6.3. — La suite
0 — Qypr ®a B — Qp gy — Qg — 0
est exacte et scindée, et la famille (dp)ax;)icr forme une base du B-module Q}B/A.

Corollaire 6.4. — Soient A un annean, B une A-algébre admettant une p-base

(3)icr, alors la famille (dp)a%;)icr est une base de QlB/A sur B.

En effet, grice 4 6.1 on est ramené au cas ou B” C A C B, et on est alors sous les

conditions de 6.3.

Théoréme 6.5. — Soient k un corps, K une extension de k, (x;);c; une famille
d’eléments de K. Pour que celle-ci soit p-libre (vesp. p-génératrice, resp. une p-base) sur
k, il faut et il suffit que la famille (dr ;) icr soit une famille libre (resp. génératrice,
resp. une base) du K-module 0}, I

Cf. EGA Oy 21.4.5.

Corollaire 6.6. — Pour que Q}(/k = 0, 4 faut et il suffit que K = k(KP). En
particulier, si k est parfait (par exemple est le corps premier) cela signifie que Qj, = 0
(module des différentielles absolues), ou encore que K est parfait.

Corollaire 6.7. — Soient K une extension de k, et x € K. Conditions équivalentes :
(i) © ¢ k(KP).

(i) Lélément x est p-libre sur k.
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Corollaire 6.8. — Soient B un annean réduit, A un sous-annean contenant BP. Supposons
que B admette une p-base sur A, et que A admette une p-base sur BP (conditions vérifiées

si Aet B sont des corps, en vertu de 5.3). Alors, on a un isomorphisme canonique
(Qp/4)" ~ Ker(Q) ©4 B — Q),

envoyant l'élément (dp JAT) ®) dy premier membre en lélément dax @ 1 du second.

Cf. EGA 07y 21.3.5. Pour un B-module M, on a posé M® = M @z (B, ®) ou
(B, @) désigne B considéré comme B-algebre a 'aide de ’homomorphisme @ : x ~»

P,

Théoreme 6.9. — (Egalité de Cartier). Soient k un corps de caractéristique quelconque
(N.B. la caractéristique nulle n’est pas exclue), K une extension de type fini. Alors Q} K
ety x = Ker(Qge @ L — Q) sont des vectoriels de dimension finie sur K, et on a :

rang, QE/K —rang, Yk = degtr L/ K .

Cf. EGA 0y 21.7.1.

Corollaire 6.10. — On a mngLQlL/K > degtr L] K, avec égalité si et seulement si
I’homomorphisme canonique Qj Qi L — QU] est injectif, i.e. sss toute dérivation de K

dans L se prolonge en une dérivation de L dans L.

N. B. — Ceci établit 'équivalence des conditions (ii) et (v) du n° 4, annoncée dans
4.5.

7. — Caractérisation différentielle des extensions séparables : cas
général

Théoreme 7.1. — Soient K une extension d’un corps k, ko un sous-corps parfait de k (par

ex. le corps premier). Conditions équivalentes :
(1) K est une extension séparable de k.

(i7) K est une algebre formellement lisse sur k.
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(iii) L’homomorphisme canonique S}, Ik Ok K — Q Iy €5t Injectif, i.e. toute ko-

dérivation de k dans K se prolonge en une ko-deérivation de K dans lui-méme.

Démonstration. — (2) = (4). Le cas ot K est une extension de type fini de k est déja
connu (4.1) et on peut passer de la au cas général par un passage a la limite (EGA Oy
19.6.1), indépendant de toute considération diftérentielle, mais qui a I'inconvénient de
se rédiger assez mal avec les moyens dont Bourbaki dispose ici, puisqu’il y est question de
’homologie d’un certain complexe a la Hochschild. Il sera donc sans doute plus simple

de distinguer deux cas :

1°) k de caractéristique nulle, alors /" est une extension algébrique séparable d’une
extension pure de k, et on conclut comme dans 4.3, en utilisant ici 3.4 au lieu de
3.1;

2°) kdecar.p > 0.

On a alors un énoncé plus précis :

Corollaire 7.2. — Soient k un corps de car. p > 0, K une extension séparable de k,
(%;)icr une p-base de K sur k, E une k-algébre extension d’une algébre C par un idéal
nilpotent J, u : K — C un homomorphisme de k-algébres, et pour tout i € I, soit
y;i € E relevant u(x;). Alors il existe un unique k-homomorphismev : K — E tel que

v(x;) = y; pour tout .

Pour la démonstration, cf. EGA 07y 21.2.7 (qui donne un énoncé plus général, sans
corps).

L’implication (i7) = (4i7) étant évidente (2.1), il reste & prouver (i77) = (). Orsi
k est de caractéristique nulle, il n’y a rien a prouver. Si la caractéristique est p > 0, soit
(w;)ier une p-base absolue de k. Il résulte alors du critére de séparabilité de Mac-Lane
que K /k est séparable si et seulement si (z;) est p-libre dans /. Or cela signifie que les
di (x;) forment un systéme libre sur K dans Q2};. Comme ce sont les images des éléments
dyz; de 2, ®j K, qui forment une base de cet espace, on voit bien que (iii) implique (i).
Cela acheve la démonstration de 7.1.

Remarque 7.3. — Compte tenu de I’égalité de Cartier, le théoreme 7.1 redonne

I’équivalence des conditions (i) et (ii) de 4.1 (qui était la partie non triviale de (4.1), pour
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laquelle on a renvoyé au texte imprimé de Bourbaki). On pourrait donc (avec avantage
semble-t-il) reporter 4.1 en corollaire 4 7.1. La raison pour laquelle j’ai gardé une dé-
monstration directe de 4.1, est que la démonstration en question est indépendante des

phénomenes spéciaux a la caractéristique p > 0.
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APPENDICE

1. — Décomposition d’'un anneau en produit fini d’anneaux
Proposition 1.1. — Soient A un annean, I un ensemble fini. Désignons par E(A;I)
Uensemble des familles (€;);c1 d éléments centraux de A, indexées par 1, telles gu’on ait

e? =¢; pourtouti € I,

eie; =0 pouri,j € 1,1 j,

Zlei =1.

Désignons par D(A, I) lensemble des familles (A;)ic1, indexées par I, d’anneaux quo-
tients A; de A, telles que ’homomorphisme canonique A — 1], Ai, déduit des homo-

morphismes canoniques A — A;, soit un isomorphisme. Soit
¢:D(A 1) — E(AI)

lapplication définie de la maniére suivante : si d = (A;)ier € D(A, 1), et si u désigne
Visomorphisme canonique A — ], A;, désignons par €} Iélément de | [, A; dont la
composante d’indice j est égale a 0si j # i, égale a lelément unité de A; si j = 1, et posons
e; = u~t(el). On pose alors p(d) = (€;)icr.

Cect posé, l'application précédente p est bijective. Sie = (e;)icr € E(A, I), lunigue
élément d = (A;)icr tel gue p(d) = e est défini par la condition :

A=A eA;
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de plus, l'application

V; - eiA — Az

induite par lapplication canonique A — A; est bijective et applique e; sur l'élément

unitéde A;.

Remarque 1.2. — On peut donc dire que I'application précédente e, A — A; in-
duit un isomorphisme d’anneaux, lorsque I'idéal e; A est muni des lois d’addition et de
multiplication induites par celles de A, qui font de e; A un anneau admettant e; comme
élément unité. On fera attention cependant que pour cette structure d’anneau, ;A
n’est pas en général un sous-anneau de A ; c’est pourquoi nous nous garderons toujours
d’identifier 'annean quotient A; de A avec I'idéal e; A de A.

Remarque 1.3. — Soit (B;);e; une famille d’anneaux (pas nécessairement des an-
neaux quotients de A) etu : A — [, B; un isomorphisme. Alors chacun des ho-
momorphismes composants u; : A — B; est évidemment surjectif, donc se factorise
de fagon unique en un composé A — A; — B;, ou A — A, est un homomor-
phisme canonique sur un anneau quotient, et A; — B;un isomorphisme. Par suite,

 se factorise en un composé
) 7

ott la premiere fleche correspond a un élément bien déterminé de D (A, I), et la deux-
i¢me est déduite de la famille des isomorphismes A; — B;. On peut donc dire 2 #n
isomorphisme prés, tout isomorphisme tel queu : A — Hz B, peut étre défini par une
famille e = (e;)icr € E(A, I), déterminée de fagon unique.

Remarque 1.4. — On appelle idempotent d’un anneau A tout élément e de A tel
que €2 = e. On dit parfois que deux idempotents e et f de A sont “orthogonanx” si
onaef = fe = 0. On peut donc dire que les éléments de E(A; I) sont les familles

d’idempotents centraux, mutuellement orthogonaux, de somme 1, indexées par 1.

Corollaire 1.5. — Il y a une correspondance biunivoque entre l'ensemble des couples
(A", A") d’anneaux quotients de A tels que I’homomorphisme canonigue A — A’ x A”

soit un isomorphisme, et l'ensemble des idempotents centraux de A.

En effet, il suffit d’établir une bijection entre ce dernier ensemble et I'ensemble
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E(A;I),oul = {1,2}, et pour ceci il suffit de faire correspondre 2 'idempotent central

e le couple (e, 1 — e).

Proposition 1.6. — Soit A un annean. On dit gue A est indécomposable si A n’est pas

nul, et si A n’est pas isomorphe a un produit de deux anneaux non nuls.

Par exemple, un corps, un anneau commutatif integre, sont indécomposables.

Compte tenu de 1.5 et de 1.3 on obtient :

Proposition 1.7. — Pour que l'annean A soit indécomposable, il faut et il suffit que
A # 0 et gque 0 et 1 soient les seuls idempotents centraux de A, ou encore, que A ait exacte-

ment deux idempotents centraux.

Remarque 1.8. — Ainsi, pour que A soit indécomposable, il faut et il suffit que son
centre le soit, ce qui nous ramene au cas d’un anneau commutatif. * D’autre part, pour
qu’un anneau commutatif soit indécomposable, il faut et il suftit que son spectre premier

soit connexe. *
Proposition 1.9. — Soient A un anneaun. Les conditions suivantes sont équivalentes :
(1) Aest isomorphe au produit d’une famille finie d'anneanx indécomposables.

(11) 1l existe une famille finie d’idempotents centraux e; dans A, mutuellement orthog-
onaux (1.4), de somme 1, dont chacun est un “idempotent indécomposable”i.e. n’est

pas la somme de deux idempotents centraux non nuls.
(i17) L'ensemble des idempotents centraux de A est fini.

Sous ces conditions, siu : A — [[jc; Aiet + A — [l

phismes de A avec des produits finis d’anneanx indécomposables A; (i € 1) resp. Al

/ .
iel A’ sont deux isomor-
(5 € J), il existe une bijection w : I — J, et des isomorphismes v; : A; — AQU(Z.), tels
que soitégal avou,onv : [[ Ay — [T A’ est lisomorphisme défini parw et le systeme

des v;. D'aillenrs, w et les v; sont uniquement déterminés par les données précédentes.

N. B. — On pourrait vouloir donner un nom 4 un anneau satisfaisant aux conditions
de 1.9, par exemple appeler “complétement décomposable” ; mais cette terminologie
conduit au résultat qu’un anneau indécomposable est completement décomposable ! —

La derniere partie de 1.9 a un énoncé assez lourd, il serait sans doute plus pigeable de le
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remplacer par I'énoncé suivant : “Sous ces conditions, soit (A;);cy la famille des anneaux
quotients de A qui sont indécomposables. Alors I est fini et ’homomorphisme canon-
iquew : A — [] A, est un isomorphisme.” On pourrait aussi en faire une quatri¢me
condition équivalente.”

Remarque 1.10. — On voit facilement que si toute suite croissante d’idéaux bilateres
de A est stationnaire, alors A satisfait aux conditions de la proposition 1.9. * Il en est en
particulier ainsi si A est noethérien a gauche ou a droite. *

Remarque 1.11. — Si A satisfait aux conditions de 1.9, le cardinal de I'ensemble
d’indices I, pour un isomorphisme donné de A avecle produit d’une famille finie (A; );er
d’anneaux indécomposables, ne dépend que de A. C’est un entier n > 0, nul si et seule-
ment si A est nul, égal a 1 si et seulement si A est indécomposable. On peut aussi le
caractériser par la condition que le cardinal de I’ensemble des idempotents centraux de
Aestégal 12", Noter que cet entier est le méme pour A et pour le centre de A. * D’autre
part, si A est commutatif, alors A satisfait aux conditions de 1.9 si et seulement siles com-
posantes connexes de son spectre premier sont ouvertes, ou encore si leur ensemble est
fini, et’entier précédent n n’est alors autre que le cardinal de 'ensemble des composantes
connexes de ce spectre. *

La proposition qui suit pourrait passer n’importe ot apres la définition des idéaux

(mais de préférence dans le n° consacré aux anneaux produits) :

Proposition 1.12. — Soit (A;) ;e une famille finie d'anneanx, A leur produit. Soit,
pour tout annean B, J(B) lensemble des idéaux a gauche (resp....) de B.

Définissons une application

x:[]7(4) — J(A),

en associant a la famille (J;);cr d’idéaux a gauche (vesp. ..) des A;, le produit [ J;, qui
est bien un idéal a gauche (vesp. ...) de A (que I soit fini ou non). Alors X est bijective.

Corollaire 1.13. — Les idéaux a gauche (vesp....) maximaux de A sont les idéaux de
la forme pri_l (Ji), ot i € I etoir J; est un idéal a gauche (vesp....) maximal de A;, i et J;

étant d ailleurs uniguement déterminés par l'idéal envisagé de A.

Corollaire 1.14. — Supposons que les A; soient des corps. Alors tout idéal a gaunche

(vesp. a droite) de A est bilateére. Lensemble des idéaux de A est en correspondance biu-
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nivogue avec l'ensemble des parties de 1, en associant & toute partie I' de I le noyan Jp
A;. Cette

correspondance renverse les relations d ordre, en particulier les idéaux maximaux de A cor-

de la projection canonique de A = ],.; A; sur le produit partiel Ap = [[,cp

respondent aux éléments de I, comme noyaux des projections canoniques pr; : A — A,
Plus généralement, il résulte de 1.13 que si chaque A; admet exactement un idéal a

gauche (resp....) maximal, alors Uensemble des idéaux a gauche (resp....) maximaux de A

est en correspondance biunivoque avec I.

Lemme 1.15. — Soient A un groupe abélien, (J;);cr nne famille finie de sous-groupes
de A, et pour tout i € 1, soit A; = A/ J;. Pour gue I’homomorphisme canonigue
u: A— [
iel
sot surjectif, il faut et il suffit que pour tout v € 1, on ait :

T+ [ Ji=A
jer—{i}

Démonstration. — L’assertion est triviale pour card I égal 4 0 ou 1, et pour card
I = 2 se vérifie en notant que de fagon générale, si on a un homomorphisme de groupes
abéliens A — B, etsi B’ estunsous-groupede B, B” = B/B’,alors A — Bestsur-
jectif si et seulement si son composé avec B — B Iest, et si de plus ’homomorphisme
induit J” — B’ est surjectif, ot J” est le noyau de A — B”. On applique ceci au
casou B = A/J x A/J" etou B’ estle premier facteur A/.J’, donc B” ~ A/J", on
trouve que A — A/J x A/J" est surjectif si et seulement si J” — A/J' Uest, i.e.
si et seulement si J' 4+ J” = A. Dans le cas ot1 card I > 3, on procede par récurrence
sur ce cardinal. Choisissons un ¢ € I, et soit K; = nje]—{i} J;, par hypothese on a
J; + K; = Aie. 'homomorphisme A — A/J; x A/K; est surjectif. Or K est
précisément le noyau de Phomomorphisme A — [];c;_ ¢y Aj, qui se factorise donc
par A/K; — [];c;_ ;) Aj> et on est ramené i prouver que ce dernier est surjectif. Or

pour prouver que A — [] } A; est surjectif, on utilise ’hypothése de récurrence

jel—{i
etles relations .J; + K; = A pour j € I — {i}, qui donnent ce qu’on veut.

Définition 1.16. — Soit A un annean. Un idéal bilatére J de A est dit premier si
pour deux idéaux bilatéres quelconques I, I' de A, la relation J O I - I' implique J O 1
oud DI
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Alors, pour toute suite finie d’idéanx bilatéres I, . . ., I,, de A, la relation J D I -
Iy - - - I, impligue Uexistence dun i, 1 < @ < n, tel que J O 1I;. Cela se voit en effet

aussitot par recurrence surn.

Proposition 1.17. — Soit J un idéal bilatére de A. Pour que J soit premier, il suffit
gue A/ J soit “sans diviseur de zéro”i.e. que le produit de deux éléments non nuls de A/ J

soit non nul. La condition est eigozlemmt nécessaire si A est commumtzf.

Pour la premicre assertion, notons que si JJ ne contient ni  ni I, il existe z € I et
x’ € I' qui ne soient pas dans J, donc si A/.J est sans diviseur de zéro, on a za’ ¢ J,
donc II" ¢ J. Pour la seconde assertion, il suffit de remarquer quesiz, 2’ € A —J
étaient tels que za’ € J, alors les idéaux | = Ax et I’ = Ax’ seraient tels que I et I’

soient non contenus dans .J, et /I’ contenu dans J.

Proposition 1.18. (“Lemme Chinois” ?) — Soient A un annean commutatif, (J;)icr
une famille finie d’idéaux de A. Supposons que pour tout i € 1, il existe un seul idéal
maximal J] de A contenant J;, et supposons que les J] (i € 1) soient deux a deux distincts.
ier Ais ot Ay = A[J;, est surjectif, donc
Ji — Hiel A,

Alors Ubomomorphisme canonigue A — ||
induit un isomorphisme A/ )

icl
En vertu de 1.15 il suffit de vérifier les relations
T+ [ Ji=A
Jjer—{i}
En vertu du théoréme de Krull (...), il suffit de prouver pour ceci qu’aucun idéal max-
imal m de A ne peut contenir le premier membre, i.e. ne peut contenir a la fois J; et

jel—{i} Jj>
il résulte de 1.17 qu’il contient un des Jj, j € I — {i} donc par hypothese est égal a J},
ce qui contredit 'hypothese J; # J} pouri # j, C.Q.F.D.

Njer—gy /5 Ors’ilcontient J;, il estégal a J] par hypothese, et s’il contient ()

Corollaire 1.19.  — Soit (W;);cr une famille didéaux maximanx distincts de

lannean commutatif A. Alors 'homomorphisme canonique

A—>Hk“ oizk:,:A/mZ,

i€l

est surjectif.
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Définition 1.20. — Soit A un annean commutatif. On dit que A est local s’il admet
un unigue idéal maximal (ce qui implique que A # 0). On dit gue A est semi-local si

lensemble de ses idéanx maximaux est fini (c’est le cas par exemple si A est nul).
Par exemple, un corps commutatif est local.

Proposition 1.21. — Soit A un annean commautatif. Si A est local, A est indécompos-

able.

Proposition 1.22. — Soit A un produit fini d’anneaux commutatifs. Alors A est semi-
local si et seulement si les A; le sont. Il est local si et seulement si il existe v € I tel que A;

soit local et que A; = 0 pour j € I — {i}.
Ces propositions résultent aussitot des définitions et de 1.13.
Corollaire 1.23. — Un produit fini de corps commutatifs est un anneau semi-local.

Alors que tout ce qui précede semble le mieux a sa place dans le Chap. I, voici un
résultat qui serait plutdt un remords au Chap. II, puisqu’il s’exprime le plus aisément
dans le langage des modules. Il doit figurer sans doute (du moins sous une forme voisine)
au Chap. VIIIL Il va étre utilisé dans le Chap. V, § 7 4 propos des familles diagonalisables
d’endomorphismes d’un vectoriel ; a la rigueur on pourrait I'y donner sous forme d’un

lemme.

Proposition 1.24. — Soient (A;)icr une famille finie d’anneanx, A leur produit.
Pour toute famille (M,)icr, oit pour tout i € I, M; est un A;-module, considérons sur

M = [1,c; M; la loi d’opération externe de A définie par
(a@i)ier - (%i)ier = (aiti)ier-

Cette loi fait de M un A-module, c’est d’aillenrs la seule structure de A-module sur M
pour laguelle, pour tout © € 1, la projection canonigue M — M, soit semi-linéaire
relativement a I'homomorphisme canonique A — A;. Ceci posé, (M;)icr ~» M =
[1;c; M; peut étre considéré comme un fonctenr (murmure d’horreur) de la catégorie pro-
duit [[,c; Mod(A;) dans la catégorie Mod(A), — oit pour tout annean B, Mod(B)

désigne la catégorie des B-modules. Eb bien, ce fonctenr, c'est une équivalence de catégories.

Le rédacteur n’explicite pas, et pour cause, la définition du foncteur, ne sachant pas
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plus que Bourbaki ce que Bourbaki entendra par ce terme. Il laisse au prochain rédacteur
hypothétique une rédaction de cette proposition sans utiliser le mot de catégorie ni de
foncteur.

Jai oublié d’expliciter le foncteur quasi-inverse naturel : M; se déduit de M par le

changement de base A — A; :

Corollaire 1.25. — Soit (A;)ier une famille finie d'anneanx commutatifs, A lenr
produit. Pour toute famille (M, );c1, oit pour tout i € I, M; est une A;-algébre, consid-
érons chaque M; comme une A algébre a l'aide de la projection canonique A — A,
et formons la A-algébre produit M = 1], M;. On obtient de cette fagon un fonctenr
(M;)ier ~ T1; M; de la catégorie produit | [, Alg(A;) dans la catégorie Alg(A), on pour
tout annean commutatif B, Alg(B) désigne la catégorie des algébres sur B. Le fonctenr
préce'dmt est une e’qm’mlmce. De plm, avec les notations précédmtes, pour que M soit as-
sociatif (vesp. commutatif, vesp. unitaire) il faunt et il suffit que chacun des M; le soit ; en
particulier le fonctenr précédent induit des équivalences entre les sous-catégories obtenues en
se restreignant partout aux al gé‘bres associatives (; resp. commutatives, resp. unitaires, resp.

assocratives unitaires, resp. associatives unitaires Commutatives, resp. tmmjordam’ennex).

2. — Eléments nilpotents, nilradical, anneaux réduits

Définition 2.1. — Soit A un annean. Un élément x de A est dit nilpotent 57l existe un
entiern > 1 tel que x™ = 0. Un idéal a gauche (vesp. a droite, resp. bilatere) de A est dit
un nilidéal a gauche (vesp. a droite, resp. bilatere) si ses éléments sont tous nilpotents ; on
dit que I est un idéal nilpotent s’il existe un entiern > 1 tel que I = 0, i.e. tel que pour
toute suite (x1, . .., %) den éléments de I, on ait x1%5 . .. x, = 0. Si A est commutatif,

on dit que A est réduit si tout élément nilpotent de A est nul.

Bien entendu, si A est commutatif, on parlera simplement d’idéal nilpotent ou de
nilidéal, sans spécifier par une mention comme “a gauche” etc. On notera qu’un idéal
nilpotent est un nilidéal, 'inverse n’étant pas vrai en général. * C’est vrai cependant dans

le cas particulier important ou A est un anneau commutatif noethérien. *
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Remarque 2.2. — Supposons A commutatif, et soit z € A. Alors les conditions

suivantes sont équivalentes :
(i)  estnilpotent,
(ii) Az estnilpotent,
(iii) Ax estun nilidéal.

En effet, les implications (ii) = (iii) = (i) sont évidentes en tous cas, et (i) = (ii)
également pour A commutatif, puisqu’alors on a, pour tout entier n > 1, (Az)" =

Ax™, donc 2™ = 0 implique (Az)" = 0.

Proposition 2.3. — Soit A un anneau commautatif. L'ensemble J des éléments nilpo-
tents de A est un idéal de A, distinct de A si A # 0. Cest le plus grand nilidéal de A, et
aussi le plus petit idéal K de A tel que A K soit réduit.

Siz € J,alors pour touta € Aonaaxr € J,carz" = 0 implique (az)" =
ax" = 0. D’autre part,siz € J,y € J,alorsx +y € J,carsionaa™ = y" = 0,
alors la formule du bindme montre que (z + y)** = 0. Cela prouve que J est un idéal
de A. Si A # 0, alors I'élément unité de A n’est pas nilpotent, donc J # A. Il est trivial
que J est le plus grand nilidéal de A. Prouvons que A/J est réduit : en effet, si /{ est un
idéal de A, on voitaussitdt que A/ K est réduitssi et seulement si pour tout z € A tel que
x" € K pour un entier n > 1 convenable, onaz € K. Or cette condition est remplie
pour K = J,carsiz™ € J, il existe un entier m > 1 tel que (2™)™ = 0 i.e. 2™ = 0,
donc xz € J. D’ailleurs, si K satisfait la condition envisagée plus haut, alors K contient

évidemment tout élément nilpotentde A, i.e. K D J, ce qui acheve la démonstration.

Définition 2.4. — Soit A un annean commutatif. Lidéal des éléments nilpotents de

A (cf. 2.3) est appelé le nilradical de A.

On notera que A est donc réduit si et seulement si son nilradical est nul.

Proposition 2.5. — Sozent A un anneau commautatif, J un nilidéal de A, Ay = A/ J,
u: A — Ay lbomomorphisme canonique. Alors u induit une bijection de l'ensemble

des idempotents de A avec l'ensemble des idempotents de A,.

Compte tenu du n® 1, on en conclut aussitot le
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Corollaire 2.6. — Pour que A soit indécomposable (resp. isomorphe a un produit fini
d’anneaux indécomposables) il faut et il suffit qu’il en soit de méme de Ay. Dans le cas

respé, le nombre de facteurs indécomposables envisagé dans 1.11 est le méme pour A et pour

Ap.

Corollaire 2.7. — Soit I un ensemble fini, alors pour toute famille (Ao ;)icr
d'anneaux quotients de A appartenant a D(Ay, I) (1.1), il existe une famille unigue
d'anneaux quotients (A;)icr de A qui soit élément de D (A, I) et telle gue pour tout i € I,
I’homomorphisme composé A — Ay — Ay ; se factorise par A;. Deplus, si A; = A/ J,,
onaAy; = AoJu(J;) =~ AJ(J + ;).

N. B. — La démonstration de 2.6 est triviale quand on dispose du langage des sché-
mas affines, impliquant que les idempotents de A correspondent aux parties a la fois
ouvertes et fermées de Spec(A). Ici, nous donnons une démonstration directe, a I'aide
du lemme 2.8 ci-dessous. Elle peut certainement se rédiger sans utiliser la notion de
polynéme ni la formule de Taylor pour les polyndmes, si on y tient (et pourrait donc

passer au Chap. I).

Lemme 2.8. — Soient A un annean commautatif, J un nilidéal de A, p € A[T| un
polyndme, p(T) = ag+ar1T+- - -+a,T". Onsuppose que ag € J et que ay est inversible.

Alors il existe un unigue élément x de J tel gue p(x) = 0.

Par hypothese, il existe un entier n > 1 tel que aj = 0. Nous procédons par récur-
rence sur 7, en notant que ’énoncé est trivial sin = 1,1ie. agp = 0, auquel cas on
prend z = 0, solution qui est unique comme on voit en écrivant p(x) = 0 sous la
forme z(a; + asr + ...) = Oeten notant quesiz € J, alors le deuxieme facteur
a1 +asx +- - - = a; +uw estinversible, car a; estinversible et ux nilpotent. Supposons

doncn > 2, etle lemme prouvé pour des entiers n’ < n. On met x sous la forme
_ -1
T =—a; ap+ 2,

ce qui donne sur 2 les conditions 2 € I (équivalente 3 x € I, puisque ay € I), et
o(—ai'ag + z) = 0. Développant par la formule de Taylor le premier membre, on
trouve une équation de laforme ¢(z) = 0,0u(T") € A[T],Y(T) = bo+ 0T+ - -+
b, T, ot by = o(—aj;ag) € a2A, etoub; = ¢'(—aj ag) est de la forme a; + uao,

donc estinversible puisque a; estinversible et ay donc uag nilpotent. D’ailleurs, la forme
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donnée de by montre que b ' = 0, ce qui permet d’appliquer ’hypothése de récurrence
a1 ; donc il existe un unique # satisfaisant aux conditions voulues, C.Q.F.D..

Nous pouvons maintenant prouver 2.5. Soit €y un idempotent de A, e un élément
de A qui le reléve. Alors, e — e € J. Tout revient 2 montrer qu’il existe un unique
x € J tel que e + x soit idempotent, i.e. tel que (e + z)* — (e + ) = 0, ce qui s*écrit
aussi

2?2+ (2e — 1)z + (¢ —e) = 0.

Compte tenu de 2.8, il suffit donc de prouver que 2e — 1 est inversible, ou ce qui revient

au méme (cf. 2.10, ci-dessous) que 2y — 1 est inversible, ce qui résulte du

Lemme 2.9. — Soit e un idempotent d’'un annean A. Alors 2e — 1 est inversible, de

fagon precise, son carré est 1.

Eneffet,ona (2¢ — 1)? = 4e* — 4e + 1 = 1 puisque e = e.
Nous avons utilisé plusieurs fois, (pour démontrer 2.8 et 2.5) le résultat suivant, qui

devrait donc passer avant 2.5 :

Proposition 2.10. — Soient A un anneau, J un nilidéal bilatére de A, Ay = A/ J
lannean quotient. Alors pour tout élément x de A, x est inversible si et seulement si son
image canonigue dans A lest. En particulier, si x est inversible, il en est de méme de

x + h pourtout h € J.

Supposons en effet z( inversible, d’inverse 7, image canonique de y. On a donc
xy = 14 a,avec a € J, et tout revient a prouver que 1 + a est inversible, car alors
y(1+4 a)~! seraun inverse 2 droite de x, et on prouvera de méme I’existence d’un inverse
a gauche. Or pour trouver un inverse de 1 + a, a étant nilpotent, on utilise la formule de

Newton, qui donne I'inverse ) - (—1)"a".

Proposition 2.11. — Soit (A;)ier une famille finie d'anneaux commutatifs, A leur
produit. Alors le nilradical de A est le produit des nilradicaux des A;. L'annean A est

réduit si et seulement si les A; le sont.

Beweis klar. Remords : donner la derniere assertion de 2.11 pour le produit d’une
famille pas nécessairement finie d’anneaux.

a proposition qui suit, pour venir sans larmes, suppose soit que ['anneau de frac-
L t t l t I de fi
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tions soit défini au Chap. I'sans se borner au passage aux fractions par rapport a une par-
tie d’un anneau formée d’éléments réguliers ; soit qu'on dispose de la notion d’anneau

de polyndmes (ce qui la rejetterait apres le Chap. IV) :

Proposition 2.12. — Soit A un annean commautatif. Alors le nilradical de A est

Uintersection des idéanx premiers de A.

En vertu de 2.3, il est contenu dans cette intersection, car si p est un idéal premier
de A, A/p estintegre donc réduit, donc p contient le nilradical. Pour I'inclusion en sens
inverse, il faut prouver que si f € A n’est pas nilpotent, il existe un idéal premier p de
A ne contenant pas f. Pour ceci, on introduit 'anneau de fractions B = A de A,
qu’on peut définir aussi comme I’anneau quotient B = A[T']/(1 — fT'), T étant une
indéterminée. On voit aisément que, pour un élément donné f de B, Ay est nul si et
seulement si f est nilpotent (pourrait étre dégagé en lemme). En P'occurrence, f étant
supposé non nilpotent, donc A non nul, il existe par Krull un idéal maximal de A;. Son

image inverse dans A est un idéal premier ne contenant pas f. C.Q.F.D..

Proposition 2.13. — Soient A un annean commutatif, J un nilidéalde A, Ay = A/
lanneau quotient, ¢ : A — Ay lapplication canonique. Alors lapplication p ~
0~ H(p) établit une correspondance binnivoque entre l'ensemble des idéaux premiers (resp.

maximaux) de Ao, et lensemble des idéaux premiers (vesp. maximaux) de A.

C’est une conséquence immédiate de 2.3 qui implique qu’un idéal premier de A con-

tient J. Pourrait étre bloqué en corollaire 4 2.3.

Proposition 2.14. — Sous les conditions de 2.13, A est local (vesp. semi-local) si et

seulement si Ag lest.

3. — Structures des anneaux artiniens commutatifs

Définition 3.1. — Un annean A est dit artinien a gauche (vesp. a droite) lorsque toute
suite décroissante didéaux a gauche (rvesp. a droite) de A est stationnaire.
Lorsque A est commutatif, on dit simplement que A est artinien s’il est artinien a

gauche (ou ce qui revient an méme, a droite).

Proposition 3.2. — Soit A un anneau commautatif artinien. Alors tout idéal premier
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de A est maximal, et 'ensemble de ces idéaux est fini (en d autres termes, A est semi-local).

Soit p un idéal premier de A, il faut prouver que A/p est un corps. Comme A/p est

évidemment artinien, il suftit de prouver pour ce point le

Corollaire 3.3. — Un anneau artinien a gauche non nul dont tout élément non nul

est régulier a gauche (par exemple un anneau commutatif intégre artinien) est un corps.

11 suffit de prouver que tout élément non nul f de A est inversible 4 droite, donc
que lapplication g ~» fg de A dans lui-méme est surjective. Or par hypothese elle est
injective, et si elle n’était pas surjective, les images des homomorphismes itérés, i.e. les
idéaux a gauche f" A, formeraient une suite strictement décroissante d’idéaux a gauche
de A, contrairement a ’hypothese artinienne sur A.

Pour prouver 3.2, il reste a prouver que 'ensemble des idéaux maximaux de A est
fini. Mais si on pouvait trouver une suite infinie (m; );en de tels idéaux, alors la suite des
idéaux N; = ;<i M serait strictement décroissante, comme il résulte aussitdt de 1.19,

ce qui contredirait encore ’hypothese artinienne sur A.

Corollaire 3.4. — Soit A comme dans 3.2. Alors lintersection de l'ensemble (fini) des

idéaux maximaux de A est identique au nilvadical de A, et ce dernier est nilpotent.

Celarésulte de 3.2 et de 2.12 ; le caractere artinien de A impliquant qu’un nilidéal de

A est nécessairement nilpotent.

Proposition 3.5. — Soit A un anneaun commumtz'f artinien.

() Pour que A soit local, il faut et il suffit qu’il soit indécomposable, ou encore qu’il

admette un idéal maximal nilpotent.

(1) A est isomorphe au produit d’une famille finie d’anneaunx artiniens locanx, et cect

de fagon essentiellement unique.

Si N est le nilradical de A, alors il résulte de 3.4 et 1.19 que A/ N est isomorphe 2 un
produit fini de corps k;, ¢ € I. Cette décomposition se remonte en une décomposition
de A en vertu de 2.7, chaque facteur A; de A dans cette décomposition ayant un idéal n;

nilpotent tel que A/n; soitisomorphe au corps k;. En vertu de 2.14, chaque A, est local,
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et a fortiori indécomposable. La propriété d’unicité d’une décomposition de A en pro-
duit fini d’anneaux indécomposables a été explicitée dans 1.9, ce qui prouve (ii). On voit
de plus, sur cette décomposition, que A est indécomposable si et seulement si I’ensemble
d’indices [ est réduit 2 un élément, i.e. A estlocal, et ceci implique que A admet un idéal
maximal nilpotent ; 'inverse a déja été observé plus haut comme conséquence de 2.14.

Cela achéve la démonstration de 3.5.

Corollaire 3.6. — Soit A un annean commutatif artinien. Pour que A soit réduit, il
faut et il suffit qu’il soit isomorphe a un produit fini de corps (et ces derniers sont déterminés

alors de fagon essentiellement unique).
Résulte de 3.5 et de 2.11.

Corollaire 3.7. — Soit A un anneau commutatif artinien. Pour que A soit un corps,

il faut et il suffit que A soit local et réduit.

N. B. — On aurait dt apres 3.1 noter qu’un quotient d’un artinien, ou un produit
d’une famille finie d’artiniens, est artinien, ce qui montre en particulier, grice a 3.5 (ii),
que la classification des anneaux commutatifs artiniens se ramene entierement a celle des

anneaux commutatifs artiniens locaux.

4. — Existence et unicité de la décomposition d’un polynéme a une
indéterminée sur un corps en produit de puissances de polynémes irré-

ductibles

Peut se traiter en une proposition, ala place de la proposition 8 du Chap. IV, n° 5. Inutile
d’attendre le Chapitre des anneaux principaux pour donner cette propriété, qu’il serait
absurde de se refuser a utiliser dans le Chapitre des corps commutatifs, en cas de besoin.
Nous 'appliquerons dans 5.8 a la structure des algebres commutatives de degré fini sur
un corps, qui pourrait étre donnée dans un n° a part, faisant suite au précédent, dans le

Chap. IV, ou bien former le §7, du Chap. V, apres le §6 de I’état publié actuel.
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5. — Algebres de degré fini sur un corps k

Définition 5.1. — Soient k un corps, A une k-algebre. On appelle degré de A sur k, ou

simplement degré de A, et on note [A : k|, la dimension du k-espace vectoriel sous-jacent &

A

Remarque 5.2. — On s’abstiendra par contre, pour une k-algebre, d’utiliser le terme
“dimension de A” pour désigner son degré sur k, a cause des confusions possibles avec la
notion de dimension d’un anneau, qui sera étudiée en Alg. Comm.. Cetinconvénient ne
se présente pas quand on utilise le synonyme “rang d’un espace vectoriel” pour désigner sa
dimension, et on pourra alors utiliser le terme “rang de la k-algebre A” comme synonyme
de “degré de la k-algebre A”.

On dira donc que A est de degré fini sur k (ou de rang fini sur k, — mais non “de
dimension finie sur k! —) si son degré sur k est fini. Dans le cas contraire, ce degré
est égal 3 +oo (N. B. — a vérifier si cela ne contredit pas la notion de dimension d’un
vectoriel, qui serait un cardinal — le rédacteur ne dispose pas, au moment de rédiger, des
textes canoniques. En tous cas, la convention utile ici est bien de prendre +00 et non le

cardinal d’une base).

Proposition 5.3. — Soit A une algébre sur un corps k. Si A est de degré fini sur k, A

est artinienne a gauche et méme a droite.

On pourrait méme se borner a supposer £ artinien au lieu d’un corps.

Grice a 5.3, nous pouvons donc appliquer tous les résultats du n°3 a la structure
des algebres commutatives de degré fini sur un corps k ! Noter que sim; (i € I) sontles
idéaux maximaux de A (en nombre fini, rappelonsle), et k; = A/m; les corps correspon-
dants (appelés aussi corps résiduels en les m;, terminologie qui aurait pu étre introduite
des la notion d’idéal maximal), alors les £; sont des corps qui sont des k-algebres, i.e. sont
des extensions de k, qu’on appellera aussi les extensions résiduelles de A. Noter qu’on
aura évidemment ) [k; : k] < [A : k] = n (égalité si et seulement si A est réduite) et a

fortiori card I < n (égalité si et seulement si A est isomorphe a k™).

Proposition S5.4. — Soient k un corps, A une algébre commutative sur k, de degré
finin, K une extension de k, k; (i € 1) les extensions résiduelles de A, p; + A — k; les

homomorphismes canoniques. Alors tout k-homomorphisme wde Adans K peut s'écrire, de
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fagon unique, sous la formev o, ont € Letonv : ki — K est un k-homomorphisme.

I suffit de noter que le noyau de w est un idéal premier de A, donc maximal (3.2),

d’ol1 aussitot ’assertion.

Corollaire 5.5. — Les k-homomorphismes de A dans K sont linéairement indépen-
dants dans le K -espace vecroriel des homomorphismes des k-espaces vectoriels sous-jacents a

Aeta K. En particulier, il y a au plusn k-homomorphismes de A dans K.

En effet, quitte 4 faire 'extension delabase s — K, onserameéneaucasou K = £,
et o1 assertion est immédiate, compte tenu que A s’envoie sur le produit des £;.

N. B. 5.6. — On retrouve ici par la bande, dans un cas particulier, le théoréme de
Dedekind de 'indépendance des homomorphismes, qui pourrait s’énoncer ainsi : si
est un monoide, K un corps, I'ensemble des représentations de S dans K est libre dans
Iespace vectoriel sur K des applications de S dans /. On peut prouver cet énoncé assez
naturellement dans Pesprit des présentes notes, en introduisant I'algebre A de S sur K, ce
qui nous ramene a prouver que, pour une K -algebre A, 'ensemble des homomorphismes
de A dans K est libre dans le dual de I'espace vectoriel sous-jacent 4 A. On se ramene
aussitot au cas K commutatif (diviser par I'idéal des commutateurs), et alors le lemme

chinois 1.19 donne aisément le résultat.

Proposition 5.7. — Soient A une algébre commutative de degré fini n sur un corps k,
Q une extension algébriguement close de k, P(A) Uensemble des k-homomorphismes de A
dans Q). Alors lapplication u — Ker(u) induit une bijection de P(A) avec l'ensemble
des idéaux maximaunx w de A tels que lextension résiduelle correspondante A/m de k soit

triviale. De plus, les conditions suivantes sont éguivalentes :
() Aestisomorphe a l'algebre k"
(iz) A est réduit, et pour tout k-homomorphisme u : A — Q, on a u(A) = k.
(i1 bis) A est réduir et ses extensions résiduelles sont triviales.
(777) Onacard(P(A)) = n.

(iv) Aan idéaux maximaux.
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La premicre assertion est triviale (et indépendante de ’hypothese [A : k] < +00), ainsi
que ’équivalence de (ii) et (ii bis), compte tenu de 5.4. L’équivalence de (i) et (ii bis) est
immédiate, compte tenu que A réduit implique que A est isomorphe au produit de ses
extensions résiduelles. D’ailleurs, (i) = (iii) est trivial par 5.4, et on a (iii) = (i), car
on a un homomorphisme surjectif canonique A — k” (4) et (iii) assure que les deux
c6tés de la fleche ont méme degré sur k, donc ’homomorphisme est un isomorphisme.

L’équivalence de (i) et (iv) a déja été observée plus haut.

Proposition 5.8. — Soient k un corps, f € k[X] un polyndme en une indérerminée

X, on suppose [ non constant et on considere sa décomposition en facteurs premiers

et f

on les fi (1 < i < s)sont des polyndmes unitaires irréductibles, et les r; sont des entiers
> 0. Alors la k-algebre
A= k[X]/fk[X]

est finie sur k, de rang égal a n = deg f, et elle est isomorphe au produit des algebres
A; = k[ X/ ] k[X], ces derniéres étant des algébres locales, dont les extensions résiduelles
sont isomorphes aux extensions k[ X|/ fik[X].

Preuve par AQT.

Corollaire 5.9. — Pour que A soit locale, il faut et il sufffit gue s = 1. Pour que A soit
reduite, il faut et suffit que f soit sans facteurs multiples, i.e. quer; = 1 pour1 < i < s.
Pour que A soit un corps, il faut et il suffit que f soit irréductible.

6. — Ensembles a groupes d'opérateurs induits

Soient G' un groupe, H un sous-groupe, M un ensemble sur lequel H opere (2
gauche). Désignant, pour deux ensembles £, F'sur lesquels H opére, par Homp (E, F')
'ensemble des applications de 2 dans F' compatibles avec 'action de H, et munissant G
de la structure d’ensemble a groupe d’opérateurs H, grice aux translations a gauche par
les éléments de H, on définit 'ensemble Homy (G, M). Utilisant le fait que la transla-
tion a droite par un élément ¢ € G commute aux opérations de / sur GG, on met sur

Homp (G, M) une structure naturelle d’ensemble 4 groupe d’opérateurs G, en posant
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donc
(g.0)(x) = ¢(zg), g, € G, ¢ € Homy(G, M);

on appelle parfois Homy (G, M) P'ensemble & opérateurs déduit de 'ensemble M 2
groupe d’opérateurs H par extension contravariante du groupe d’opérateurs H a G.
Pour tout ensemble P 4 groupe d’opérateurs G, on a une bijection canonique, fonc-

torielle en tous les arguments :
(%) Home (P, Homy (G, M)) — Hompy (P, M),

ou dans le deuxi¢me membre, on considere P comme muni du groupe d’opérateurs H,
par restriction des scalaires : ainsi, le foncteur extension du groupe d’opérateurs apparait
comme I’adjoint 4 droite du foncteur restriction du groupe d’opérateurs — particularité
que Bourbaki sera le seul a lui reprocher. Lorsque M est un groupe (resp. un groupe
abélien, resp. un anneau, resp. un n’importe quoi), on voit aussitot qu’il en est de méme
de Homp (E, M), quel que soitI’ensemble £ a groupe d’opérateurs H,, et cette structure
eststable par les automorphismes induits par les //-automorphismes de £ ; en particulier,
G opére par automorphismes sur Homy (G, M).

Partons maintenant d’un ensemble P 4 groupe d’opérateurs G, et soit M un en-
semble quotient de P. Soit H le sous-groupe de G formé des g € G qui laissent ce
quotient invariant (i.e. qui laissent invariante la relation d’équivalence correspondante).
L’application canonique P — M est donc un H-homomorphisme, et 'isomorphisme

(*) lui associe un homomorphisme
(%) P — Hompy (G, M).

Lorsque ce dernier est un isomorphisme, on dira que 'ensemble P i groupe d’opérateurs
G est induit par son quotient M. Lorsque P est un groupe (resp. anneau) a groupe
d’opérateurs, et que M est un groupe (resp. anneau) quotient M = P/R, alors H est
aussi le sous-groupe de G' des éléments qui laissent invariants 2, et ’homomorphisme ou
isomorphisme précédent respecte les structures de groupe (resp. anneau).

Supposons qu’on ait un ensemble (M;);c; de quotients de P, et que
homomorphisme canonique P — [] M, soit un isomorphisme. Supposons
de plus que I'ensemble de quotients envisagé soit stable par G, de sorte que G opere sur

I. Choisissons un ¢y € I, alors le stabilisateur ' de M = M, est par définition le

0
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stabilisateur H de i dans G. L’application (**) ci-dessus s’identifie alors a la projection

canonique du produit [[ M; sur le produit partiel ] M;. Par suite, pour que

i€Gig
P soit induit par son quotient M = M;, il suffit que G opere transitivement sur
I, et cette condition est d’ailleurs également nécessaire comme on voit facilement (en
traitant séparément les cas ot M aurait 0, ou 1, éléments). Dans le cas général, il y a lieu
d’introduire Pensemble .J des orbites /; de G dans I, et de regarder la décomposition
M.

Alors G opere sur P via ses opérations sur les facteurs P; ; et chacun des ensembles

de P en produit partiel P =~ [];c; Pj, ot pour tout j € .J, on pose P; = [[;¢;,
(resp. groupes...) P; a groupe d’opérateurs G est justiciable du cas favorable, i.e. se
représente comme induit par n’importe lequel de ses quotients M;(¢ € I;). En résumé,
pour un groupe donné G et un ensemble (resp. groupe...) P donné comme produit
d’un ensemble de quotients (M;);cr, on peut expliciter completement les manieres de
faire opérer G sur P, laissant stable 'ensemble I envisagé, en termes des opérations des
sous-groupes /1 de G sur des facteurs M;.

Prenons par exemple le cas ou P est un anneau A satisfaisant aux conditions 1.19,
donc qui s’écrit comme produit fini de quotients indécomposables A =[], A;.
L’ensemble de ces quotients est manifestement stable par tout automorphisme de A,
donc les réflexions précédentes sont applicables. En particulier, si un groupe G opére
sur A de fagon a opérer transitivement sur A;, on reconstitue 'anneau A 4 groupe
d’opérateurs G a partir de Panneau A;; 4 groupe d’opérateurs H (stabilisateur de i dans

(G) comme 'anneau induit Homy (G, A, ).
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