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Résumé. — This volume contains a large part of the mathematical correspon-
dence between A.Grothendieck and J-P.Serre. This correspondence forms a
vivid introduction to the algebraic geometry of the years 55-65 (a rich period if
ever there was one). The readers will discover, for instance, the genesis of some
of Grothendieck’s ideas: Sheaf cohomology (Tôhoku), Schemes, Riemann-Roch,
Fundamental Group, Existence Theorems and Motives... They also will get an
idea of the mathematical atmosphere of this time (Bourbaki, seminars, Paris,
Harvard, Princeton, Algeria war, ...).

Abstract (Correspondance Grothendieck-Serre)
Ce volume contient une grande partie de la correspondance mathématique

entre A.Grothendieck et J-P.Serre. Cette correspondance constitue une intro-
duction particulièrement vivante à la géométrie algébrique des années 1955–1965
(période faste s’il en fut). Le lecteur y découvrira, en particulier, la genèse
de certaines des idées de Grothendieck: cohomologie des faisceaux (Tôhoku),
schémas, Riemann-Roch, groupe fondamental, théorèmes d’existence, motifs...
Il se fera aussi une idée de l’atmosphère mathématique de cette époque (Bour-
baki, Paris, Harvard, Princeton, guerre d’Algérie, ...).
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FOREWORD

A large part of my correspondence with Grothendieck between 1955 and 1970
is reproduced in the present volume of the series “Mathematical Documents”.

I have chosen those of our letters which seemed to me most likely to be of
interest to the reader, either from a purely mathematical point of view or from
a historical point of view.

Of course, this choice is far from representing all the questions I discussed
with Grothendieck over these fifteen years: when we were both in Paris, our
usual means of communication was the telephone. The letters reflect rather
the periods when we were separated: one of us being in Princeton or Harvard
and the other being in Paris.

I have also included several of the letters that we exchanged between 1984
and 1987, at the moment when Récoltes et Semailles was being written.

The only changes which have been made to the original texts are the
following:

— suppression of abbreviations, such as “com.” for “commutative” g;
— correction of both spelling mistakes and obvious mis-typings.
— suppression of certain personal passages (1) which have been replaced

by suspension points between brackets [...].

On the other hand, wrong statements have been preserved as they were.
They are corrected (insofar as it was possible) in the Notes placed at the end of
the volume. These notes also give some more recent results. They are indicated
in the text by reference numbers in the margin.

(1)For curiosity’s sake, here is one of the suppressed passages, on the subject of a mathematician
who I will call X: “... the horrible prose of X, grand master wizard of the den of horrors,
who of course is careful to keep from writing a clear little paper, in which the helpful claims
would appear in a usable form...” It will be understood why I wished to spare X from reading
this passage.



viii FOREWORD

Jean-Pierre Serre, Paris, December 2000

This volume would never have seen the day without the help of a large
number of people. Jean Malgoire authorized publication of this correspondence
in Grothendieck’s name. A (small) army took on the work of typing the letters
in TeX which in certain cases was no light task. Once the typing was finished,
the readers pinpointed a certain number of points deserving commentary, which
contributed to filling out the notes written by Serre.

When the volume was reasonably advanced, we had to think about publica-
tion. Since none of the S.M.F.’s existing series had room for a volume of this
kind, it was decided to create a new series, “Mathematical Documents”, whose
raison d’être would be the publication of historico-mathematical texts.

I would like to thank all the people mentioned above for the enthusiasm
with which they participated in this undertaking, and I hope the reader will
have as much pleasure consulting this correspondence as I had editing it.

Pierre Colmez, Paris, January 2001
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CORRESPONDENCE

January 28, 1955 Alexandre Grothendieck

J.-P. Serre : Grothendieck was in Lawrence (Kansas), where he had been

invited (by N.Aronszajn, I believe) because of his work on Topological Vector

Spaces. He had decided to change subjects and move towards topology and

functions of complex variables, which had led him to algebraic geometry (as it

had led me, a year or two earlier).

Dear Serre,

A really annoying thing has happened: as I could not carry all my papers

on the plane, I sent part of them in two packages, which were posted together

the day I left. But only one of them has arrived, a week ago, and by now it is

unlikely that the other will ever arrive. It contained (among other things) those

lectures from the Schwartz, Cartan and Cartier seminars that existed at the

time, your paper on algebraic sheaves and the Kodaira- Spencer papers. I am

very upset about this, as it will probably not be possible to replace the last two

for some time, and I had not even had time to glance at Kodaira-Spencer. In

any case, send me the complete set of all the lectures from all three seminars, if

there are any left. I hope Barros remembers to bring you the Schwartz lectures.

Can you also tell Spencer I have not received any of the papers he wanted to

send me from Princeton?

Here I have practically all my time to myself; I am giving a few talks on

Malgrange’s thesis, but this hardly takes any time. I will probably bother

you shortly with various technical questions; I have started reading Thom’s

“varieties” J.-P. Serre : “Thom’s ‘varieties’ ”. This is a reference to:

R. Thom, Quelques propriétés globales des variétés différentiables, Comment.

Math. Helv. 28 (1954), 17–86., which is horribly badly written, but probably
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useful to look at, and your article on H(Π; q,Z2) J.-P. Serre : “your article

on H(Π; q,Z2)” : [Se53b]. which has pleased me so far. I have also gone

thoroughly over the basic principles of ho- and coho-mology; I needed to do so.

I came across several questions of a standard type, to which you may have an

answer. Let X be a space with a “Φ family”, X′ ⊂ X a closed subset, U = {X′,
and F a sheaf on X. If B is a subset of X, then let Φ ∩ B be the set of

all A∩B (A ∈ Φ), and let ΦB be the set of all A ∈ Φ which are in B. O denotes

an arbitrary open neighborhood of X′. There are canonical homomorphisms,

(taking the singular (co)homology point of view, for the sake of argument){
Hp

Φ(X mod X′,F)← Hp
ΦU

(U,F) bijective if X and X ′ are HLC, for example.

HΦ
p (X mod X′,F)→ HΦ∩U

p (U,F) when is this bijective?

J.-P. Serre : (HLC) means “homologically locally connected”. A space X has

this property if for any x ∈ X , any integer p ≥ 0 and any neighborhood V

of x, there is a neighborhood U of x in X contained in V such that the

homomorphism Hp(U,Z) → Hp(V,Z) is trivial. (Here, Hp denotes the p-th

group of singular homology if p > 0; when p = 0, this is replaced with the

corresponding “reduced group”, i.e. the kernel of H0 → Z.) Every locally

contractible space (any simplicial complex, for example) is (HLC).

In the Cartan seminar of 1948/1949, Cartan showed that if X is a locally

compact (HLC) space, then the singular cohomology of X can be identified

with its sheaf cohomology.{
HΦ
p (X mod U,F)→

−→
limO HΦ∩O

p (O,F) bijective if X has a normal neighborhood

Hp
Φ(X mod U,F)←

←−
limO Hp

ΦO
(O,F) when is this bijective?{

Hp
Φ∩X′(X

′,F)←
−→
limO Hp

Φ∩O(O,F) always bijective.

HΦ∩X′
p (X′,F)→

←−
limO HΦO

p (O,F) when is this bijective?

Homomorphisms which are dual to each other are bracketed together.
−→
lim =

inductive limit,
←−
lim = projective limit; in any case it is always clear what I

mean. The first two pairs of homomorphisms arise when one seeks to eliminate

“relative” groups by interpreting them in terms of “absolute groups” . The

questions marked (?) are those to which I have only managed to give very

unsatisfactory answers by duality arguments: I am forced to assume that F

is at least locally constant, and that Φ is the family of all closed sets (co),

respectively, of all compact sets (ho). A reasonable conjecture would be that

everything works if X and X′ are both HLC. Here is an analogous question: is
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the homomorphism

Hp(X,F)→
←−
limK Hp(K,F)

(where K runs over all compact sets of X, which is assumed to be locally

compact and paracompact) bijective, at least in certain cases? Once again, I

have a partial answer by duality if F is locally constant, but this is scarcely

satisfactory. This question arises in justifying the “passage to the limit” in

Cartan’s theorems A and B once the compact case is established, for example.

As an exercise, I have been thinking about your question about a Künneth

formula for cohomology with coefficients in algebraic coherent sheaves over

projective varieties. I have shown carefully that it is enough to prove that,

if A is locally free on Xr and acyclic and B is locally free on Xs and acyclic

(where Xr and Xs are projective spaces), then A⊗̂B (the “good” tensor product,

obtained from A⊗ B by extension of scalars from OXr ⊗OXs to OXr×Xs) is

acyclic. Or even that A(n)⊗̂B is acyclic for n large enough. Does this help

you at all? I did not get any further.

You said that Bourbaki wanted to send me a draft by Samuel on algebraic

geometry (and commutative algebra?). I would be happy to get it, and the

same goes for any other draft, interesting reprint, etc. My address is:

Dep. of Math., University of Kansas, Lawrence (Kansas) USA

Thank you in advance for your help. Yours,

A.Grothendieck

January 29th. That blasted package has just turned up unannounced after all!

All’s well that ends well. Let me remind you that I have exactly 5 copies of

each of the seminars.
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February 18, 1955 Alexandre Grothendieck

Dear Serre,

I am writing to you with several questions and remarks.

In your article on the mod 2 cohomology of Eilenberg-Mac Lane complexes,

§1.2, property 2.2 of Steenrod squares one should observe that Sqi and ∂

commute provided they only act on cohomology classes of degree q ≥ i,

otherwise this is clearly false. For this reason, an iterated square SqI does not

commute with the connecting homomorphism unless restrictions are imposed on

the degree of the classes on which it acts (ir ≤ q, ir−1 ≤ ir+q, . . . , i1 ≤ i2 +· · ·+
ir+q), and for the same reason, SqI only commutes with the transgression under

the same conditions. Luckily, these conditions are satisfied if ik = 2r−ka, when

working with classes of degree ≥ a, and this is why the argument given in §2.7

is correct. I noticed something funny going on because the argument by which

you establish the axiomatic characterization of the SqI seemed in fact to prove

that they were all identically 0, with the result that for a whole day I was no

longer sure which way was up. Let me point out, furthermore, that in §2.10, th.

3, you have forgotten the generator uq itself, so “ir > 1” should read “ir 6= 1”.

∗Moreover at the bottom of page 223 I do not see how “the preceding corollary

shows. . . ” directly, except when one restricts to applying SqI of degree n

to Hq where q ≤ n. All I am prepared to admit is that a posteriori, the

Wu-Wen-Tsun-Adem formula gives the result (and I have not actually really

understood why, not t hat I have made much effort to see it). ∗
Otherwise, I think the following idea for proving a Kunneth formula for

projective varieties with coherent algebraic sheaves should work (though you

probably already have a proof). As I said, szyzygytic resolutions ∗ (what is

the correct spelling?) ∗ show that that the sheaves F and G can be assumed

to be locally free on the projective spaces X and Y. Moreover, although I

have not checked it (it is not my job!) I am convinced that the Leray spectral

sequence for a continuous map (or at the very least for a bundle projection)

is valid for a non-separated space, the E2 term being Epq2 = Hp(B,Aq), where

A =
∑

Aq is the sheaf over the base space B whose local group at b ∈ B

is equal to the inductive limit of the cohomology groups (with coefficients

in H, the given sheaf of coefficients on the bundle E) of the inverse images

in E of open neighborhoods of b; the E∞ being, as it should be, the graded

group associated to some suitable filtration on the cohomology of E. Setting

E = X×Y, B = Y, H = F⊗̂G, one needs to compute Ay for y ∈ Y. But now

there is a fundamental system of neighborhoods U which are affine varieties
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without singular points, so one must compute H(X × U,F⊗̂G). To do this,

it will be enough to compute using cochains associated to the open cover

given by the Xi ×U (which are affine varieties). However, a section of F⊗̂G

over Xi ×U is clearly an element of Γ(Xi,F)⊗ Γ(U,G) (to see this, one may

assume if necessary that the U are small enough for F to be globally free, and

the problem is reduced to the case F = OU; if desired, the same simplification

can be made on X by passing to a finer open cover by open affine subspaces X′j).

The cochain complex for (Xi × U) with coefficients in F⊗̂G is therefore the

tensor product of the complex for (Ui) with coefficients in F and Γ(U,G). By

ordinary Künneth, its cohomology is therefore H(X,F)⊗ Γ(U,G). This proves

that Ay is the group of germs of rational sections of H(X,F)⊗W, where W

is the vector bundle which produces G. Hence, A is the same as the tensor

product of the constant sheaf H(X,F) on Y with G, and re-Künneth shows

that this is exactly H(X,F)⊗H(Y,G). This gives the desired result, I think,

on recalling that there is already a canonical map from H(X,F) ⊗ H(Y,G)

into H(X× Y,F⊗̂G), and thence into E∞ etc., which should imply that the

successive differentials are trivial from ∂2 onwards. I have not looked into

this, since I know that in fact it would be enough to prove the theorem for

acyclic F and G, and in this case the result is obvious for degree reasons. I

note also that with a little more technique, presenting no essential difficulty, it

can be shown that if E is an algebraic bundle over an algebraic base space B

whose fiber is a projective variety F, then for any coherent algebraic sheaf on

E, H, the sheaf A on B which appears in Epq2 = Hp(B,Aq) is a coherent sheaf

on B. It should be quite fun to compute the cohomology of plenty of classical

varieties using this spectral sequence and see whether this does indeed give

what is expected. ∗ I do not see why it would not be possible to introduce

Chern et al. classes via universal spaces (from the homological point of view,

as explained in Borel’s thesis) and classifying spaces, which would then play

the same role in an algebraic Riemann-Roch as in the one (due to Hirzebruch)

that you vaguely explained to me, ∗ which works in the complex case.

I have been giving some thought to Stein varieties. It strikes me that it

should be possible to greatly simplify the proofs of Cartan’s theorems A and

B by use of szyzygytic resolutions, and to avoid the big theorem stating that

a holomorphic vector bundle over a cube is holomorphically trivial. On the

other hand, the triviality of the dz̄ -cohomology over a polycylinder is needed,

which is substantially easier. There is only one remaining difficulty, which I

believe to be minor (I do not have the necessary background information at
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hand: I may have to use general results on elliptic equations). In any case, for

a given coherent analytic sheaf, it is more or less immediate that it is acyclic

on any sufficiently small polycylindrical neighborhood of a given point: using a

szyzygytic resolution whose length is greater than the dimension of the space,

the problem is immediately reduced to proving the same result for a free sheaf,

hence for O, and for the latter it follows from the local and global triviality

of the dz̄ -cohomology. In any case, as you said, this makes the “projective”

variants of theorems A and B independent of all this “Stein” mess. — A

question: I have understood the cohomological principle (if it can be called

that) underlying szyzygytic resolutions, but the following question remains

unanswered every time: ∗ is a finitely generated projective module over the ring

in question (for instance a ring of polynomials or of holomorphic functions)

free? Is this easy to see in interesting special cases?∗ If I understand correctly,

in the case of polynomials, it is not even known whether this theorem is true,

and one has to restrict oneself to graded rings to get a result. — I intend to

give a course on homological algebra here, following the (presumed !) outline

of Cartan and Eilenberg’s book, and it would be nice to be able to include

szyzygytic resolutions. For my own sake, I have made a systematic (as yet

unfinished) review of my ideas of homological algebra. I find it very agreeable

to stick all sorts of things, which are not much fun when taken individually,

together under the heading of derived functors.

I have also been thinking about the problem of a holomorphic bundle whose

fiber and base are both Stein. J.-P. Serre : “the problem of a holomorphic

bundle whose fiber and base are both Stein”: the question is whether or not

such a variety is itself a Stein variety. The answer is “no”, cf. H. Skoda (Invent.

Math. 43 (1977), 97–107) and J-P. Demailly (ibid. 48 (1978), 293–302). All I

have done so far is to obtain more exact versions of things I already knew, and

which I think other people must also know: everything works when the fiber is

a subvariety of Cn with a (not necessarily holomorphic) structural group which

is induced by a group of affine complex transformations. (More generally, what

is needed is a structural group G such that the space H(F) of holomorphic

functions on F is the closure of a union H0 of finite-dimensional G-invariant

subvector spaces such that every subset of F on which every function ∈ H0

is bounded is relatively compact; the first condition is automatically satisfied

if the structural group is compact, and hence if the structural group is a

connected Lie group. ∗ In fact, do you know of any example of a Stein variety

whose automorphism group is not small enough and whose H0 is therefore not

large enough for these conditions to be satisfied?∗). In particular, this shows
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that a holomorphic principal bundle whose base is Stein and whose fiber is a

linear complex group (for example, a complex connected Lie group, a finite

group, a finitely generated abelian group, or any group having a composition

sequence whose successive factors are of these types) is Stein. For all practical

purposes this seems to cover every case, including the universal cover J.-P.

Serre : “universal cover”: Grothendieck used “recouvrement” (cover, as in

“open cover”), instead of “revêtement” (covering, in the geometric sense). of a

Stein variety when the fundamental group is linear. ∗By the way, are there any

known examples of finitely generated discrete groups which are not isomorphic

to closed subgroups of linear groups (or alternatively, on which there is no

separating system of functions which generate finite-dimensional subspaces

under left translation?)∗. The answer is probably well known, but I do not

even know it for fundamental groups of Riemann surfaces, nor in particular for

the quotient by its center of the group of all matrices

(
a b

c d

)
where a, b, c

and d are integers.

I have not yet got very far with topology yet, as I have been devoting part

of my time to other things (Fourier on Lie groups). But I have overcome my

phobia of the spectral sequence.

Yours,

A. Grothendieck

P.S. A question I forgot: Is it known whether the quotient of a Stein variety

by a “fixed point free” discrete group is Stein? The passages enclosed in ∗’s
are those on which I would like to have your opinion, if possible.
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February 26, 1955 Jean-Pierre Serre

Dear Grothendieck,

Before leaving for a Bourbaki congress, I will try to answer the torrent of

questions you asked in your last letter.

1) The quotient of a Stein variety by a “fixed-point free” discrete group J.-P.

Serre : “discrete group”. Grothendieck probably meant “finite group”; in this

case, the answer to his question is “yes”. is not always Stein, since it can even

be a compact variety! Cf. elliptic curves, other curves, automorphic functions,

etc. Let us forget about it!
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2) I spurn your criticisms of my “mod 2 cohomology”:

a) It is true that SqI ◦d = d◦SqI for classes of any dimension. Indeed, this is

trivial for classes of low dimension (everything vanishes); you agree with me for

classes of sufficiently high dimension, and it is therefore enough to show that

the d of a square is always 0, which quickly follows from a trivial computation.

b) In no 30), you have been led into error by the following fact: the transgres-

sion τ is a homomorphism from a subgroup of the cohomology of the bundle

into a quotient of the cohomology of the base. It is an abuse of language to

think of τ(x), x ∈ H∗(F), as a cohomology class of B: it is a class which is

defined modulo certain other classes. When one says that SqI and τ commute,

this obviously means only that they commute modulo the classes in question

(which, moreover, is made clear on p. 457 of my thesis — cf. also the paper

by Borel and myself on reduced Steenrod powers). In fact, the argument

given in my no 30 is nevertheless correct, since there I use τ precisely in those

dimensions for which I am sure that this “modulo” is trivial.

c) You are right about th. 3 in no 10; one should add the SqI corresponding

to I = ∅ (moreover, one may maintain that the “last term” of the empty

sequence is ≥ 1, if one wants to play the logician!).

d) p. 223, you are right again: at first glance the preceding corollary appears

to give the result only on applying SqI to elements of degree q ≥ n = deg(I).

In fact, once such a result is established for classes of “high” degree, it extends

all by itself to classes of low degree: you can see this by looking at uq and

applying a (downwards!) induction on q, for example: apply the transgression

and use the fact that it is one-to-one. J.-P. Serre : “one-to-one” = injective.

3) The correct spelling is “syzygetic”. Moreover, Cartan says one should

simply write “free resolution” or simply “resolution” and that the adjective

syzygetic does not add anything. I confess I only use it because it has such a

lovely 19th century feel...

4) I had also considered the possibility of using “resolutions” to prove

theorems A and B for Stein varieties, but I had not got very far. I agree that

this method allows you to prove that every point has a basis of neighborhoods

made up of polycylinders over which the cohomology of the mess vanishes.

But this does not appear to be enough to give the result even for a “big”

polycylinder; theorem A seems to be needed to construct global resolutions,

and it is precisely here that the theorem on invertible holomorphic matrices is

used. Cartan is of the opinion that this theorem is a key point of the proof,
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and I would be very glad if you managed to get rid of it. Give me more details

if you manage to do so.

You say that the finiteness theoremJ.-P. Serre : This is a reference to the

finiteness theorem that was proved by Grothendieck in [Gr56a]. (the only

thing used in the proof of theorems A and B for projective varieties) can be

proved using only “small polycylinders”? In this case I assume you use the

proof given in your paper, and not the one given in my paper with Cartan J.-P.

Serre : “the one given in my paper with Cartan”: see [CS53]. in the Comptes

Rendus (since we needed the fact that the intersection of two “good” open sets

is a good open set, which is a result that is no longer available to you).

5) Of course, when the fiber F of an analytic bundle can be embedded in Cn

on which the group acts linearly, the bundle is Stein since it can be embedded

in a vector bundle, for which it is known that the result holds. But I do not

know what the significance of this remark might be. In particular, which

complex Lie groups can be embedded in GL(n,C) as closed subgroups? Not

all of them, in any case (abelian varieties), but according to Papa Cartan(2),

all semi-simple complex groups can, which is already a fair number. I am just

as ignorant about discrete groups: the answer is yes for the fundamental group

of a Riemann surface, since it is well known that this can be embedded in the

complex group of Möbius transformations, which can itself be embedded into

a linear group (easy to see, or a special case of the theorem of Cartan’s cited

above). For an arbitrary finitely generated discrete group, I am skeptical. J.-P.

Serre : Of course, there are many finitely generated groups (and even finitely

presented groups) which cannot be embedded into a linear group! There is a

lot of choice.

6) No, one should not try to define “Chern classes” as elements of cer-

tain Hq(X) with coefficients in coherent sheaves, since these are vector spaces

over the base field and the aim is to be able to define intersections with integral

coefficients. Moreover, the “last” Chern class is already known, namely the

canonical class, and it is a divisor class, defined up to linear equivalence. It

is absolutely certain that it is possible to define J.-P. Serre : A little later,

Grothendieck was to construct a theory of Chern classes of the sort that I was

asking for; see [Gr58]. the other classes as equivalence classes of algebraic

cycles up to “numerical” or “algebraic” equivalence. Even more: this should

not be difficult.

(2)Papa Cartan = Elie Cartan, father of Henri.
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(It should be clearly understood that the two sides of the Riemann-Roch

formula are integers and not integers modulo p, even when working in charac-

teristic p.)

7) Your method for computing H∗(X×Y) may perhaps work. The tricky

thing will be to set up the spectral sequence of a projection, and get the dr to

vanish. But I think there is a more brute-force method that gives the result:

simply take the product of two open covers of X and Y by open affine sets,

and compute with that. I have not yet had the courage to investigate this

in detail (it is an Eilenberg-Zilber-type argument based on the comparison

of a “product” complex and a “tensor product” complex). It will certainly

work. J.-P. Serre : This method for proving the Künneth formula (for coherent

algebraic sheaves) is explained in Groupes Algébriques et Corps de Classes,

p.186.

8) A finitely generated projective module over a local Noetherian ring A is

free. This is the result that is used all the time in free resolutions. The proof is

based on the fact that if M is projective and K is the quotient field of A by its

maximal ideal m, then Torq(M,K) = 0 for q 6= 0. Take a basis of M/mM and

use it to define a homomorphism ϕ : L→M, where L is free, which gives an

isomorphism from L/mL to M/mM. Conclude first that ϕ : L→ M is surjective

(set Q = M/ϕ(L), and note that mQ = Q, which implies that Q = 0), and then

that ϕ : L→ M is injective (by writing down the exact sequence and bearing

in mind that Tor1(M,K) = 0. — Of course, one also needs the obvious fact

that M/mM = M⊗K). Q.E.D.

The same proof works, and the same result follows, if A is a Noetherian

graded ring and M is projective and graded.

I have no other news,

Yours,

J-P. Serre
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February 26, 1955 Alexandre Grothendieck

Dear Serre,

Thank you for your letter and the parcel you tell me I am going to get. I

agree that homology with coefficients in a sheaf is not very interesting if the

sheaf is not locally constant, but one is forced to look at what happens at

least for locally constant sheaves, and one then realizes that when everything

behaves nicely, it is no more work to do without any restrictions on the sheaf

(example: duality!). As for your impression that if the answer to my questions

on cohomology is affirmative in dimension 0, then under the same conditions

it must be affirmative in all dimensions: you are mistaken, at least for Čech

cohomology. Thus, the formula Hp
Φ(X modU,F ) =

←−
lim Hp

ΦO
(O,F ) (where O

runs over all open neighborhoods of the complement of the open U) is obviously

true for p = 0 but is false for p = 1 if, for example, X is the interval [0, 1]

and U is the complement of a sequence which converges towards 0 and F = Z.

I presume this is why X and U have to be HLC; note that the example above

is no longer a counterexample for singular cohomology, and it may be that

the envisaged relation is always valid for singular cohomology (and as this

coincides with Čech cohomology if X and {U are HLC, the conjectured result

for Čech cohomology would follow). I have not continued looking into these

questions, whose interest is clearly limited.

Otherwise, I put in a systematic form, once and for all, the “Mittag-Leffler”

approximation process, which you mentioned to me for a special case. I

recommend to Bourbaki’s attention the following theorem, which has been

proved umpteen times in all kinds of special cases: J.-P. Serre : “I recommend

to Bourbaki’s attention the following theorem”: Bourbaki included a statement

of this kind in TG II, §3, no5.

Let (Ai)i∈I and (Bi)i∈I be two projective systems of groups, let (φi) be a

homomorphism from the first to the second, φ the homomorphism from
←−
lim Ai

to
←−
lim Bi defined by the φi, and (Ni) the “kernel” of (φi). Assume that I

contains a cofinal sequence and that (Ni) satisfies the following property:

(A) The Ni have Hausdorff topologies, compatible with the group structure,

for which the maps Ni → Nj (i > j) are continuous, such that for any i there

exists a j ≥ i such that for any k ≥ j, the image of Nk in Ni is dense in the

image of Nj .

Under these conditions, an element b ∈ B is contained in the image of ϕ if

and only if for all i, its component bi in Bi is an element of the image of ϕi.

(Here is another way of saying the same thing: consider the following

property h1 of a projective system (Ni); for any exact sequence 0→ (Ni)→
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(Ai)→ (Bi)→ 0 of projective systems, the corresponding sequence of projective

limits is exact, i.e.
←−
lim Ai →

←−
lim Bi is surjective. In cohomological terms, for

abelian groups, this means that the first derived functor lim1 of the “projective

limit” functor defined on the category of projective systems over a fixed I

vanishes for (Ni): lim1(Ni) = 0. The theorem then says that condition (A)

(“approximation ”) implies h1). In particular, condition (A) may hold upon

simply taking the discrete topology; this then gives a condition which I call (A0):

for every i, there exists j ≥ i such that k ≥ j implies that Nk and Nj have the

same image in Ni.

Now let X be a locally compact space which is countable at infinity. A

sheaf F on X is said to satisfy condition (A) resp. (A0) if the projective system

of its sections over the relatively compact subsets of X satisfies (A) resp. (A0)

(one may choose either sections over compact subsets or relatively compact

subsets). In this case, if the kernel of a sheaf homomorphism F → G satisfies

(A) [and hence in particular if it satisfies (A0)], then a section of G over X is the

image of a section of F if and only if the same thing is true over any compact

subspace. This is frequently used in the theory of elliptic analytic differential

equations over a variety for example, since the existence “over any compact

subspace” of an elementary kernel allows us to prove that every function is in

the image of the differential operator in question over any relatively compact

open set. Here is another application: Let (Ci) be a projective system of

graded groups, Ci =
∑

nC
n
i , equipped with a derivation of degree 1. Let C be

its projective limit; there is always a homomorphism, Hn(C)→
←−
lim Hn(Ci),

but unfortunately this is not an isomorphism in general. It is, however, easy

to see that it will definitely be an isomorphism if the system (Zn−1
i ) of (n− 1)

cycles and the system (Bn
i ) of n-boundaries satisfy h1, and in particular if

they satisfy (A). Note now that the quotient of a projective system which

satisfies (A) resp. (A0) satisfies the same condition. Therefore, if the two

systems (Cn−2
i ), (Cn−1

i ) satisfy (A), resp. (A0), then it is automatic that

(Bn
i ) and (Bn−1

i ) also do, and it follows immediately that the same will hold

for (Zn−1
i ) if and only if it holds for its quotient (Nn−1

i ) by the subsystem

(Bn−1
i ). Hence, if Cn−2 and Cn−1 satisfy (A) and furthermore one assumes

that the same holds of (Hn−1
i ), then Hn(C) =

←−
lim Hn(Ci). Note that for

example the projective system defined above for a sheaf Cn clearly satisfies (A0)

whenever Cn is a fine sheaf. If one now computes the cohomology of X with

coefficients in F using a resolution of F by fine sheaves, one sees that Hn(X,F )

can be identified with the projective limit of the Hn(U,F ) (U relatively compact)
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provided that the projective system formed by the Hn−1(U,F ) satisfies (A) [and

in particular if it satisfies (A0)]. It seems to me that this is the essential point

to remember. It shows, as you have already told me, that theorems A and B on

Stein varieties are proved once they are proved for compact analytically convex

sets; the dimension 1 case does not present any extra difficulty, since a coherent

analytic sheaf on a Stein variety satisfies (A), which is easy to see “without

leaving compact sets” by the approximation theorem: a holomorphic function

on an analytically convex compact set is a limit of holomorphic functions

defined on arbitrarily large compact sets.

If one asks whether or not Hp(X,F ) =
←−
lim Hp(U,F ) when F is a sheaf of

locally constant modules, then another method is needed. Let us use singular

cohomology and introduce the “product topology” on the space of chains with

coefficients in F with respect to the discrete topology on Fx. Assume that

the Fx are linearly compact, in the sense that every descending nested family

of translates of submodules has a non-empty intersection (it is enough that

the descending chain condition be satisfied, for example). Then the same

holds for the module of cochains in any given degree. This easily implies the

desired result. In particular, therefore, the result holds if the Fx are fields or

finite-dimensional vector spaces or finite groups etc. In particular, it holds

if F = Z/mZ. I think that this should be enough to prove the same formula

for Z via universal coefficient formulas, and maybe even for any system of

local groups, but this does not seem to be completely obvious and I have not

continued in this direction.

I have noticed that, formulating the theory of derived functors for more

general categories than modules, one obtains at the same time the cohomology

of a space with coefficients in a sheaf with little extra effort; take the category

of sheaves on a given space X, consider the functor ΓΦ(F ) which takes values

in the category of abelian groups, and consider its derived functors. Their

existence follows from a general criterion, in which the fine sheaves play the role

of “injective” modules. One also obtains the fundamental spectral sequence

as a special case of the delectable and useful general spectral sequences. But I

am not yet sure if everything works out so well for non-separated spaces, and

I am reminded of your doubts as to the existence of a cohomological exact

sequence in dimension ≥ 2. Moreover, all this is probably contained more

or less explicitly in the Cartan-Eilenberg book, which I have not yet had the

pleasure of seeing.

I am finishing reading your paper on Eilenberg-Mac Lane complexes, but

the last page is noticeably more difficult than all the rest because you are not
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kind enough there to remind the reader of everything explicitly. In any case, I

will have to come back to it after having force-fed myself Whitehead products,

Blakers-Massey elements, etc.

I learnt a few weeks ago that about a hundred associate professorships are

being created in France, and that they will be open to foreigners. Do you know

whether or not this is making any progress, whether I might have a chance of

getting one, and how and when one goes about applying? I would be extremely

interested, as there can be no question of me staying in America, and I would

much prefer to stay in France than go to Germany or even South America!

Yours,

A. Grothendieck

P.S, You wrote that the theory of coherent sheaves on affine varieties also

works for spectra J.-P. Serre : “the theory of coherent sheaves. . . also works

for spectra of commutative rings for which any prime ideal . . . ”. This first

approximation to the theory of affine schemes was “in the air” in 1954-1955,

at least with some restrictions on the rings in question. One of Grothendieck’s

contributions was to remove these restrictions: the best category of commutative

rings is the category of all commutative rings! of commutative rings for which

any prime ideal is an intersection of maximal ideals. Is the sheaf of local rings

thus obtained automatically coherent? If this works well, I hope that for the

pleasure of the reader, you will present the results of your paper which are

special cases of this as such; it cannot but help in understanding the whole

mess. J.-P. Serre : “your paper”: FAC.
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March 12, 1955 Jean-Pierre Serre

Dear Grothendieck,

Your stuff on topologies on projective limits looks very nice, and it is a great

pleasure to see the limit process in the theory of Stein varieties finally swallowed

up by a general argument. You seem to be ready to write a comprehensive

presentation of the proof of theorems A and B (which, by the way, would be a

darn useful piece of work for everybody; you should include the definition of

topologies on the sections of a coherent sheaf, and the finiteness theorem, all

of which would go well together; if you ever write it up, then I would like a

copy — Or, even better: publish it!)

The fact that sheaf cohomology is a special case of derived functors (at least

in the paracompact case) is not in Cartan-Sammy J.-P. Serre : “Sammy” =

Samuel Eilenberg, of course. . Cartan was aware of it, and had told Buchsbaum

to do it, but it appears that he never did. The point would be to see exactly

which properties of fine sheaves are needed; it might then be possible to work

out whether or not there are enough fine sheaves on non-separated spaces (I

think the answer is no, but I am not at all sure!)

Yes, it is true that if A is a Noetherian Hilbert ring (i.e. one in which any

prime ideal is an intersection of maximal ideals) then the sheaf of local rings

of A, considered as a sheaf on the spectrum of A, is coherent: this is practically

trivial. All the theorems of the affine theory hold without exception. But you

surely realize that I am not going to change my paper on algebraic coherent

sheaves for this! Moreover, I have already corrected the proofs, and it will be

coming out in the March or the May issue of the Annals. I may write a short

paper on the subject in the near future. There is no doubt that this is the

right point of view, at least for the affine theory.

We have no details of the associate professorships. How many will there

be in the whole of France? A mystery. Cartan has a candidate for Paris:

Chevalley (confidential!). Will there be any positions in the provinces? In any

case, you may be sure that if there is an opening for you we will jump at it

(the Strasbourg group were actually more or less thinking about you, at one

point when they thought they were going to get a position).

Otherwise, I know that Spencer has strongly recommended you for a (good)

job at Stanford, or some such place. You may soon receive a letter from them.

J-P. Serre
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June 4, 1955 Alexandre Grothendieck

Dear Serre,

You will find enclosed a neat draft of the outcome of my initial reflections

on the foundations of homological algebra. You will see in particular that what

I told you about the existence of enough “projective” sheaves was mistaken,

and why, and on the other hand that it is indeed true that the right H1(X,F )

are those computed using open covers. Moreover, I have found the reason for

the problem with the spectral sequence of the graded derivation sheaf Ω on an

algebraic variety: the cohomology sheaf is not 0 in dimension > 0 (for example,

if X is a curve of genus 1 and therefore a complex torus, a rational function

with only 2 poles cannot be the derivative of a rational function). Therefore,

all one can say is that the cohomology of X with coefficients in Ω, the graded

derivation sheaf, has two different filtrations; the E1 term corresponding to

the first one is Epq1 = Hp(X,Ωq) (and it is likely that if X is complete then

all the d1 etc. differentials vanish); the E2 term corresponding to the second

one is Epq2 = Hp(X,Hq(Ω)) (where the cohomology groups on X are defined

axiomatically, of course). If the opportunity arises it would be interesting

to try to look into this more closely, in order to obtain some information on

H0(X,Hq(Ω)) in particular. I will start by taking a good look at the theory

of spectral sequences in abelian classes J.-P. Serre : “abelian class”= abelian

category.; if you are interested, I could type up a summary for your personal

use. I am already convinced that the Bourbakic way of doing homological

algebra consists of changing the abelian class at any moment, as one might

change the base field, or the topology in Functional Analysis.

In no6, I have marked two passages with a “?” sign in the margin, to indicate

that if you feel that such unhatched chickens have no place in a Bourbaki talk,

then you can simply delete them. Please remember to set a mimeographed

copy aside for me; I have not made a copy, and it may be useful to have one

later for when I write up a neater version.

Yours,

A.Grothendieck

May one know where you will be during the summer? I will not be budging

from here except during August, when I will be in Chicago (unless I am already

back in France because of my mother). You should preferably write to me at

my personal address, since I no longer have anything to do at the university.
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July 13, 1955 Jean-Pierre Serre

Dear Grothendieck,

You must think me a terrible correspondent for not having answered your

letter sooner, but I have just come back from the Bourbaki meeting, and I had

loads of things to do.

The Bourbaki meeting went very nicely. You will see the report in the Tribu.

J.-P. Serre : “the Tribu”. This is the newsletter produced by Bourbaki for the

use of participants, containing a list of the drafts which each one has accepted

to write. Here is the news concerning you:

1) Your paper on homological Algebra was read carefully and converted

everyone (even Dieudonné, who seems to be completely functorised) to your

point of view. Sammy has decided to write up a draft (for Bourbaki) along

these lines, in which Chapter I would be the general theory of homology in

abelian classes, Chapter II the application to modules and Chapter III the

application to sheaves. He will contact you for details of the proofs and the

writing up.

Thanks to a letter you sent me, we managed to reconstitute the proof of

lines 3 and 4 on page 8 of your paper. However, we couldn’t see how to prove

the 1o just before.

2) We would really like you to come to the Bourbaki meeting in October, if

possible (and ditto for the others, of course! I don’t remember exactly what

the program is to be (in any case, there will be a reading of my draft on filtered

rings etc.), and I don’t think you will find it particularly interesting. But one

is not in Bourbaki for fun, as Dieudonné never stops repeating.. . .

3) Bourbaki would like you to write up a draft on the theory of coherent

analytic sheaves on Stein varieties (theorems A and B, basically). This would

be useful from several points of view: 1) it would give some idea as to what

should be included in the elementary theory of analytic functions, 2) ditto for

sheaf theory, 3) it would get work going on a whole group of questions which I

think Bourbaki would be perfectly capable of writing up.

So much for Bourbaki. However, your paper on homological algebra raises

a totally disjoint question, namely that of publishing it in a journal. You

probably know that in his thesis (to appear in the Trans. Amer. Soc.) and

his appendix to Cartan-Sammy, Buchsbaum developed a system very similar

to your abelian classes (I don’t know whether you knew this when you wrote
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them up, but it doesn’t matter). I don’t know what axioms he started with,

but Sammy claims they are equivalent to C1, C2, C3. He had noticed (and

stated) that the existence of sufficiently many injectives implies the existence

of a well-behaved theory of derived functors. But he was unable to show that

sheaves possess sufficiently many injectives, as he lacked a proposition like the

one you give on pages 7-8. Sammy therefore suggests that you publish a paper

in the Transactions in which you give your axioms C4,5,6, the concept of the

generator of a class, the fact that injectives exist when there is a generator

and that. . . , the fact that sheaves satisfy your axioms, and the comparison

between traditional sheaf cohomology and the cohomology obtained by your

procedure. As you could use Buchsbaum for all the trivial results on classes,
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you would basically only need to write up the interesting part, and that would

be very good. All this could probably be written up briefly and without too

much trouble, and it would be useful to a lot of people. What do you think?

Obviously, Sammy could arrange to get you a copy of Buchsbaum’s thesis.

[. . . ]

Yours, J-P.Serre
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December 15, 1955 Alexandre Grothendieck

My dear Serre,

Thinking a bit about your duality theorem, I notice that its general form is

almost obvious, and in fact I just checked that (for a projective space) it is

implicitly contained in your theorem J.-P. Serre : This is a reference to th.1 of

FAC, no72. giving the T q(M) in terms of Exts. (I have the impression, you bas-

tard, that S§3 and 4 in your Chap.3 could be done without any computation).

Let HomO(X,F,G) denote the group of O-homomorphisms from the sheaf F of

O-modules on X to some other sheaf G, and ExtpO(X,F,G) its derived functors

(so this is a special case of Exts in abelian classes, but I put the X into the nota-

tion to avoid the obvious misunderstanding). HomO(F,G) is the sheaf of germs

of O-homomorphisms from F to G, with derived functors ExtpO(F,G), so these

are sheaves. As I told you, there is a natural filtration on HomO(X,F,G), and

the associated graded object is the E∞ term of a spectral sequence whose Epq2

term is Hp(X,ExtqO(F,G)). This said (X is now a projective algebraic variety

(n-dimensional, without singular points), F a coherent algebraic sheaf on X,

and Ωn the sheaf of germs of differential n-forms onX), the dual of Hp(X,F ) can

be canonically identified with Extn−pO (X,F,Ωn), in the following way: in gen-

eral, there exist pairings ExtpO(X,F,G)× ExtqO(X,G,H) −→ Extp+qO (X,F,H)

[valid in any abelian class], whence in particular

ExtpO(X,O, F )× Extn−pO (X,F,Ωn) −→ ExtnO(X,O,Ωn);

it is easy to see from the spectral sequences that the first and last terms

are Hp(X,F ) and Hn(X,Ωn) respectively; the latter is canonically isomorphic

to k, which gives the desired pairing, i.e. a homomorphism

Hp(X,F )′ −→ Extn−pO (X,F,Ωn)

This homomorphism is obviously a homomorphism of ∂-functors; furthermore,

by your duality theorem, it is a bijection if F is locally free. It is then easy to

show by induction on the length of a locally free resolution of F and the five

lemma that it is bijective for any F .

Note that in this way, one gets a natural filtration on H∗(X,F ), whose

associated graded object is the E∞ term of a spectral sequence whose Epq2 term

is Extn−p(X,ExtqO(F,Ωn),Ωn) (this spectral sequence is obtained by dualizing

the spectral sequence given above for ExtO(X,F,Ωn); but I don’t see any direct

interpretation of it).

Apart from this, there is no news; I am trying to learn things, but there

is so much to look at, and it is so slow! — Cartier seems to be an amazing
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person, especially his speed of understanding, and the incredible amount of

things he reads and grasps; I really have the impression that in a few years he

will be where you are now. I am exploiting him most profitably.

Yours,

A. Grothendieck
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December 22, 1955 Jean-Pierre Serre

Dear Grothendieck,

I find your formula

Hn−p(X,F )′ = ExtpO(X,F,Ωn)

very exciting, as I am quite convinced that it is the right way to state the

duality theorem in both the analytic case and the algebraic case (the more

important one – for me!).

I did know (although I never wrote down the details of the proof) a less

precise formula, namely the following:

(*)Hn−p(X,F )′ is the “abutment” of a spectral sequence whose E2 term

is
∑

r+s=p Hr(X,ExtsO(F,Ωn)).

This formula is an obvious consequence of yours and of your general spectral

sequences. Furthermore, I should confess that I only had an outline of the

proof: 1) I had not yet written down a careful construction of ExtsO(F,Ωn),

but this is now morally done, thanks to your abelian classes; 2) Assuming 1), I

had initially proved (∗) when X is a projective space (using my explicit results

in this case), and I was trying to reduce the general case to this one, using the

following formula:

If X is an m-dimensional subvariety of V , then J.-P. Serre : The Ext in

formula (∗∗) is Extm−n, where m = dimV and n = dimX.

(∗∗) Ωn
X = ExtOV (OX ,Ωm

V ).

There is no point in giving you more details – it would be a waste of time,

since your formula is certainly better.

Nevertheless, there are still a couple of natural questions:

1) You really should have a go at finding a proof of your formula which is

independent of the vector bundle case; it can’t be difficult, if you deal with

projective space first and then use (∗∗) or some similar formula to pass to

the general case. I must say that the main difficulty appears to me to be the

following: there is no satisfactory definition J.-P. Serre : “. . . no satisfactory

definition of the sheaf Ωn
X”: the dualizing sheaf! (from a sheaf theoretic,

functorial etc. point of view) of the sheaf Ωn
X ! Couldn’t you find one by some

ingenious use of Exts?

Here is another reason for wanting a direct proof of your formula: my

proof (for fiber bundles) uses the result for curves and cannot be used to

derive it, which is not the case, of course, for a proof based on reduction to
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projective space. This is even the main reason which led me to look for a

general formulation of the duality theorem!

2) It would be very interesting to have a theorem analogous to yours for analytic

varieties (under the usual hypothesis that d′′ is a J.-P. Serre : “homomorphism”.

A continuous linear map f : E → F (where E and F are topological vector

spaces) was called a “homomorphism” if the canonical map E/Ker(f) →
Im(f) is a homeomorphism. Such maps are now called “strict morphisms”,

cf. Bourbaki T.G. III.26. homomorphism). For example, in the case of Stein

varieties, I tend to believe that the dual of Hn−p
∗ (X,F ) J.-P. Serre : “Hn−p

∗ ”.

The subscript star means “compact support”. is isomorphic to the space of

sections of the sheaf Extp(F,Ωn). The problem is clearly that F does not

necessarily have a locally free resolution. Do you see any way of getting around

this?

Here is another remark: you used the fact that Hn(X,Ωn) has a canonical

basis. This is true (I finally proved it), J.-P. Serre : “I finally proved it”. The “it”

in question is the following result: for any non-singular, projective, connected X

of dimension n, there exists a basis eX of the vector space Hn(X,Ωn
X) having

the following property:

(∗∗) For any non-singular irreducible divisor Y of X, the homomorphism

δ : Hn−1(Y,Ωn−1
Y ) −→ Hn(X,Ωn

X)

sends eY onto eX . (Note that δ is the connecting map associated to the exact

sequence of sheaves

0 −→ Ωn
X −→ Ωn

X(Y )
r−→ Ωn−1

Y −→ 0,

where Ωn
X(Y ) is the sheaf of differential n-forms on X whose divisor is locally

≥ −Y . As for r, it is the “residue” map, defined by η ∧ dt/t 7→ η|Y where t = 0

is a local equation for Y and η is a local section of Ωn−1
X .) The uniqueness of

such an eX is clear by induction on n (if n = 0, eX is required to be the “unit”

element of H0(X,OX)). The existence is less obvious. It seems that I had

constructed a proof of this, but I never wrote it up, since the result is a special

case of the duality theorems proved shortly afterwards by Grothendieck. but

it is not that trivial using induction. It would be interesting to have a direct

proof of this fact.

All this raises a question: How should this stuff be written up? Could

you do it – unless we write a joint paper together? At any rate, there is no

hurry, since I will not be able to take care of it seriously before the month
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of May, when I return to Paris: first I have to write up my “Tor” formula

J.-P. Serre : “Tor formula” : this was to be the subject of my course at the

Collège de France in 1957–58, published under the title “ Algèbre Locale –

Multiplicités” (revised English translation, with additional material: Local

Algebra, Springer-Verlag, 200). as well as the analytic theory. On that topic, I

have finally convinced myself that you were right about analytic and algebraic

bundles: if G is an algebraic subgroup of GL(n,C) such that GL(n,C)/G has

a rational section, then the classes of analytic and algebraic G bundles are in

bijective correspondence. With your permission, I intend to include this in my

analytic = algebraic diplodocus. J.-P. Serre : “analytic = algebraic diplodocus”

= [Se56a], i.e. GAGA.

This raises a few questions: 1) What is a homogeneous space, from the

algebraic point of view? 2) Have you checked that the usual embedding of the

projective group into the linear group J.-P. Serre : No, the usual embedding

of PGLn in GLn2 does not satisfy this condition if n > 1; I realized this shortly

afterwards. I came back to this question with Grothendieck in the Chevalley

Seminar of 1958. satisfies your condition? 3) Have you asked Chevalley if by

any chance all algebraic subgroups of GL satisfy this condition? I would not

be at all surprised.

On this topic, I should point out to you that one can do without what you

told me about rational maps; one proves:

1) Let X be an algebraic variety (over C) and Y another algebraic variety.

Let f : X −→ Y be a holomorphic map. If the graph of f is a closed algebraic

subvariety of X × Y, then f is regular. (Reduce to the case Y = C.)

2) Let Z be an algebraic variety, and X an analytic subvariety of Z. If X is

compact, then X is algebraic.

This reduces to Chow’s theorem.

3) Let E be an algebraic bundle with compact base. Then every holomorphic

section of E is algebraic and regular.

[More generally, by 1) and 2), every holomorphic map from a compact

algebraic variety to another one is algebraic and regular.]

4) If two algebraic bundles with the same compact base are analytically

isomorphic, they are algebraically isomorphic.

Apply 3) to the bundle of isomorphisms of the fibers of one bundle to the

fibers of the other.

Etc.
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Another thing I should tell you is that I have produced a little paper J.-P.

Serre : “a little paper ”: [Se57]. on the cohomology of abstract affine varieties,

which I have sent to Cartan. Ask him to show it to you. In it, I prove:

Theorem 1. — Affine varieties are characterized by the fact that their

cohomology vanishes.

Theorem 2. — If F is a coherent sheaf on an algebraic variety X, then

Hq(X,F ) = 0 for q > dimX.

Theorem 3. — If X is complete, H0(X,F ) is finite-dimensional.

The proof of Theorem 1 is “standard”, the proofs of Theorems 2 and 3 are

definitely more entertaining.

Yours,

J-P. Serre
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January 12, 1956 Alexandre Grothendieck

Dear Serre,

I am glad you like your Ext formula. J.-P. Serre : “your Ext formula”. The

“your” is probably a slip for “my”. The proof I sent you was only meant to

convince myself that the formula is right, but it is certain that it can be proved

directly in the standard way using projective spaces. I haven’t looked at that in

detail yet, since I am working on something else right now, but I will write it up

properly when I have a moment; it involves a little technical homological algebra,

juggling with the formula Ωn
X = Extm−nOV (OX ,Ωm

V ) where Xn is a subvariety

without singularities of the variety without singularities V m. Let me just point

out that in the case where X is a point, this gives an intrinsic expression of

the vector space of n-forms at the point x, as the dual of ExtmOx(k,Ox), which

yields an intrinsic definition of Ωn (but maybe not exactly of the type you are

looking for.) Let me show you how one can easily get hold of the canonical

class in Hn(X,Ωn). Embedding Xn into a projective space V m, Hn(X,Ωn
X)

is then (by the duality theorem for projective spaces) Extm−nOV (V,Ωn
X ,Ω

m
V );

the Epq2 term of the spectral sequence is Hp(V,ExtqOV (Ωn
X ,Ω

m
V )); the Ext which

occurs here is zero except when q = m− n, and in this case, by your formula,

it is OX , so the global Ext is H0(V,Extm−nOV (Ωn
X ,Ω

m
V )) = H0(V,OX) = k

(canonically). It follows that every embedding of X into a projective space

gives rise to an isomorphism of Hn(X,Ωn
X) with k. This gives a canonical

pairing (for an arbitrary coherent algebraic sheaf F on X) between Hk(X,F )

and Hn−k(X,F,Ωn
X)⊗TX , where TX = Hn(X,Ωn

X)′ (a one-dimensional vector

space associated to X). The embedding into projective space then shows

that this pairing is non-degenerate. Finally, one needs to exhibit a canonical

isomorphism of TX with k. To do this, note that the above computation

can be repeated (now that the duality theorem is known for any V m without

singularities) for any embedding of Xn into an arbitrary projective variety V m

without singularities, and gives a canonical isomorphism (depending on the

embedding) the other way, from TV to TX . Checking the fact that every

immersion of X into a projective space gives rise to the same fundamental class

for TX can be done as follows: IfX is embedded into projective spaces P1 and P2,

one may assume that P1 and P2 are subvarieties of the same projective space P

(I am assuming that the variety obtained by gluing P1 and P2 together along X

is projective).J.-P. Serre : “the variety obtained by gluing P1 and P2 along X is

projective”. It was not a priori clear that this variety even exists, but this was

proved by both D. Ferrand in his thesis (Conducteur, Descente et Pincement,

Paris, 1970) and S. Anatharaman, Schémas en groupes, espaces homogènes et

espaces algébriques sur une base de dimension 1, Bull. S.M.F., Mém. 33 (1973).
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However, such a variety is not in general projective; it is projective only if the

two invertible sheaves on X defined by X → P1 and X → P2 are proportional

(in Q⊗ Pic(X)). Therefore, the method proposed by Grothendieck here does

not work. The problem is then reduced to proving two things which should

not be too tiring:

a) a transitivity property for the isomorphisms between the TX associated

to embeddings;

b) if a projective space P1 is embedded into another projective space P ,

the associated isomorphism TP → TP1 transforms fundamental class into

fundamental class.

Unfortunately, the role played by projective spaces in all this still seems

rather excessive. I feel like looking into whether one doesn’t get something

for “regular arithmetic varieties” which are “complete” (i.e. obtained by

gluing together spectra of regular rings). But to start with, do you have any

idea of what complete really means in this context? The definition given in

the Chevalley seminar (every valuation ring of the field of rational functions

which contains the base ring contains a place) is not the right one, because

it includes affine spectra of rings of algebraic integers, which would be crazy.

I would also like to look at whether one can’t state a duality theorem for

projective varieties which may have singularities, and whether a more general

and technical statement might not actually be simpler to prove than the one

we are considering now.

I have read the draft you sent to Cartan; if I understand correctly, if one

knows how to show for every projective variety that there exists a coherent

non-torsion algebraic sheaf F such that the Hq(X,F ) are finite-dimensional,

then all the Hq(X,F ) are (for arbitrary F ). — Congratulations on getting

down to writing an algebraic=analytic diplodocus; it was about time! — I

have just read Chevalley’s new book on class field theory; I am not really doing

any research, but trying to cultivate myself.

Regards,

A. Grothendieck
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16.1.56 Alexandre Grothendieck

My dear Serre,

Cartan has just found a spectral sequence (as it happens, the Leray spectral

sequence) which throws a lot of light on the relationship between functorial

cohomology and the cohomology computed using open covers (denoted H

and Ȟ, respectively). If U = (Ui) is an arbitrary open cover of an arbitrary

space X, and F is a sheaf on X, then H(X,F ) is the “abutment” of a spectral

sequence such that Epq2 = Hp(U , Hq(F )), where Hq(F ) is the presheaf which

has the value Hq(V, F ) on the open set V . The proof is entirely functorial and

very easy; everything goes through because:

a) the restriction of an injective sheaf to a open set is injective (trivial)

b) if F is injective, then Hp(U , F ) = 0 whenever p > 0 (this can be seen

by embedding F into the sheaf of germs of possibly non-continuous sections

of F ).

In particular, this gives the canonical homomorphisms Hp(U , F )→Hp(X,F ).

Passing to the inductive limit gives another spectral sequence, abutting

at H(X,F ), whose E2 term is Epq2 = lim−→H
p(U , Hq(F )) (where the induc-

tive limit is taken over the classes of open covers U of X). The nice thing

is that here E0n
2 always vanishes for n > 0 (since the sheaf associated to

Hn(F ) vanishes, as can be seen using an injective resolution of F ). One can

conclude from this that if the topology on X has a basis of open sets Ui such

that Ȟq(Ui, F ) vanishes for 0 < q < n then the same holds for Hq(Ui, F ) (and

conversely), and that the canonical homomorphism Ȟq(X,F )→ Hq(X,F ) is

then bijective whenever 0 < q ≤ n (induction on n). One recovers the fact

that Ȟ1 = H1, and also the fact that for example the cohomology of coherent

algebraic sheaves computed using open covers is the right one; in fact the

question boils down to establishing that if X is affine, then Ȟq(X,F ) = 0 for

q > 0, which is quite easy in the general context of Cartier-Serre type ring

spectra. J.-P. Serre : “Cartier-Serre type ring spectra”: these were later to

be called affine schemes. — When X is paracompact, one recovers Ȟ = H

by observing that the last term Epq2 is trivial whenever q > 0, since the Ȟ

computed for a presheaf depends only on its associated sheaf, which is zero for

the presheaf Hq(F ). To get the Φ-cohomology, Cartan suggests considering

it as an inductive limit of ordinary cohomologies. . . — Let me also point out,

as it might be useful, that given a continuous map f from a space X to a

space Y , and a sheaf F on X, the Leray spectral sequence is valid with no

additional conditions, provided that one does not use a family Φ: H(X,F ) is

the abutment of a spectral sequence such that Epq2 = Hp(Y, Fq), where Fq is
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the sheaf on Y associated to the presheaf Hq(f−1(U), F ). The proof is easy

(using derivations of compositions of functors, as usual; the key fact is that

if F is injective, then so is its direct image F0, which is easy).

Cartan’s results enable me to prove that if X is an algebraic variety without

singularities (it is even enough to assume that the local rings are factorial)

then H i(X, k∗) = 0 for i ≥ 2 (which previously I had only proved for Ȟ).

Indeed, H i(X,A) = 0 (i > 0) when A is constant, since this is already known

for Ȟ. Then the exact sequence 0 → k∗ → R∗ → D → 0 (R∗ = germs

of rational functions 6= 0, D = germs of divisors) gives an exact sequence

of cohomology, and the problem is reduced to proving that H i(X,R∗) = 0

when i > 0, which follows from the fact that R∗ is constant and H i(X,D) = 0

for i > 0, which follows from D =
∑

ZV (summing over all irreducible

hypersurfaces V in X) and H i(V,Z) = 0. Moreover, going back to my Kansas

talk, I saw that one can give a universal functorial definition of the second

connecting map H1(X,H)
∂→H2(X,F) associated to an exact sequence of

sheaves of (not necessarily abelian) groups e→ F → G → H → e, where F is

central in G (this also works if F is only abelian and invariant, provided that

one twists F , see my talk). Here H2(X,F) is of course the “right” cohomology,

and ∂ is defined on the whole of H1(X,H) and not only on the part consisting of

classes of cocycles which can be lifted to cochains of G. This proves in particular

that a projective algebraic bundle J.-P. Serre : “A projective algebraic bundle

. . . comes from a vector bundle” . Beware! The term “bundle” is here used

in Weil’s sense. The bundles in question are thus locally trivial. It was not

until my lecture in the Chevalley seminar of 1958 that other bundles appeared;

namely, “locally isotrivial” bundles; Grothendieck’s statement does not apply

to these. over a base without singularities comes from a vector bundle (as I

thought I had already shown last summer); in the case where X is a projective

complex variety without singularities, it is known that algebraic classification =

analytic classification, and thus one gets an answer to a question of Kodaira’s

by a very entertaining hyperfunctorial method.

Godement has found a trivialJ.-P. Serre : Grothendieck reproduced this

construction in [Gr57b], p.156. way to have enough injective sheaves (sheaves

of modules over a sheaf of rings O): at every x ∈ X one takes an injective Ox-

module Ax, and then one takes the sheaf of germs of all sections (without

continuity conditions) of the family of the Ax. To think there are people who

got stuck on this question! Yours, A. Grothendieck
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N.B. I can show that if X is a “ Zariski space” of “dimension” ≤ n, then for

any sheaf F on X, H i(X,F ) = 0 for i > n. In particular, if X is an algebraic

curve, H2(X, k∗) = 0, and hence projective bundles can be lifted to vector

bundles (even in the presence of singularities).



32 CORRESPONDENCE

January 30, 1956 Alexandre Grothendieck

My dear Serre,

Let me briefly answer your questions. J.-P. Serre : “Let me briefly answer

your questions”. Grothendieck is probably referring to questions I had asked

him in a previous letter, of which I have not kept a copy.

1) I must have forgotten a ˇ symbol somewhere in my explanations. Cartan’s

spectral sequence shows that if there is a basis of open sets Ui such that over

any finite intersection U of Ui’s the Ȟ(U,F ) cohomology (computed using open

covers) vanishes for i > 0, then the same holds for the good H i(U,F ), and

then, by considering an open cover U made up of Ui’s, one gets Ȟ(U , F ) =

H(X,F ) = Ȟ(X,F ) (Proof by induction on i, using the fact that in Cartan’s

second spectral sequence, the E0n
2 vanish for n > 0). This does indeed prove

that for coherent algebraic sheaves on a variety X, the cohomology computed

using open covers is the right one (take the Ui to be the affine open sets).

2) I use the fact thatX has no singularities essentially to prove thatH2(X, k∗) =

0; thus it is not superfluous for the moment. (However, I have the impression

that one should have H2(X, k∗) = 0 without any hypotheses on X. I have

proved this when there is only a finite number of singular points, but didn’t

continue). I agree there is no need to sweat blood over the curve case! – As

for the algebraic classification = analytic classification question for projective

bundles, I confess that I was taking it on trust that the usual embedding of the

projective group into the linear group has a rational section, J.-P. Serre : “I

was taking it on trust. . . has a rational section”. No, it does not, cf. note

2212555. since everybody seemed convinced that that should always happen for

a fibration by a linear group (you see what an irresponsible individual I am!).

It is true that Chevalley does not know of any theorem in this direction except

for Rosenlicht’s, and it would be very sad if you already had a counterexample

for the projective group. Actually, remark that to get such a counterexample,

it is enough to note that in the fibration of the linear group G by the projective

subgroup GP (n− 1) (base G/GP (n− 1) ) one cannot lift the structural group

to the linear group GL(n) (and this is also necessary if one assumes that an

algebraic bundle of group GL(n) is locally trivial; but I think you only proved

this for projective varieties); it would be enough, for example, to prove that

the associated bundle with fiber the projective space is not homologically

equivalent with integral coefficients to the product P (n− 1)×G/GP (n− 1).
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3) Sketch of the proof that H i(X,F ) = 0 for i > n if X is a “Zariski space”

of “combinatorial dimension” (via chains of closed irreducible sets) ≤ n.

a) Prove that if X is compact or a Zariski space, then the cohomol-

ogy H(X,F ) commutes with inductive limits of sheaves. This allows us to

reduce the problem to the case where F is generated by a finite number of

sections over open sets Ui, i.e. F is a quotient of
∑n

i=1 ZUi (where ZU is the

zero sheaf on {U and Z on U). — Use induction on n, assuming the theorem

proved up to dimension n− 1, and proving it for X of dimension ≤ n.

b) Using your trick, reduce to irreducible X.

c) If X is irreducible, then H i(X,ZU ) = 0 for any open set U and i > n.

Indeed, setting Y = {U , the exact sequence 0 → ZU → Z → ZY → 0

gives H i−1(X,ZY ) → H i(X,ZU ) → H i(X,Z); the first term = H i−1(Y,Z)

vanishes by the induction hypothesis, and the last term vanishes because X is

irreducible.

d) To show that H i(X,F ) = 0 when i > n and F is generated by a finite

number N of sections, reduce the problem by induction on N to the case N = 1,

i.e. F = ZU/R. Using the exact sequence and c), one is then reduced to proving

that H i(X,R) = 0 when R is a subsheaf of ZU . By a) one can assume that

the subsheaf is generated by a finite number of constant sections over open

sets Ui ⊂ U .

e) If F is such a subsheaf of ZU , then at every x ∈ X, Fx is a subgroup

of Z generated by a generator dx ≥ 0, and one can assume that there exists

some dx 6= 0 (otherwise F = 0 !); let d be the least of the dx > 0 and x a point

such that dx = d, then dy = d in some open neighborhood V of x. Consider

the injection ZV → F which is multiplication by d over V ; this gives an exact

sequence 0→ ZV → F → F/ZV → 0. The quotient sheaf is supported on {V ,

which is of dimension ≤ n− 1; the cohomology exact sequence then gives the

desired result, using c) and the induction hypothesis.

I can show (using the spectral sequence for global Ext) that if X is an

algebraic variety without singularities of dimension ≤ n, then the coherent

algebraic sheaves form an abelian class of finite “dimension”, at any rate ≤
2n−1. It would be nice to be able to replace this by n! One is led to prove that

if A is a regular local ring and M and N are two finitely generated modules

over A, then the dimension of the “support” of ExtiA(M,N) is ≤ max(0, ν− i),
where ν = dim.supp. N . (Moreover, using your dévissages, one is reduced to

the case M = A/p, N = A/q, for prime ideals p and q). Is it at least always
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true that

dim.supp. ExtiA(M,N) ≤ n− i,
if n is the Krull dimension of A? If you happen to know any information at all

about Exti, I would be interested! Yours,

A. Grothendieck
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February 2, 1956 Jean-Pierre Serre

Dear Grothendieck,

Here is the answer to the question you asked me on dim.Supp. of Ext. Let

A be a regular local ring of dimension n, and let p be a prime ideal of A, of

dimension r; then one knows J.-P. Serre : I had proved in [Se56b] that:

A regular ⇒ Ap regular for every prime ideal p of A. (cf. my Bourbaki

draft) that Ap is a regular local ring of dimension n − r. Now, if M and N

are two A-modules of finite type, it is easy to prove (using the fact that Ap

is A-flat) the formula:

ExtqA(M,N)⊗A Ap = ExtqAp
(M ⊗A Ap, N ⊗A Ap) ,

and by the syzygies theorem, the right-hand side is trivial if q > n−r, i.e. if r >

n− q. But if Q is an arbitrary A-module, then one knows that p ∈ Supp(Q) is

equivalent to Q ⊗A Ap 6= 0. It follows that the support of ExtqA(M,N) is of

dimension ≤ n− q, which proves one of the conjectures you made on the said

support.

Similarly, taking M = N = A/p and q = n− r, one finds

Extn−rA (A/p, A/p)⊗A Ap 6= 0,

which makes it possible to easily construct counterexamples to the first of your

conjectures.

Is the first formula enough for you to prove that the class of coherent sheaves

is of dimension ≤ n?

On the subject of bundles whose group is the projective group: I am now

practically certain that if this group is embedded into the linear group, there

is no rational section. I have finally understood the Rosenlicht-type theorems

on the existence of sections; they are entirely specific to the multiplicative and

additive groups, and depend on the fact that if L/K is a Galois extension with

group G then H1(G,L) = 0 and H1(G,L∗) = 0; this is false for other groups

J.-P. Serre : Non-commutative Galois cohomology makes its appearance. (the

projective group, for example, essentially gives the Brauer group of K), but is

on the other hand true for the linear group and the unimodular group. I will

tell you about this in more detail another time.

I have no comments on the rest of your letter (except that I am delighted to

see this “hypercohomology” yield some concrete results in algebraic geometry

— Weil will be furious!), because I have hardly had the time to study it in detail.

I am busy with my blasted analytic paper J.-P. Serre : “my blasted analytic

paper ”: [Se56a]. (I write horribly slowly), and at the same time, I am trying
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to understand the pretty things Lang is doingJ.-P. Serre : “the pretty things

Lang is doing. . . ”. Cf:

S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956),

555–563;

” , Unramified class field theory over function fields in several variables,

Ann. Math. 64 (1956), 285–325. with abelian varieties. But keep sending me

your news (and remind Cartan to send me his Seminar: I only have nos 1–5).

Yours,

J-P. Serre
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February 16, 1956 Alexandre Grothendieck

My dear Serre,

Thank you for the information on the Ext. I can prove the following

for arithmetic varieties obtained by gluing together spectra of commutative

Noetherian rings: J.-P. Serre : “arithmetic varieties obtained by gluing together

spectra of commutative Noetherian rings”. Here one sees scheme theory taking

shape: all that is missing is the name, which was in fact already being used by

Chevalley and Nagata. Let X be such a variety; Cartier defines quasi-coherent

algebraic sheaves on X, which are technically very handy because they have

certain properties of coherent sheaves but are not required to satisfy any

finiteness property (in the affine case, they correspond to all modules over the

coordinate ring, not just finitely generated modules); thus the quasi-coherent

sheaves are stable under direct image by a morphism, and to check that a quasi-

coherent sheaf is coherent it is enough to check that its sections over a sufficiently

small open affine set form a finite module over the coordinate ring of the latter.

This said, one can show that in the abelian class of quasi-coherent sheaves

on X there are enough injectives, that the Ext of two quasi-coherent sheaves

in this class is indeed the one given by the theory of arbitrary sheaves of O-

modules [denoted ExtpO(X,F,G)], and finally, that this class is of cohomological

dimension ≤ n if and only if the local rings (at places of dimension 0) are of

cohomological dimension ≤ n. None of this is difficult, but it needs a little care.

— Using the Leray spectral sequence, I can show that if F is a coherent algebraic

sheaf on a complete variety X then H1(X,F ) is finite-dimensional. For this,

I use the fact that there exists a regular birational map from a projective

variety X ′ onto X (Chow) and that by your dévissage, J.-P. Serre : “by your

dévissage”: this is a reference to [Se57], which Grothendieck interprets as

a method of dévissage, cf. the letter of March 8, 1956. it is enough to find

one coherent sheaf F on X with support X for which the theorem holds: I

take the image by f of the sheaf OX′ ; it is not difficult to prove that it is

coherent (true whenever f is “proper” i.e. “X ′ is complete over X” in the

sense given in the Chevalley-Cartan seminar). The Leray spectral sequence

shows that H1(X,F ) ⊂ H1(X ′,OX′), and the result is in the bag. To prove

the same result for H i for any i, this method reduces the problem to showing

that the sheaves Fq which occur in the Leray spectral sequence are coherent;

the sections of Fq over an open affine set U ⊂ X are precisely Hq(U ′,OX′)
where U ′ = f−1(U). But I only know that they are quasi-coherent (as I said

above). The Leray spectral sequence also enables us to show that an algebraic

variety which is a locally trivial fibration over an affine base space with affine
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fibers is affine (via your cohomological characterization of affine varieties). I

have also set up a variant of the open cover spectral sequence, in the case of

finite groups with fixed-point free actions, for both additive and multiplicative

sheaves O∗. In the additive case (quasi-coherent algebraic sheaves) one finds

exactly what one expected to, but for O∗ it is markedly different from the

classical situation.

Cartan and Mac Lane are all excited about the “cobar-construction” sug-

gested by an algebraic construction of Cartier’s. In principle, starting with a

graded differential “coalgebra” (i.e. a module with an associative diagonal

map) this should give a graded differential “hyperalgebra” (i.e. something that

is both an algebra and a coalgebra), and starting with the singular complex

of a module J.-P. Serre : “of a module” is probably a slip for “of a space”

. should give us the singular complex of the loop space (roughly); in any

case, using heuristic computations, Cartan has already been able to recover

the homological structure of the loop space and the loop space of the loop

space of the sphere (for the latter, he has rediscovered a complex that was

already found last year by Hilton, I believe) but this formalism is not yet

refined enough to yield π6(S3). — All in all, I don’t really know whether I

am going to throw myself into these constructions as well, or study algebraic

geometry more deeply. — By the way, going back to your method for the

Plücker formulas, J.-P. Serre : “your method for the Plücker formulas”: I do not

see what Grothendieck is alluding to here (it is possible that I had explained

to him that these formulas can be proved using computations on cycles in

a Grassmannian). given a “proper” regular map from a variety X onto a

variety X ′, with discrete fibers, it is immediate to reduce the classification of

algebraic bundles (with structural group) over X ′ to the classification over X,

hence in principle the classification of ordinary bundles over a curve of genus 0

which may have multiple points. But I haven’t yet looked at what this might

give for the classification over P2. — I would be very interested in having

details of your interpretation of Rosenlicht’s result on the existence of sections.

Yours,

A. Grothendieck

P.S. What kind of a joke is it to have me invited to the Algebraic Topology

conference in Louvain!
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March 8, 1956 Alexandre Grothendieck

Dear Serre,

It should be possible to condense the arguments for theorems 2 and 3 of

your draft J.-P. Serre : This is another reference to [Se57]. on algebraic

sheaves to the following statement: let X be an algebraic variety (or even a

finite-dimensional arithmetic variety), C the class of coherent algebraic sheaves

on X, F ∗ a cohomological functor in degrees ≥ 0 on C (with values in an

arbitrary abelian class C′; it is enough for F to be defined in degrees ≤ N);

let us be given, for every d-dimensional irreducible subvariety Y d of X, a

torsion-free coherent algebraic sheaf AY d on Yd with support Y d; then for

every A ∈ C and every integer k ≤ N , F k(A) belongs to the “smallest “thick”

subclass” of C which contains all the F i(AY d) for k− (n−d) ≤ i ≤ k. A “thick”

subclass corresponds to what you call a class of groups in your paper on classes

of abelian groups. J.-P. Serre : “your paper on classes of abelian groups”:

[Se53a]. There is an alternative version of this statement for homological

functors, never mind. It contains both of the above-mentioned theorems, and

also: if F is a left exact functor, then F (A) belongs to the thick class generated

by the F (AY d), so that to check that F (A) always belongs to a thick subclass,

it is enough to check that for every Y d ⊂ X there is at least one torsion-free

coherent algebraic sheaf on Y d with support Y d for which this holds. A first

example of this is the case of the functor H0, and a second one is the case

where one takes a regular map f from X into a variety Y , and set F (A) = the

direct image of A by f (with values in the algebraic sheaves on Y ). To check

that f∗(A) is always coherent it suffices for example to check that the f∗(OY d)
are coherent, which is immediate if f is proper. (Another application is the

proof that H1(X,A) is finite-dimensional if A is coherent over a complete

variety X).

Let G be a group which acts by homeomorphisms on a topological space

X (without additional hypotheses for the moment; G doesn’t necessarily act

faithfully, in fact the case where G acts trivially is particularly interesting).

Then the notion of a sheaf on X with G-action is obvious; let us call such

a sheaf a G-X-sheaf (of abelian groups, implicitly); such sheaves form an

abelian class CG(X) with enough injectives. The functor ΓX (sections) takes

values in CG, the class of G-modules, so the same holds for the derived

functors Hp(X,F ); now let ΓGX = ΓGΓX be the functor F 7→ ΓX(F )G which

takes CG(X) to the class of abelian groups; this is a left exact functor, whose

derived functors are denoted Hp(X,G;F ). Let Y = X/G with the quotient

topology; let G act trivially on Y . Then CG(Y ) is the class of sheaves on Y
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on which G acts via sheaf automorphisms, or alternatively sheaves of Z(G)-

modules, where Z(G) is viewed as a constant sheaf of rings on Y . Thus,

here, Hp(Y,G;A) is just ExtpZ(G)(Y,Z, A), where Z is viewed as a G-sheaf

on Y in an obvious way; it is therefore the abutment of a spectral sequence

whose first term is ′Epq2 = Hp(Y,Hq(G,A)), where Hq(G,A) = ExtqZ(G)(Z, A),

which I already talked to you about in a more general context; in the good

cases (such as when G is finite), one has Hq(G,A)y = Hq(G,Ay) at every

point y ∈ Y . – Going back to a G-X sheaf F on X, its direct image f∗(F )

on Y is a G-Y sheaf. Let me recall the definition of the f q∗ (F ) (which arise in

the Leray spectral sequence of the continuous map f); it is the sheaf associated

to the presheaf U 7→ Hq(f−1(U), F ) on Y . The fundamental theorem on the

cohomology of open covers can now be stated as follows:

Let F ∈ CG(X), and assume that for q > 0, f
(q)
∗ (F ) vanishes [in fact, it is

enough for the Hp(Y,G; f
(q)
∗ (F )) to vanish]; then

H∗(X,G;F ) = H∗(Y,G; f∗(F ))

functorially, and furthermore, H∗(X,G;F ) is the abutment of a spectral se-

quence whose first term is Epq2 = Hp(G,Hq(X,F )) [and also by what was said

above, of a spectral sequence whose first term is ′Epq2 = Hp(Y,Hq(G, f∗(F )))].

The hypothesis above is automatically satisfied if G acts trivially; thus, if A

is a G-Y sheaf on the space Y , H∗(Y,G;A) is in fact the abutment of two

spectral sequences: firstly the sequence recalled above and secondly a sequence

starting with Epq2 = Hp(G,Hq(Y,A)); the fundamental theorem only appears

to be more general, (at least under the assumption that f
(q)
∗ (F ) = 0 for q > 0)

since its two spectral sequences are in fact the two spectral sequences of the

G-Y sheaf f∗(F ), bearing in mind that H∗(X,F ) = H∗(Y, f∗(F )) (thanks to

the Leray spectral sequence). — The hypothesis is also satisfied if the following

condition (D) holds: Every x ∈ X has a saturated neighborhood U such that

for every s ∈ G not in the stabilizer Gx of x, one has s · U ∩ U = ∅ (this is

the usual condition to express the fact that G is “discrete”). J.-P. Serre : “G

is discrete”. This means that G, equipped with the discrete topology, acts

properly, in Bourbaki’s sense of the word, T.G. III.32.

Obviously, a condition of this sort is not satisfied if X is a Zariski space;

however, for “good” sheaves F , it will still be true that f
(q)
∗ (F ) vanishes, as

we will see. — Of course, if (D) holds and if furthermore the action of G is

fixed-point free, J.-P. Serre : “fixed-point free” = acts freely (in other words, no

element of the group except the identity has any fixed point). then the second

spectral sequence is trivial, and one gets Hp(X,G;F ) = ′Ep02 = Hp(Y, fG∗ (F )),

where fG∗ (F ) is the sheaf on Y given by U 7→ Γ(f−1(U), F )G: then (up to
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notation) one recovers the Cartan-Leray spectral sequence ending with the

cohomology of Y = X/G.

Now let X be a normal algebraic or arithmetic variety (in particular, what

follows applies to number fields, or more generally, to the spectra of normal

rings), G a finite group of automorphisms of X such that any orbit of G is

contained in an open affine set; one can then define a natural variety structure

on Y = X/G, whose topology is the quotient topology: If OX is the sheaf of

local rings of X, then the sheaf of local rings of Y is fG∗ (OX) = OY . It is clear

what is meant by an algebraic sheaf on X on which G “acts” (OX itself, for

example, or more generally a sheaf defined as the inverse image of a vector

bundle on Y , sheaves of differential forms, etc.); moreover, by the theory of

affine varieties, the condition f (q)(F ) = 0 is satisfied if F is coherent, whence

the two spectral sequences abut to the same group, H∗(X,G;F ). I had written

you that if the action of G is fixed-point free, then one gets the same thing

as in the classical case, i.e. H∗(X,G;F ) is identified with H∗(Y, fG∗ (F )); this

would follow from the formula Hp(G, f∗(F )y) = 0 if p > 0, but I realize that I

did not give a proof of this in my papers, and I can’t seem to improvise one;

if F = OX , this means that if G is a group of automorphisms of a semi-local

ring O which acts simply transitively on its maximal ideals, then Hp(G,O) = 0

for all p > 0. I’ll eat my hat if this is false! — If one now takes F = O∗X ,

then the plot thickens. It is still easy to show that f
(q)
∗ (F ) = 0 when q > 0.

Setting O′Y = f∗(OX) (if X is irreducible, then O′Y is the sheaf of integral

closures of local rings of Y in the field of rational functions on X) then f∗(O∗X) =

O′∗Y , where O′∗y is the multiplicative group of invertible elements of the ring O′y.
Set Li = H i(X,G;O∗X) = H i(X,G,O′∗Y ) for short. Assume that X is factorial

(i.e. the local rings are factorial): then H i(X,O∗X) = 0 for i ≥ 2; furthermore

H0(X,O∗X) = A∗X , the multiplicative group of invertible elements of the ring AX
of regular functions on X, and H1(X,O∗X) = PX , the group of divisor classes

on X. The first spectral sequence gives us the (“Gysin”) exact sequence:

0→ H1(G,A∗X)→ L1 → PGX → H2(G,A∗X)→ L2 → H1(G,PX)→ · · ·

· · · → Hn(G,A∗X)→ Ln → Hn−1(G,PX)→ · · ·

Actually, nothing prevents us from considering the following “flasque” (but

non-injective, since it is precisely by use of an injective resolution that one

defines the spectral sequence above) resolution of F = O∗X :

0 −→ O∗X −→ R∗X −→ DX −→ 0
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(R∗ = germs of invertible rational functions; DX = germs of divisors), trans-

forming it by ΓX to obtain a G-complex, and passing to the associated dou-

ble complex, whose cohomology is exactly L∗, as can be seen using one of

the two spectral sequences of this double complex; as for the other spec-

tral sequence, its Epq2 term is the cohomology in dimension p of the com-

plex 0 → Hq(G,R∗X) → Hq(G,DX) → 0 → 0 · · · , which gives another exact

sequence involving Li:

0→ A∗X
G → R∗X

G → DG
X → L1 → H1(G,R∗X)→ H1(G,DX)→

→ L2 → H2(G,R∗X)→ H2(G,DX)→ L3 → · · ·

(set RX= field of rational functions on X, and DX= group of divisors on X);

in particular, one finds L1 = DG
X/Im(RGX).

(These two exact sequences are amusing when X is the spectrum of a number

field R = RX ; AX is then the ring of algebraic integers, A∗X the group of units,

and PX the group of ideal classes; consequently, the first exact sequence implies

that the Li are finite groups, and the second thus implies that H i(G,RX)→
H i(G,DX) is bijective modulo finite groups; this can be seen very simply using

only the exact sequence of G-groups 0→ A∗ → R∗ → D → P → 0 — since

for the moment that is all there is).

Finally, L∗ is also the abutment of a spectral sequence whose first term

is Epq2 = Hp(Y,Hq(G,O′∗Y )). As far as I have been able to see up to now,

there is no way of replacing this spectral sequence by an exact sequence except

when Y is a curve, so that Epq vanishes for p ≥ 2; in this case one obtains the

exact sequences 0 → H1(Y,Hn−1(G,O′∗Y )) → Ln → H0(Y,Hn(G,O′∗Y )) → 0.

Nor have I checked out what the Hp(G,O′∗Y ) look like; the only thing I know

is that if the action of G is fixed-point free (i.e. is simply transitive on the

maximal ideals of the semi-local ring O′y, more generally if the stabilizer of

an x ∈ X acts trivially J.-P. Serre : “acts trivially”: a slip of the pen for

“acts faithfully”. on the residue field at the point x), then H1(G,O′∗y ) = 0,

so Epq2 = 0 if q = 1. Another bit of partial information, if Y is factorial:

Ep02 = 0 if p ≥ 2, since Ep02 = Hp(Y,O∗Y ). If G acts without fixed points, this

enables us to compute some of the Li:

L1 = PY , L2 = H0(Y,H2(G,O′∗Y )),
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and finally, H1(Y,H2(G,O′∗Y )) is a subgroup of L3, and the quotient is the

kernel of the transgression homomorphism J.-P. Serre : “transgression homo-

morphism”: This is not a “transgression” in the usual sense of the word. It is

merely one of the differentials of the spectral sequence.

H0(Y,H3(G,O′∗Y ))→H2(Y,H2(G,O′∗Y )).

I have no idea whether or not this spectral sequence is actually usable: I showed

it to Chevalley, but it didn’t seem to inspire him!

I have gone back to the classification of analytic bundles over the Riemann

sphere J.-P. Serre : “the classification of analytic bundles over the Riemann

sphere”: see[Gr57a]. with semi-simple structural group, and I have more or

less proved my conjecture, which I now prefer to state as a duality theorem.

—Do your constructions also show that over a complex algebraic projective

variety, the analytic and algebraic classification of bundles, for example with

structural group SO(n), are not the same?

Yours,

A. Grothendieck
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March 14, 1956 Jean-Pierre Serre

Dear Grothendieck,

Thank you for your letter. I am a bit panic-stricken by this flood of

cohomology, but have borne up courageously. Your spectral sequence seems

reasonable to me (I thought I had shown that it was wrong in a special case,

but I was mistaken, on the contrary it works remarkably well). In any case,

set your mind at rest, it is indeed true that

Hq(G,M) = 0 for all q > 0 ,

when G is a finite group of automorphisms of an A-module M , where A is

a semi-local ring (in fact an algebra over a field k such that all the A/m for

maximal m are equal to k) on which G acts in such a way that the induced

permutation on the maximal ideals is “fixed-point free”. Proof: first show that

there is an element t ∈ A whose trace
∑
g · t is 1 (take an element whose trace

is 1 modulo the radical of A, and divide it by its trace, which is invertible);

from this point on it is entirely formal: it is for example possible to show that

every map f : G→M has an “average” I(f), in the sense given in my paper

with Hochschild in the Transactions (no6 unless I am mistaken): simply write :

I(f) =
∑
g∈G

(g · t)f(g) where t is such that
∑

g · t = 1 .

(This result actually plays an important role in the construction of coverings

of a variety).

There are probably heaps of other possible proofs of this result, for example

by passing to the completed semi-local ring B, and using the fact that B is a

direct composition J.-P. Serre : “direct composition”: direct product. of local

rings which are permuted transitively by G, whence Hq(G,B) always vanishes.

Etc.

Congratulations on your classification of analytic bundles over the Riemann

sphere with semi-simple structural group. How do you do that? I suppose that

at the same time you show that they are actually algebraic? (For information

on the relationship between the algebraic and analytic classifications, I refer

you to my paper J.-P. Serre : “my paper” : [Se56a].; Cartan has a copy which

he should give you if he hasn’t done it already). Here Atiyah and Nakano are

getting excited about putting some kind of “algebraic or analytic structure”

on classes of vector bundles. Atiyah can more or less do it when the base is

a curve and one only considers indecomposable bundles of given degree and
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dimension. J.-P. Serre : See M.F. Atiyah, Vector bundles over an elliptic curve,

Proc. London Math. Soc. 7 (1957), 414–452 (= Coll. Works, vol.1, no7).

Furthermore, he can completely classify vector bundles over a curve of genus 1

(using a method analogous to the one you used for genus 0).

Here is an entertaining little resultJ.-P. Serre : “an entertaining little result”:

S.S. Chern, F. Hirzebruch and J-P. Serre. On the index of a fibered manifold,

Proc. A.M.S. 8 (1957), 587–596. (proved by Chern, Hirzebruch and myself):

the index of a fiber bundle is equal to the product of the indices of the base

and the fiber [if π1(B) acts trivially on H(F )]; here the index is in the sense of

Thom.

At the moment, I am mostly getting excited about p and pn coverings, J.-P.

Serre : “p and pn coverings”: see [Se58a], nos17–18. of which I am beginning

to have a relatively complete theory. But loads of things still remain mysterious

(especially concerning abelian varieties). I will tell you about this in Paris.

Yours,

J-P. Serre
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April 10, 1956 Alexandre Grothendieck

My dear Serre,

I have taken advantage of the holidays to finally finish off the classification of

analytic bundles on the Riemann sphere with complex semi-simple structural

group G (which may or may not be connected; one then sees that the result still

holds if G is only reductive, but is false for the one-variable affine group x 7→
ax+ b). If T is a maximal complex “torus” of G, N its normalizer, W = N/T

the Weyl group, one finds: every bundle E can be reduced to the structural

group T , and this reduction is unique up to operation of W . As the classes

of bundles with group T can be identified with H2(X,Π) = Π, where Π ' Zr

is the unit lattice of the Lie algebra h of T , this does indeed give a complete

classification; if G is connected, for example, the desired classes correspond to

the elements of the lattice Π contained in a Weyl chamber. — Another, more

intrinsic way of expressing this result is as follows: let E0 be the line-bundle

on X (with group C∗) whose Chern class is +1, then every bundle whose group

is G is the bundle associated to E0 and to a holomorphic map from C∗ into G;

the latter is determined up to inner automorphisms of G. — Firstly, here is how

to prove uniqueness: consider a homomorphism ϕ from C∗ to G, and let E be

the associated bundle with group G, then, for any linear representation u of G

the vector bundle associated to E and to u is also the vector bundle associated

to E0 and ψ = uϕ, hence the latter depends only on E; however we already

know that the class of ψ modulo inner automorphisms of the linear group is

entirely determined by the vector bundle that it defines. Thus, if ϕ and ϕ′

define isomorphic vector bundles E and E′, then for any linear representation u

of G uϕ and uϕ′ are equivalent linear representations of C∗; it is now a problem

of pure Lie group theory to show that ϕ and ϕ′ are conjugate by an inner

automorphism of G. This is not hard to prove (and is probably well known).

Let us now show that it is possible to restrict the structural group to T . In

general, let X be a compact analytic variety, G a complex Lie group, P an

analytic bundle over X with group G, and E the associated adjoint vector

bundle whose fiber is the Lie algebra g of G; let s be a holomorphic section

of E and assume that at some point x ∈ X, s(x) is a regular element of the

Lie algebra g(x). As the coefficients of the characteristic polynomial of ad(y)

are holomorphic functions of y, so constant, it follows that s(y) is regular

for all y. Let h(y) be the Cartan subalgebra of g(y) which is the centralizer

of s(y), then h(y) varies holomorphically with y; in other words, the structural

group has just been reduced to the normalizer N of the analytic group H
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which corresponds to the Cartan algebra h; if X is simply connected, the

structural group can even be reduced to T , since N/T is discrete. Let us prove

that the initial condition (the existence of s) is satisfied if X is the Riemann

sphere and E is semi-simple. Then E is actually an orthogonal bundle (Killing

form!). It is known that E is isomorphic to a sum of line bundles; let En be

the sum of those components whose Chern class is ≥ n (En can be defined

intrinsically as the bundle generated by meromorphic sections whose divisor is

of degree ≥ n). Obviously, [En, En′ ] ⊂ En+n′ , whence it follows that E1 is a

bundle of Lie subalgebras and even (denoting the fiber of En by gn) that g1 is

a subalgebra of g whose elements have nilpotent adjoint actions in g; in other

words, g1 is contained in the maximal nilpotent ideal n of a maximal solvable

subalgebra r of g. Moreover, it follows from the classification of orthogonal

bundles that the subbundle of E orthogonal to E1 is E0; the fiber g0 of E0 is

therefore orthogonal to g1, and thus it contains r (since r is orthogonal to n

which contains g1). Since r contains a regular element, g0 contains a regular

element. This is exactly what had to be proved.

I have also continued trying to understand the second spectral sequence

of spaces with operators (in the case with fixed points, of course); in some

important cases it can be replaced by an exact sequence. Sparing you the

details (since I will probably see you shortly) I will just point out that one

very easily recovers Smith’s theorem on the fixed points of a sphere, as well

as the following result of the same type (probably known to experts): if X

is a finite-dimensional space, acyclic modulo p (a prime number), on which a

group G of order p acts, then the set of fixed points is also acyclic modulo p,

as moreover is the quotient space X/G. Furthermore, as X and X/G have

the same cohomology in characteristic different from p, it follows that if X

is acyclic over the integers, then so is X/G (and the result then obviously

extends to a group G which is only assumed to be solvable). — As for the

existence of points fixed by all elements of G, I have the impression that this

cohomological method cannot give anything, since if G is of order p there is no

way of showing that F is acyclic also in characteristic different from p (this

appears to be true, however, but is certainly a deeper result) J.-P. Serre : “this

appears to be true, however”. This is false, as was later shown. The “coprime

to p” part of the cohomology of F can be more or less anything, even if X is a

Euclidean space or a simplex. For more information, see:

L. Jones, The converse of the fixed point theorem of P.A.Smith I, Ann. Math.

94 (1971), 52–68.

R. Oliver, Fixed point sets of actions on finite acyclic complexes, Comment.

Math. Helv. 50 (1975), 155–177.

When exactly are you coming back? Yours,

A. Grothendieck



48 CORRESPONDENCE

July 23, 1956 Alexandre Grothendieck

My dear Serre,

I was just thinking about “analytic geometry”, and I think I have been able

to prove that “algebraic=analytic” for algebraic coherent sheaves on a complete

compact algebraic variety, J.-P. Serre : See the Cartan Seminar 1956–1957,

exposé no2. not assumed to be projective. It’s the usual kind of dévissage,

using your general dévissage lemma, Chow’s lemma, O(n) on projective space

and the Leray spectral sequence. But to write it up I would need to refer to your

article several times. Can you lend me a copy (I returned the one that Cartan

lent me)? As for embedding a complete algebraic variety in a projective space,

I confess that I still don’t see how to do it.J.-P. Serre : Hironaka has shown

that there exist non-singular complete varieties which cannot be embedded

into projective space (cf. R. Hartshorne, Algebraic Geometry, Appendix B,

Example 3.4.1.). Obviously, if the problem were to be solved shortly, it would

be a bit disappointing to write a supplement to your analytic diplodocus, which

would then be killed!

I leave for Germany tomorrow, for a week.

Yours,

A. Grothendieck

P.S Thank you for the hint in your last letter!
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September 1, 1956 Alexandre Grothendieck

My dear Serre,

I have spent most of the last month writing up my multiplodocus on homo-

logical algebra; I have tried to be concise, but even though there are practically

no proofs, it will come to more than 100 large pages (of which 80 are written

up). Have you any suggestions as to where I should publish it? (not in France,

where I am already publishing my long and wretched “Fredholm theory”). J.-P.

Serre : “my long and wretched ‘Fredholm theory’ ”: [Gr56b]. Actually, it

might not be such a bad idea to have it distributed to Bourbaki, like Gode-

ment’s sheaves draft, so that it could be taken into account in the upcoming

draft on Homological Algebra. What do you think? Here is the plan:

I Abelian classes;

II Homological algebra in abelian classes (which contains several useful

complements to Cartan and Sammy’s book);

III Sheaf cohomology (including Čech, the Leray spectral sequence of a

continuous map, and as an added bonus, the theorem on the cohomological

dimension of Zariski spaces and lifting of projective algebraic bundles, which

will be given in all necessary generality);

IV Ext groups of sheaves of modules Ext∗O(X;A,B), including the two

spectral sequences and conditions for them to be trivial;

V Spaces with operators: the two spectral sequences for H∗(X;G,A), the

explicit spectral sequence Hp(X/G,Hq(G,A)), the case of a “discrete” group

action, Ext∗O,G(X;A,B), (where O is a sheaf of rings with G-action, and A

and B are two sheaves of O-modules with G-actions, the Ext being taken in

the category of such things): there are three spectral sequences (and sometimes

even four or five) which abut there; the first shows that if A is locally free

of finite type the Ext is none other than H∗(X;G,Hom(A,B)) (which gives,

for example, the classification of extensions of analytic (or algebraic) vector

bundles with transformation group G as an H1(X;G,Hom(E,F ))).

If it doesn’t become too long, I will also give the definition of Steenrod pow-

ers, which arise naturally in this context by adapting Godement’s approachJ.-P.

Serre : “Godement’s approach”. In the beginning of the 50’s, Godement had

written up some notes on Steenrod operations which were never published.

for singular theory: if A is a sheaf of vector spaces over a space X, and G is

a subgroup of the symmetric group Sp, then one defines a canonical homo-

morphism St : H∗(G,⊗pH∗(X,A)) → H∗(X;G,⊗pA) (where G acts in the

obvious way on the tensor products). This can be composed, if desired, with

the natural homomorphism H∗(X;G,⊗pA)→ H∗(X;G,SpA) (where SpA is
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the p-th symmetric power of A); since G acts trivially on SpA, this last term

can be canonically identified with H∗(G,H∗(X,SpA)), which gives

St : H∗(G,⊗pH∗(X,A))→ H∗(G,H∗(X,SpA)).

If the ground field has characteristic exactly p, then these two terms can

easily be described explicitly using H∗(G, k) and when G is the group of cyclic

permutations, then this gives the Steenrod powers (but I have not yet written

down the proof of the fundamental properties of these powers). In particular,

these operations are obviously defined in the context of abstract algebraic

geometry; in this case it is to our advantage to use sheaf-theoretic tensor and

symmetric products over O, so that coherent sheaves give rise to coherent

sheaves. — Still following Godement (modulo the necessary adaptations),

these operations (in their original form with H∗(X;G,⊗pA)) can then be

used to compute the cohomology of (X × X · · · × X)/G. — In chapter V,

I would also have liked to give some “non-classical” examples of abstract

algebraic geometry, but I am afraid that it will end up too long.

By the way, I should point out that I have investigated the exact conditions

under which, given an integral and integrally closed local ring O, a Galois

extension K ′ of its fraction field K, and the integral closure O′ of O in K,

one has TrK′/K O′ = O (which also means that Ĥ∗(G,M) = 0 for any O′-
module M on which G acts in a way which is compatible with its action on O′)
(G = Galois group of K ′ over K). It is sufficient for the order e of the inertia

group Gi to be invertible in O, and in the case where Gi is invariant in G (for

example if G is abelian, or Gd is invariant) this condition is also necessary (I

haven’t seen if this still holds in the general case). This immediately gives the

ramification points of an Artin-Schreier extension in the usual form, for example:

the existence of an Artin-Schreier generator in O′, i.e. such that xp − x ∈ O.

This is necessary because Ĥ−1(G,O′) = 0, whence 1 = σx − x with x ∈ O′
(since Tr 1 = 0); it is sufficient because it is enough to show that if there is

an x ∈ O′ such that σx = x+ 1, then TrO′ = O, i.e. there exists y ∈ O′ such

that Tr y is invertible in O: set y = xp−1.

Let me end as usual with some questions. With notation as above, is it

always true that O is unramified in the fields Ki and Kd? This is true if they

are Galois over K, and Lang’s report appears to suggest that otherwise it is

no longer certain. — As messy as it is, Lang’s report was very helpful for my

understanding what unramified means; I had previously more or less imagined



CORRESPONDENCE 51

that it meant that the action of the Galois group on the maximal ideals of O′
is fixed-point free!

Yours,

A. Grothendieck
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September 19, 1956 Alexandre Grothendieck

My dear Serre,

Thank you for your letter. The American Journal won’t do for my article,

J.-P. Serre : The article in question is [Gr57b] ( “Tôhoku”). since I am

already publishing the vector bundles on the Riemann sphere there; nor will

the Transactions, since as I didn’t adhere to Sammy’s very strict editorial

taboos, he will want me to retype my manuscript, which I do not intend to do;

unless Bourbaki would be interested in having some copies (you did not reply

to this question) and “Bastien”J.-P. Serre : The first secretary of Bourbaki in

Nancy was called Bastien. This is a reference to her successor, Andrée Vigneron,

later Andrée Aragnol. were to do the necessary work. The “mémoires” would

be excellent, but will I find a sponsor for getting the manuscript prepared

(Belgodère?? the CNRS?). I will see when the semester begins, if I have

not found a place for the article before then. — I am indeed going to drop

Steenrod powers and spectral sequences in algebraic geometry from the article,

especially as I am adding a fairly substantial section on the Čechist computation

of Hn(X;G,A). For instance, one finds the following: let (Ui)i∈I be an open

cover of X, and assume that G acts on I in such a way that g · Ui = Ug·i, and

that the cohomology of the Ui0···ip with coefficients in the given G-sheaf A

vanishes in dimension > 0. Then H∗(X;G,U) is the hyperhomology of G

with respect to the complex C(U , A). If for example the action of G on I

is fixed-point free (the problem can always be reduced to this case), then

H∗(X;G,A) = H∗(C(U , A)G) (here non-alternating cochains must be used!)

which is a most attractive formula, you will admit. For example, let D (which

stands for “fundamental domain”) be an open set (or a closed set if X is

paracompact or G is finite) such that X =
⋃
g ·D, and assume that the finite

intersections of g ·D are acyclic; then take U = (g ·D)g∈G, and in all reasonable

cases the complex C(U , A)G is free and of finite type in all dimensions (where A

is assumed to be a constant ring): it suffices to assume that the set L of g such

that gD ∩D 6= ∅ is finite. This then gives H∗(X;G,A), if one knows what the

fundamental domain looks like — or more precisely, if one knows the nerve of

the finite cover induced by U on D and the map g−1g′ in L (whenever g−1g′, g′

and g are in L). This should give a method for computing the cohomology of

a modular group with several variables (in this case H∗(X;G,A) = H∗(G,A)

since X is a half-space, hence acyclic) without examining the “fixed points”

as in Godement’s method. (The latter consists in considering H∗(G,A) as

the abutment of a spectral sequence whose first term is H∗(Y,H∗(G,AX))

[where AX is the constant sheaf A on X, Hn(G,A) is the sheaf on Y = X/G
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whose local groups are the Hn(Gy, A), and Gy is the stabilizer of a point in

the fiber y]; this method works in complex dimension 1, since the set of fixed

points and the distribution of the stabilizers are simple!). One just needs to

be sure that there exists a (closed) fundamental domain D having the desired

properties of acyclicity and finiteness; do you know whether this is always true?

I have not finished looking at the Steenrod powers. But it seems to me that

everything can be done much more explicitly than I thought purely in terms of

the Stip; furthermore, the multiplication formula comes out trivially (modulo

an irritating sign error which I have not yet exorcised, but I am not yet at

the point where sign errors matter); on the other hand I cannot yet see why

the Stip (if I may say so) vanish for i 6≡ 0, 1 mod (2(p− 1)). In any case, having

moved house recently (for a bit of a change) I have not yet had leisure to look

at this.

One more question: I have been reviewing class field theory, of which I

finally have the impression that I understand the main results (but not the

proofs, of course!). But to my shame I have been unable to find the “corollary”

stating that all ideals of K become principal in the maximal abelian extension

unramified at finite places. If there is a quick explanation of this, I would be

most grateful to you for it.

Is there any way of getting hold of Artin’s book “Algebraic Numbers and

Algebraic Functions” which is out of print? In particular, if you could buy it

for me, that would be perfect. By the way, did you pay for Chern’s “Topics in

Differential Geometry” which you sent me a year ago?

What is the Pontryagin square? (I am in the process of rapidly reviewing

Thom’s work, which I had to abandon in Kansas as I lacked the basics).

I should point out that the condition “Gd normal in G” in the acyclicity

condition in my last letter is entirely superfluous; actually, it is much simpler to

understand the non-ramification criterion for Artin-Schreier extensions using

the discriminant! Yours,

A. Grothendieck
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September 23, 1956 Jean-Pierre Serre

Dear Grothendieck,

You will find enclosed a little paper on the “Hauptidealsatz” J.-P. Serre : LetK

be a number field and L its absolute class field (the maximal unramified abelian

extension). Let OK be the ring of integers of K, and let OL be the ring of inte-

gers of L. The Hauptidealsatz says that the homomorphism Cl(OK)→ Cl(OL)

is trivial; in other words, every ideal of OK generates an ideal of OL which is

principal. Artin’s reciprocity law transforms this statement into the following,

which was proved by Furtwängler (Hamburg Abh. 7 (1930), 14–36):

(∗) Let G be a finite group, and H = (G,G) its derived subgroup. Assume

that H is abelian. Then the transfer homomorphism G/H → H est trivial.

Artin and Tate’s Class Field Theory, Chap.13, §4, contains a cohomological

proof of (∗), which is inspired by Witt’s (non-cohomological) proof in (Ges.

Abh. no17). Both of these proofs are substantially shorter than Furtwängler’s,

but I would have liked (and would still like) something simpler. explaining how

the theorem can be reduced to an (actually very mysterious) theorem of group

theory. This, in fact, is the reduction given by Artin himself in his paper on

the subject (Abh. Hamburg, around volume 7-10); if you could find a beautiful

cohomological proof of the said theorem it would be so much the better, but

everyone has got stuck on it up to now.

About your paper, Sammy has not answered me yet. I am afraid he may

have already left New York for India. But I find your objections to publishing

in the Transactions idiotic: all that Sammy demands is that a manuscript

should be readable without intellectual effort, which is the least one can ask.

Armed with patience and a little glue, it would surely take you no more than

a day to retype the doubtful passages and make your manuscript presentable;

can you really not try? (Unless, of course, you find another solution).

As for getting néo-Bastien (whoever she is) to type it up, I have no opinion

on the matter; of course, that would allow me to have a copy fairly quickly,

which would be very nice, but doesn’t she already have enough work with the

Bourbaki drafts? You would do better to discuss this question with someone

from Nancy — Delsarte, or failing that, Bruhat.

Turning now to your method for the cohomology of a Fuchsian group; it

seems to work on taking the fundamental domain to be a classical polygon

(choose a sufficiently “general” point and take the fundamental domain to be

the set of points which are closer to that point than to any of its transforms

— a method patented by Poincaré); the intersections of this polygon with its

transformations look to me like they must be either topological segments or
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points; I am too lazy to check. (Let me point out however that these groups

are free products of very simple groups, and the cohomology of a free product

is given by a general theorem of Lyndon).

If you are interested in this stuff on cohomology and automorphic forms,

you can look at a paper published recently in the Amer. J. by a student of

Bochner’s, Gunning, I believe, which is closely related to Godement’s talk, but

is more “explicit”.

Let me answer your other questions:

a) One can show that the Stip, i 6≡ 0, 1 mod 2p − 2 are identically zero

by showing that these operations come from homology classes of the cyclic

group Z/pZ which become 0 in the symmetric group Sp. In any case, this is

Steenrod’s point of view.

b) I will see in Princeton whether I can get hold of Artin’s Notes Part 1 (the

only part that exists) for you, but I am afraid it will not be possible, as Artin

is not there. As for Chern’s Topics, it seems to me that I did pay about 2

dollars for them.

c) The “Pontryagin square” J.-P. Serre : For the definition of the Pontryagin

square, see for example:

L. Pontryagin, Dokl. Akad. Nauk. U.S.S.R. 34 (1942), 35–37;

N.E. Steenrod, Comm. Math. Helv. 31 (1956), 195–218. is a cohomological

operation which has always been something of a mystery to me. If I am not

mistaken, it sends Hq(X,Z/2Z) to H2q(X,Z/4Z). In fact, it has been noticed

that there is a whole bunch of operations of the same type, defined modulo p;

they can be gotten either by using Eilenberg-Mac Lane or by Steenrod’s method

with the symmetric group acting on . . . etc. Ask Cartan for details: he knows

all this very well.

At any rate, one thing is certain: such operations exist only if one goes into

cohomology mod p2, . . . , etc.

d) I am finishing the part of my paper which deals with coverings. J.-P.

Serre : “the part of my paper which deals with coverings” : the final sections

of [Se58a]. As I do not feel like writing up a huge Bourbaki-style thing, I am

resigning myself to giving statements without any proofs; it will certainly not

be easy to read! The difficulty is partly that I do not restrict myself to normal

varieties, like all the bastards in the literature do.

Write to me at Princeton. Yours,

J-P. Serre
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P-S. Is this address “c/o Mr. Harari” permanent?

P-S 2. I hope you have received a letter which was sent to you at my place

and then forwarded to you?
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November 13, 1956 Alexandre Grothendieck

My dear Serre,

Thank you for the various papers that you generously sent me, as well as for

your letter. There is no news over here. I have finished writing up the annoying

homological algebra draft (but it is the only way I have of understanding,

through sheer persistence, how things work) which I have sent to Delsarte,

who as it happens did not have enough articles for the typist; I proposed it to

Tannaka for the Tôhoku, as apparently they do not mind very long articles.

I have read the statements in Weil’s books on abelian varieties, in the hope

that the proofs might have been improved since he wrote them; they are really

discouraging in Weil, and on top of that his language disgusts me. I spend

my time either learning or writing up the varieties, which is amusing but

very long, of course; research, however, is out of the question before I have

swallowed a mountain of new things. You asked me for details on the Steenrod

operations. I have not written up anything, and have not continued in this

direction, since I do not personally need them, but I can still tell you more

or less what one does. Let X be a space, n an integer > 0, G a subgroup

of Sn, χ a multiplicative character on G with values ±1 (or, more generally,

with values in k∗, where k is a fixed ring of scalars; but in practice it is always

the unit character or the “signature” of a permutation). For any abelian

sheaf A on X, let C(A) be an injective resolution of A, and let G ⊂ Sn act

on ⊗nΓC(A) by permuting the factors, taking the gradings into account of

course, followed by multiplication by χ(s); write ⊗nχΓC(A) for this G-complex.

Consider the hypercohomology of G with respect to this complex (cohomology

of the well-known bicomplex), R∗ΓG(⊗nχΓC(A)); this is in fact an invariant

associated to A and G (and χ). In the case where A is a sheaf of vector spaces

over a field k, this hypercohomology can be canonically identified with the

term E2 = H∗(G,⊗nχH∗(X,A)) of the spectral sequence leading to it. Now

note that there is a natural homomorphism

⊗nχΓC(A)→ Γ�nχ C(A)

(letting �nA denote the n-th tensor product of A over Xn), where the sub-

script χ on the right-hand side indicates the way G is made to act on the

sheaf �nA. Also, if one chooses a suitable C(A), one may assume that �nχC(A)

is a resolution of �nχA, and as G acts on these sheaves (this action being

compatible with the G action on Xn), this resolution can be mapped to an

injective resolution C(�nχA) of the sheaf with operators �nχA; this gives a
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homomorphism

(1) R∗ΓG(⊗nχΓC(A))→ R∗ΓG(ΓC(�nχA)) = H∗(Xn, G,�nχA).

Restricting to the diagonal, , this can be composed if desired with the natural

homomorphisms

H∗(Xn, G,�nχA)→ H∗(X,G,⊗nχA)→ H∗(X,G, (⊗nχA)G),

where this last reduction is made in order to have a sheaf B = (⊗nχA)G
on which G acts trivially, so that there is a Künneth formula for comput-

ing H∗(X,G,B), which, for example, is equal to H∗(G) ⊗ H∗(X,B) when

working over a field k. Following Steenrod’s idea, one can also use the general

natural pairings (here Z denotes a space on which G acts, equipped with a

sheaf T with operators, and M is a G-module):

Hi(G,M)×Hn(Z,G, T )→ Hn−i(Z/G, T ⊗GM)

where T⊗GM denotes the sheafification of the presheaf on Z/G which associates

Γ(V, T )⊗GM to an open set U , V being the preimage of U in Z. In the case in

hand, every class α ∈ Hi(G,M) defines a homomorphism of degree −i, denoted

by i(α) (the “interior product”)

(2) i(α) : RmΓG(⊗nχΓC(A))→ Hm−i(Xn/G, (�nχA)⊗GM)

which can also, if desired, be composed with the homomorphism from the

right-hand side to Hm−i(X, (⊗nχA) ⊗G M) induced by the injection X →
Xn/G. (Taking α to be the unit class in H0(G,Z), this gives the reduction to

H∗(X, (⊗nχA)G) considered above; this is what Steenrod does).

Finally, if χ0 and χ1 are the unit and alternating characters respectively,

then it is possible to define canonical homomorphisms, corresponding to the n-

th-power operation on a representative cocycle:

H2q(X,A)→ R2qnΓG(⊗nχ0
ΓC(A))

H2q+1(X,A)→ R(2q+1)nΓG(⊗nχ1
ΓC(A))

(a little care is needed in showing that this is independent of the choice of

representative cocycle) and the compositions of these homomorphisms with (1)

or (2) are the reduced Steenrod powers. Thom’s theorem, relative to the case

where n is prime, does not state that the homomorphisms from H i(X,A) to

H i+r(Xn/G, (�nχA)G) or H i+r(X, (⊗nχA)G) corresponding to the i(α) for α

contained in the natural basis of H0(G, k) vanish for r not congruent to 0 or 1

mod 2(n−1) (k being a field of characteristic n, A a sheaf of k-vector spaces, G

the group of cyclic permutations in Sn), but that they vanish upon reduction
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to (�nχA)Sn , resp. (⊗nχA)Sn . I don’t know much more than this, except that

the multiplication formulas come out all by themselves; I have not looked at the

method for introducing the P ip starting from the reduced power operations, but

this should not create any new difficulties. Neither have I completely studied

the question of the extent to which these cohomological operations allow us to

determine the cohomology of Xn/G, especially in algebraic geometry, as I am

not particularly excited by it.

Yours, (remember if possible to dig up a copy of Artin’s notes on functions

and algebraic numbers for me) A. Grothendieck
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November 17, 1956 Jean-Pierre Serre

Dear Grothendieck,

Thank you for your letter; I am waiting impatiently for Bourbaki to print

your diplodocus homologicus fonctoricus, and I pity the poor Japanese printers

who are going to have to struggle with your hand-written corrections. . . By

the way, I have seen Tannaka, who told me he was going to ask you to cut

your paper in two; I hope you will manage to find a reasonably natural cut-off

point.

There is not much news here. I do not know whether you know that

Papa(kyriakopoulos) has proved Dehn’s lemma J.-P. Serre : Reference: C.

Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. Math.

66 (1957), 1 —26. and the asphericity of knots; and the experts say it is

correct! (On the other hand, Nakano has just told me that the paper he had

written which I sent you has a flaw in it — the snag of course lying in the use

of those awful Chow coordinates. Those things are really horrendous, and I am

very glad that I do not need them to define quotients of varieties by a finite

group.)

I have given a little seminar on characteristic p. I started by presenting

Cartier’s map (on differential forms), then the classification of inseparable

isogenies J.-P. Serre : “the classification of inseparable isogenies”: this is §2 of

[Se58b]. of algebraic groups. I gave quite a few applications to the theory of

curves and abelian varieties.

I have been getting excited recently about the question of birational invari-

ance of cohomology (which is more interesting now that the symmetry does

not hold). J.-P. Serre : “the symmetry does not hold”: in characteristic 6= 0 it

is possible to have hp,q 6= hq,p . I do not have a general proof, but nevertheless

I can prove this:

Let X be an algebraic variety, P a simple point of X, X ′ = QPX the

“blow-up” of the variety X at the point P ; let F be a coherent algebraic sheaf

on X; assume that FP is a OP -module of homological dimension ≤ 1 (in

particular, a free module will do); let F ′ denote the sheaf defined by F on X ′.

Then Hq(X,F ) = Hq(X ′, F ′) for any q ≥ 0.

There is probably an analogous result for blow-ups along a subvariety, but I

cannot prove it yet. The method I use is obviously the spectral sequence of the

projection X ′ → X (it is actually possible to present this without the spectral

sequence, but why bother?). On this subject, have you written up something

on your theory of the images of coherent sheaves under proper maps and the

corresponding spectral sequence? It would definitely be worthwhile. From the
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point of view of coverings, where I work, it is not immediate; for instance, I

am unable to prove Leray’s theorem on acyclic covering spaces (with a sheaf)

in general; can you do this?

On the subject of Weil’s book on abelian varieties: I hardly like its style

any more than you do. But it has to be admitted that certain results in the

book (the most important ones) appear to be accessible only by his methods

(by which I mean the use of generic points, generic divisors, etc.): this holds in

particular for the construction of the Jacobian, which is a little masterpiece of

juggling with generic points. I will be curious to see how Chevalley goes about

doing this (assuming he deals with it in his seminar).

Yours,

J-P. Serre
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November 22, 1956 Alexandre Grothendieck

My dear Serre,

You asked for some mathematical gossip; I will tell you the little I know (I

am not very well-informed in general). As Cartier is not participating in the

Cartan seminar, Cartan has abandoned the idea of talking about formal groups,

and is dissecting various Topology articles as they come. We have had a talk

on the construction of classifying spaces using joins (by Milnor) and a talk

on Kan’s algebrization of homotopy, given by Shih, which was actually very

successful. (For your information, Shih has just been recruited as an Attaché

de Recherche, which solves an important problem). Chevalley is classifying

semi-simple algebraic groups, which will take all year: Cartier has made the

link between schemes and varieties, and I will be spending a month presenting

Borel’s article, as preparation for Chevalley’s work. My “seminar” is nothing

of the sort, but is rather an introductory course intended to get people to

read Cartan-Sammy’s book, together with the complements you already know

about.

What do you mean by birational invariance of cohomology? Surely you

don’t mean to prove that the Poincaré polynomial of P(2) is equal to that

of P(1)×P(1). — Leray’s general theorem on open acyclic covers not only holds

without any conditions, but is practically trivial; it appears in the diplodocus,

of course. I have written a rough draft of my stuff on direct images of coherent

algebraic sheaves under proper maps, but I don’t know when I will find the

time to write it up properly: probably not until someone actually needs it.

I am sad to hear that one cannot present Weil’s results without juggling

with generic points; as a matter of fact, the unbridled abuse of generic points

necessarily hides the few situations in which their use is truly essential, such as

the proof that every endomorphism of a Jacobian comes from a correspondence.

As Chevalley says, one feels frustrated when faced with a proof like that one.

I hope Lang will write up his report as intended; in the meantime, can you

tell me whether the algebraic structure on the Jacobian variety P can be

axiomatically defined by a) the existence of a bundle of group k∗ on X × P
such that for every p ∈ P , its restriction to X × (p) is of class p, and b) the

fact that every algebraic system of divisors on X defines a regular map from

the parametrizing variety into P . Chevalley says that the second condition

holds (according to Matsusaka), but does not know if the first does, which is

irritating.
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I have read Weil’s 1952 paper on the Picard variety J.-P. Serre : “Weil’s

1952 paper on the Picard variety” : A. Weil, Oe. Sci. [1952e].; his funda-

mental theorem is in fact much more general and elementary than it appears

from the paper. If X is a compact analytic space, then P = H1(X,O∗) is

naturally a complex Lie group whose connected component containing 0 is

H1(X,O)/H1(X,Z) (N.B. One can show that H1(X,R)→ H1(X,O) is injec-

tive). It is then very elementary to show (using the fact that if S is a Stein

space, then by virtue of a topological-vector variant of the Künneth formula,

one has H1(X × S,O) = H1(X,O)⊗H0(S,O)) that:

a) every holomorphic bundle of group C∗ on a product X × S (where S is

an arbitrary analytic space) defines a holomorphic map S → P ;

b) conversely, any such map comes from a bundle, which moreover is well-

determined up to multiplication by a bundle on X × S coming from a bundle

on S. This last remark is also equivalent to the existence of a bundle on X ×P
defining the identity map P → P . When furthermore X and P0 are projective

varieties (it is probably enough for X to be projective — at least this is true

by Hodge-Weil whenever X is non-singular) the bundle in question is algebraic,

giving a meromorphic section, and thus a divisor on X ×P0. That’s what Weil

was after. Actually, by multiplying the bundle E by a sufficiently high power

of a bundle LX ⊗ LP0 (where LX and LP0 come from projective immersions

of X and P0), one can also assume that E is sufficiently ample, and one then

obtains a family of linearly equivalent positive divisors without fixed points,

which define the map p 7→ p+ cst from P0 to P .

It is not such a great loss if Nakano’s paper is wrong, since it seems to

me that it did not answer any of the specific questions that arise (Weil-style

characterization of the variety of classes of bundles, does one obtain varieties

which are complete, irreducible, etc.?)

Here is a possibly stupid question on which I am stuck: let X be an

algebraic curve (for example, an elliptic curve), take a representation of its

fundamental group by unimodular matrices with integral coefficients, which

gives a holomorphic bundle on X whose fiber is the group C∗n. Is it true that

this bundle will almost never be an algebraic variety J.-P. Serre : “almost never

be an algebraic variety”; indeed, this is only the case if the monodromy (i.e.

the image of the fundamental group in GLn(Z)) is finite, cf. SGA 3, exposé X,

Rem. 1.3. (with regular projection and composition law)? Obviously, I am

looking for an algebraic definition of the fundamental group, and I want to be

sure that my idea cannot give anything.

Yours,
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A. Grothendieck
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December 4, 1956 Jean-Pierre Serre

Dear Grothendieck,

[. . . ]

By “birational invariance” I mean the obvious thing. For example, I am

quite convinced that the following result is true:

Let X ′ → X be a regular birational map, where X and X ′ are both projective.

Let F be a locally free sheaf on X, and let F ′ be the sheaf it canonically

determines on X ′. Then Hq(X,F) = Hq(X ′,F ′) for every q ≥ 0.J.-P. Serre : It

should be understood that X and X ′ are non-singular. The question is then

equivalent to proving that Rqf(OX′) = 0 for all q > 0, where f is the given map

X ′ → X. Grothendieck was to quote this question in his lecture at the

Edinburgh Congress in 1958, cf. [Gr60], Problem B, p. 116.

I do not know how to prove this in general, but I know how to do it when X ′

is the variety obtained by “blowing-up” a point of X (indeed, in this case it

is enough to assume that the point is a simple point of X and the sheaf F is

such that hd(Fx) ≤ 1, where x denotes the point that is blown up.)

In particular, for a surface, one sees that h0,1(X) = h0,1(X ′) and that

h1,1(X ′) = h1,1(X) + 1.

(The latter result follows from the fact that taking F to be the sheaf Ω1, then

the sheaf F ′ is not Ω1(X ′), but is related to it in a very simple way).

This is what I mean by birational invariance. It is entirely reasonable.

As for your question a) on Jacobians: it is certainly true. Indeed, Weil has

defined a divisor Θ on P with fabulous properties, whence a bundle on P , then

one on P ×X (using P × P → P ), then one on X × P (using X → P ); I am

more or less certain — I am too lazy to check, I leave it to you — that this

bundle has the desired properties.

On the other hand, I have no idea J.-P. Serre : “no idea. . . ”: see note 2211561

on the letter of November 22, 1956. about your holomorphic bundles with

fiber C∗n. I do not see how to prove that they are “almost never” algebraic.

Here is a question I asked Cartan, on which you may have some ideas:

let X ′ → X be a proper map from an analytic space X ′ to another one, X,

such that the preimage of every point is finite. Is it true that if O′ is the sheaf

of holomorphic functions on X ′, then the direct image (in the sense that you

know) of O′ is a coherent O-sheaf?J.-P. Serre : Yes, it is true, cf. Séminaire
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Cartan 1960/1961, exposé no19 (C. Houzel), §5. This is the (much harder)

analytic equivalent of what you had to prove in the algebraic case.

See you soon. Yours,

J-P. Serre
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November 1, 1957 Alexandre Grothendieck

My dear Serre,

You will find enclosed a very simple proof of Riemann-Roch J.-P. Serre : “a

very simple proof of Riemann-Roch”: this proof is reproduced (with some

interpolations of my own) in SGA 6, 71–77. independent of the characteristic.

Almost all of my report has now become useless, particularly: the systematic

use of the λ-ring structure, virtually all of chapter 1 (from which only the

definition of the homomorphism ch and formula (1.30) need to be kept), theorem

2.14 which required a rather difficult passage to Grassmannians (and which

is now proved more simply); even theorem 2.12 and homomorphism (2.34)

ϕ : A(X) → GK(X) are no longer needed; basically all that is needed are

the formulas (2.15) and the unwritten formula which gives the multiplicative

structure on K(X) and the inverse images explicitly without going through

vector bundles. I should also point out that passing to blown-up varieties

makes it possible to prove (2.35) in full generality.

However, it seems to me that this new proof goes less to the heart of the

matter and has a narrower scope than the old one. It will probably give

nothing for arithmetic varieties (for which the “denominatorless” formulas

(v) and (2.37) are certainly valid); we shall have to look into the situation

for trickier Riemann-Roch formulas which involve a group of operators on

sheaves. . . Moreover, I have not managed to get this new method to work for

“denominatorless” formulas, except when dimY < (n−1)/2 (where n = dimX);

whichever way I masturbate it, the torsion in K(X) resp. A(X) screws up.

But this is certainly not serious, since these formulas are known to hold in

characteristic zero (even though K(X) and A(X) have just as much torsion

in that case!) — Thus, I will still try to get my first method to work in

characteristic p, even if it will be much longer.

Let me point out that “morally”, this new method is based on the determi-

nation of K(X) and A(X) when X is either a projective bundle associated to a

vector bundle or a variety obtained by blowing up a non-singular subvariety. In

the second case, I have not yet finished the computation; a little something is

still missing. With the notation (Y,X;Y ′, X ′), (i, j, f, g) from the little paper,

what has to be proved is formula (9) from this paper (but as an equality)

f∗(i∗(y)) = j∗(y C
p−1(F )), y ∈ A(Y ).

Note that both sides of the equation have the same image under f∗ and under j∗,

so the situation is equivalent to

(9 bis) Ker f∗ ∩Kerj∗ = 0.
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In any case, (9) holds after reduction to G(K(X ′)) (which at the very worst

destroys a bit of torsion) since it then follows from (6); there is therefore hardly

any doubt that it is true. Moreover, (9 bis) would be immediate if the following

were known (and I would like to know what the experts know about this):

If x′ ∈ A(X ′) induces 0 in A(Y ′), then there exists a cycle representing x′

which does not meet Y ′ (?)

(This does not contain blow-ups any more than Tôhoku!) One can ask an

analogous question for algebraic equivalence, numerical equivalence, etc.

Let me point out that equality (9) follows easily and entirely formally from

(6), without using the bothersome (6 bis). Of course, this is heuristically how I

accidentally came across (6 bis). I haven’t yet checked this formula directly,

but it is obviously no more than a simple exercise.

Finally, I have another kind of question. You are moving out of your

apartment; do you think it might be possible for me to inherit it? As the

rent is not very high, if I remember rightly, I would then be able to buy some

furniture (on credit). I am interested in it for my mother, who isn’t very happy

in Bois-Colombes, and is terribly isolated.

Regards,

A.Grothendieck
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November 12, 1957 Alexandre Grothendieck

My dear Serre,

I agree with all your correctionsJ.-P. Serre : “I agree with all your corrections”:

Grothendieck is replying to a letter I had sent him, of which I have not kept a

copy., in particular the one concerning γp−1(E), which should read γp−1(E−p)

throughout. The wrong part of lemma 1 (which I do not use, but had included

for symmetry’s sake) should read: If Riemann-Roch holds for fg and g, then

it also holds for f in Im(g!) (note that if Z 6= Y then g! is never surjective!).

Finally, I should add that formula (2.22) of RRR J.-P. Serre : RRR = Report

on Riemann-Roch, reproduced in SGA 6, 20–71. is rather a rash assertion, and

it would be prudent to assume that X is a bundle over Y ; I pretend to use this

result (for singular varieties) in the proof of proposition 2.9, but actually this

can also be done using only non-singular varieties.

As for proposition 2.3 which frightens you so much, I only used it in the case

of cycles of dimension > dimY (see the corollary), for which it is trivial. What

makes me think that it always holds is that it becomes true after reduction

to GK(X), GK(Y ) (which only kills a little torsion, at the very worst). But it

would be very nice to have a direct proof, in order to have an elegant theory of

Chern classes (cf. below).

On this topic, note that it would be nice to be able to prove directly

that A(X) = GK(X) (which I am more or less convinced is the case). This

would give an attractive definition of linear equivalence of cycles, which would

also be valid for singular varieties; moreover, it does seem that many things are

easy to prove in GK(X), but not in A(X). This is the case for both proposition

2.3 and also the intersection formula

(iii b) i∗(i∗(x)) = xCq(TX/Y )

for an injective map Y
i // X and an x ∈ A(Y ). I have not found a direct

proof of this. (N.B. (iv b) is a consequence of (iii b).)

I should also mention that I can prove that if X is a (not necessarily

quasi-projective) non-singular variety, then every coherent algebraic sheaf

is a quotient of a direct sum of sheaves defined by divisors. This gives a

definition of Chern classes for sheaves, provided one already exists for vector

bundles. The Riemann-Roch theorem can then also be stated in the case of

non-projective varieties (for instance, this is the case for classical varieties, via

the transcendental definition of Chern classes); and furthermore, using the

revised and corrected version of lemma 1 from my little paper, it follows that

Riemann-Roch holds whenever y ∈ K(Y ) is of the form g!(z), where g : Z → Y
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is a proper morphism from a non-singular quasi-projective variety Z to Y .

If one knew for example that every subvariety of Y was the image of a non-

singular quasi-projective variety by a proper map (compare with the Chow

lemma!) then the result would be in the bag.

Now, about the theory of Chern classes for vector bundles J.-P. Serre : The

theory of Chern classes sketched in this letter is presented in detail in [Gr58].,

the following remarks work just as well in the topological setting (where they

give a very elementary theory of Chern classes, without obstructions or Borel’s

subtle theorems). Assume that there is a commutative graded ring A(X) associ-

ated to every non-singular algebraic variety X, and that this is a contravariant

functor in X. Assume that a functorial homomorphism P (X)→ A1(X) is given,

where P (X) denotes the group of divisor classes, and that for every variety X or

every subvariety Y of codimension p, a group homomorphism i∗ : A(Y )→ A(X)

is also given, which increases the degree by p. The axioms are

a) When Y ⊂ X is a non-singular hypersurface, P (X) → A(X) is given

by i∗(1Y ), (where 1Y is the identity in A(Y )).

b) If Y ⊂ X is non-singular and irreducible, then i∗(y i
∗(x)) = x i∗(y)

(where i : Y → X is the inclusion).

c) If E is a vector bundle of rank p on X, X ′ is the associated projective

bundle, L is the famous rank 1 bundle on X ′, and ξ is its class in A1(X ′), then

the ξi (0 ≤ i ≤ p− 1) form a basis for A(X ′) over A(X).

Under these conditions, there is a unique way to associate to every vector

bundle E on a non-singular variety a class c(E) = 1 +
∑p

i=1 c
i(E) ∈ A(X), so

that the Hirzebruch conditions are satisfied:

(i) functoriality,

(ii) c1(E) = d(E) if E is of rank 1 (d(E) denotes the image in A1(X) of the

class of divisors defined by E),

(iii) c(E) = c(E′)c(E′′) if E is an extension of E′ by E′′.

Moreover, these classes satisfy conditions (iv), (v), and (vi), which allow us to

compute the Chern classes of a tensor product, an exterior power and a dual

space. The ci(E) are also characterized by the formula

(1)

p∑
i=0

ci(E)ξp−i = 0.

The proof is very easy. Uniqueness follows from c), which implies that if X ′′

is a flag bundle over X, then A(X) → A(X ′′) is injective. For existence,

define ci(E) by formula (1), which is possible thanks to c). The proof of (i)

and (ii) is trivial, and (iii) is proved by a little trick using a) and b). Formulas
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(iv), (v), (vi) then become trivial by Hirzebruch’s method. — As an added

bonus, one gets the structure of A(X ′) = A(X)[ξ]/(
∑p

i=0 c
iξp−i).

Of course, the essential thing to check is condition c). If one takes A(X) =∑
Hp(X,Ωq) (in the topological case) it is easy thanks to the spectral sequence

for fiber bundles. When A(X) is the Chow ring, one needs to work a little

more, and give a more detailed set of axioms which implies c). The final result

is as follows. Assume that for every non-singular variety X, a commutative

ring A(X) is given (but not initially assumed to be graded, so the axioms

can be applied to K(X)). A(X) is a contravariant functor in X, and is also

covariant with respect to proper morphisms. Let us postulate a rather large

number of rather trivial formal properties, together with two more important

axioms:

1) an exactness axiom: if Y is a non-singular subvariety of X whose com-

plement is U , then the sequence A(Y ) → A(X) → A(U) → 0 should be

exact;

2) a continuity axiom which says that the homomorphism A(X)→ A(X×k)

is surjective (and hence in fact bijective).

Actually, under some rather weak conditions, which hold both for the Chow

ring and for K(X), the continuity axiom can be deduced from the exactness

axiom, by the argument from proposition 2.9 of RRR.

If all these conditions are satisfied, then proposition 2.13 in RRR (cell

decomposition) goes over without modification. Moreover, a similar argument

proves the following (which does not use the continuity axiom, but does use

the exactness axiom in an essential way):

Let P be a non-singular variety such that for any non-singular variety X,

the natural homomorphism A(X)⊗A(P )→ A(X × P ) is surjective (which is

the case, for instance, if P has a cell decomposition). Then let X ′ be a locally

trivial bundle over X of fiber P ; let ξα (elements of A(X ′)) and x ∈ X be

such that the images of the ξα in A(Px) (Px= the fiber of X ′ over x) generate

this group. Then the same still holds for any other y ∈ X and the ξα generate

the A(X)-module A(X ′).

From this it follows that if the A(X) are graded, then if a functorial homo-

morphism P (X)→ A(X) satisfies a) and b) as above, c) is also satisfied.

So the question is simply whether one can also define the Chow ring in

the case of a non-quasi-projective variety, as a co- and contravariant functor

of X, which satisfies reasonable properties that I have not given you, plus the

continuity axiom. (As Chow has not sent me his article, I have not been able
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to examine whether his proofs could be adapted). Or whether the “inverse

image” maps in K(X) are compatible with the filtrations (which also implies

that K(X) is a filtered ring, so that GK(X) satisfies all the necessary properties

for a Chern class theory).

In all these questions, it is obviously possible to restrict oneself to quasi-

projective varieties, but one then needs to know that the projective bundle

associated to a vector bundle over a non-singular quasi-projective space is

still quasi-projective (which is probably easy using the rank one bundle L

on X ′). I should also point out that rigorously speaking, Riemann-Roch is for

the moment proved only under the assumption that the blow-up of a quasi-

projective variety is quasi-projective. Needless to say, I have not been amusing

myself by looking at this question.

Finally, I would like to know whether people who have really studied blown-

up varieties have determined what their rings of cycles are. It is annoying not

to know whether formula (9) of LPRR (little paper on Riemann Roch) is an

equality (once again, this would a priori only be true modulo the hypothetical

kernel of the map A(X ′) → GK(X ′), since formula (6) of LPRR can be

considered as being proved via a purely local Tor computation).

Having been influenced by several people, I will after all give the Peccot

lecture course on Riemann-Roch. Moreover, at the moment I have just dropped

research in order to finally start writing up the varieties, J.-P. Serre : “writing

up the varieties”: this is a reference to a draft for Bourbaki. of which I hadn’t

written a single word until the day before yesterday!

Yours,

A.Grothendieck
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October 17, 1958 Alexandre Grothendieck

My dear Serre,

You will find enclosed a short paper for Bourbaki (inspired by conversations

with Chevalley); please pass it on to him when the opportunity arises. Would

you please check that it is understood at Nancy that the Bourbaki papers are

to be sent to Tate, since there is no doubt that he is now a member. Over

here, I haven’t much news; I have started writing up some short papers and

commentaries for Dieudonné, who seems to have gotten off to a good start

on writing up schemes. J.-P. Serre : The writing up of the EGA’s had just

started. I hope that by spring, the first four chapters will be written up

(chapter 4 will contain cohomology theorems such as finiteness etc.) and it

will be possible to have them published by Motchane. I have suggested to

him that we include our “joint paper” on covering spaces J.-P. Serre : “our

“joint paper” on covering spaces”. Grothendieck and I had intended to publish

a paper together on the theory of covering spaces. This never happened,

but the subject was taken up in SGA 1. in chapter 5 if you agree. Indeed,

this paper would fit perfectly into the general plan at this point; chapter

6 will contain generalities on group schemes J.-P. Serre : Likewise, group

schemes were published in SGA 3 and not in the EGA’s. and principal schemes

over them, including the sorites on generalized Galois coverings, which will

round off the “qualitative” part of the theory. The second part will contain

7. Intersections 8. Duality and Residues 9. Riemann-Roch 10. Abelian

varieties 11. Weil cohomology. — The fact of including our paper as part of

this series would have the advantage of sparing us a large amount of tiresome

“background ” on ideas that nobody knows yet.

I would like to prove the following result: Let X be a scheme over Y , proper

over Y , whose “tangent map is everywhere surjective”. J.-P. Serre : “tangent

map is everywhere surjective”: this was later to be called a “simple” morphism,

then a “smooth” morphism. As for the invariance property of the fundamental

group stated by Grothendieck, he quickly realized it is a little too optimistic.

Show that the “geometric” fundamental group of the fiber f−1(y) (geometric

means that one passes to the algebraic closure of the ground field K(Y )) is

independent of y. (I forgot to say that for the sake of simplicity, the schemes

are assumed to be connected and without singularities). This result would

be of interest mainly when Y is of unequal characteristics. Given a “marked

point” x in X, one would need to be able to define maps from π1(X,x) to
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π1(F, x), where F is the “geometric” fiber passing through x. Have you ever

thought about questions of this flavor?
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Abhyankar has sent me some reprints, which I have flipped through. He has

proved the Serre-Lang conjecture for nicely ramified coverings of a curve. We

should be able to get something out of this for ourselves. J.-P. Serre : “We

should be able to get something out of this”: indeed, we extracted from it

the very useful result called Abhyankar’s lemma for tamely ramified coverings

(here called “nicely ramified coverings”). Yours,

A. Grothendieck
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October 22, 1958 Jean-Pierre Serre

Dear Grothendieck,

I am beginning to feel guilty for not having replied to your letters sooner:

the sad truth is that I have nothing serious to say about them.

The Bourbaki meeting was very pleasant; we all stayed in the home of a

man called Guérin (a friend of Schwartz’s — a political one, I think); Guérin

himself was in Paris and we had the whole house to ourselves. We worked

outside most of the time, the weather was beautiful, we went swimming almost

every day; in short, it was one of the best meetings I have ever been to.

As for work, we mostly looked at Schwartz’s report on elliptic equations,

much helped by the presence of Malgrange and his comments. We read it in

enough detail to feel that we understood it; I do not remember exactly what

was decided; J.-P. Serre : Nothing concrete came out of this Bourbaki draft on

partial differential equations, which is a great pity. I think that Malgrange is

going to write a report on the hyperbolic case and Dixmier (or Bruhat?) is

going to write a second draft of the elliptic case.

We did not look at Koszul’s draft on dimensions;J.-P. Serre : This is a

reference to the writing of the book Commutative Algebra. The chapter on

flat modules (Chap. 1) was published very quickly (1961). The chapter

on dimensions (Chap. 8) had to wait till 1983, as did the Cohen theorems

(Chap. 9). my first supplement on exterior algebra was looked at briefly

(and unanimously deemed incomprehensible). The flatness draft (which was

handed out at the meeting — I don’t think you have it) was read carefully, and

Chevalley is currently writing the next version. He will have to hurry, since

the Commutative Algebra book depends on it. Cartier has not written up

the Cohen theorems, but we noticed with relief that they cannot be discussed

as long as the concept of a discrete valuation ring is not available; hence

this wretched draft will not trouble the publication of the first volume of

Commutative Algebra.

The second edition of topological groups (Dieudonné) was surprisingly well

received; we decided to put proper maps (using Chevalley’s morphic definition)

into General Topology J.-P. Serre : “put proper maps into General Topology”

: see T.G. I, §10, which came out in 1971., and I wrote them up on my way

back from La Ciotat. You will see, it works out quite nicely.

This draft has taken up all, or nearly all, of my time since I came back from

the meeting. I have only just started working on local fields again, to prepare

my course. Lang has sent me the secret draft by Artin and Tate on higher
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ramification and conductors, which is very pretty; on translating this draft

into the language of “isogenies”, one can get absolutely everything to work in

the case of an arbitrary perfect residue field (including the fact that the Artin

representations are “integral”). Of course, the proofs remain artificial, and

will probably stay that way until the direct definition of this representation is

found.

I have received the proofs of the joint paper with Borel on Riemann-Roch

from Gauthier-Villars.J.-P. Serre : “paper on Riemann-Roch with Borel”:

[BS58]. Have you received the proofs of your supplement on Chern classes?

Choquet was very worried when I told him you were in the USA. He wondered

whether your mail was reaching you; can you let me know? Have you asked

anyone to forward your mail?

I have not thought any more about the computation of the fundamental

group of a scheme starting from that of its irreducible components. The subject

doesn’t really inspire me.. . . It is, however, a question to be dealt with, which

may not be trivial. Say hello to Tate and Zariski from me. Yours,

J-P. Serre
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November 5, 1958 Alexandre Grothendieck

My dear Serre,

Choquet has probably received the corrections of the proofs for Gauthier-

Villars by now. I asked that 100 reprints of my article be sent to you, since

there is no point sending them here to Harvard. If they ask you to pay, tell

them to contact me; naturally, following an illustrious precedent, I will not

pay.

I have the impression I am making progress with the π1.J.-P. Serre : Fun-

damental group theory was one of the first major successes of scheme theory.

Grothendieck presented it to the Bourbaki seminar 1958/1959, no182, and

made it the subject of SGA 1. It seems to me that one of the fundamental

things to prove is the following:

Let X be proper over J.-P. Serre : In this statement, it should be assumed

that the local ring O is Noetherian (which is implicit) and complete. The latter

hypothesis is required because the statement b) below is wrong, even if O
is a discrete valuation ring: Raynaud showed me a counterexample. a local

ring O, and let F be the “geometric” fiber of the origin in Spec(O). Then the

homomorphism

(∗) π1(F )→ π1(X)

is injective.

(This is the result that should enable us to map the π1 of the “generic fiber”

to π1(F ).)

In fact, this claim is really an existence theorem; it comes down to saying

that for every unramified F ∗ over F , there is an unramified covering O′ of O
and an unramified covering X ′∗ of X ′ = X ⊗O O′ which induces a covering

F ′∗ of the fiber F ′ = F + · · ·+ F which is isomorphic to F ∗ over a connected

component.

This claim breaks down into two parts:

a) π1(F )→ π1(X̂) is injective

(where X̂ = X ⊗O Ô; in fact, there is an exact sequence

0→ π1(F )→ π1(X̂)→ π1(Ô) = π1(k)→ 0.)

b) π1(X̂)→ π1(X) is injective.

I have practically proved a), thanks to a sort of GAGA-style theory, J.-P.

Serre : About formal GAGA, see EGA 111, S§4,5. which says more or less

that the data of a proper X̂ over Ô is functorially equivalent to the data
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of projective systems X̂n = X̂ ⊗Ô Ô/m̂
n, and similarly for sheaves. As F ∗

functorially defines unramified coverings F ∗n of the X̂n (for simplicity’s sake I 1/2

assume that k = Ô/m̂ is algebraically closed) — which differ from F only by

some extra nilpotent elements — then these systems F ∗n do indeed define an

unramified covering of X̂.

As for b), I am not yet convinced it is true without any regularity conditions

on X → Spec(O). The general problem here is (roughly) as follows: to descend

any construction over Ô to an unramified covering O′ of O — a problem you

are familiar with! I believe there are some results: the proofs, for the moment,

use scheme-theoretic techniques; I have a patented method for descending

everything to an O′ over O which is unramified over some point of Spec(O′)
lying over the origin in Spec(O).

Moreover, my GAGA-style results and your idea J.-P. Serre : “your idea

of considering an Artinian ring as the set of k-rational points . . . ”: This is a

reference to the Greenberg functor which I had used in order to construct a

“geometric” local class field theory, cf. the letter of November 9, 1958, as well

as [Se61a]. of considering an Artinian ring as the set of k-rational points of a

ring variety defined over k make me think it is possible to canonically lift J.-P.

Serre : “it is possible to canonically lift . . . ”. Too optimistic! But it is true

for ordinary abelian varieties, as I later realized, cf. the letter of August 2-3

1964. any variety X0 defined over a perfect field of characteristic p 6= 0 to a

sort of “holomorphic variety” X defined over any complete local ring O having

the same residue field. If one is lucky enough for this “holomorphic variety” to

come from an “algebraic variety” X defined over O, then the latter is unique

and depends functorially on X0, etc. As this is not exactly what I need for π1,

I am trying to get Tate interested in it, but he is fairly skeptical.

Otherwise, I am working quite a lot on the book with Dieudonné. Everything

is going very well for schemes, particularly for all questions of the type: if

something is given, or holds . . . over a generic point, then it holds over a

non-empty open set. . . There is one hitch: I foresee that I will have to redo

everything to deal with gluing spectra of complete m-adic rings (instead of

merely spectra of discrete rings). In any case, my GAGA basically consists in

proving the “finiteness theorem” for such schemes by going back to Grauert’s

idea, then applying your proof of GAGA. Yours,

A. Grothendieck
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November 9, 1958 Jean-Pierre Serre

Dear Grothendieck,

Your letter makes me want to take stock of what I am doing with local

fields J.-P. Serre : The results stated in this letter were published in [Se60b]

and [Se61a]: see also Corps locaux et isogénies, Séminaire Bourbaki, 1958/59,

no185.. Here is where I stand:

1. Isogenies.

Let G be a commutative algebraic group, defined over an algebraically closed

field k (I restrict myself to this case throughout everything that follows). As-

sume G is connected, and consider all isogenies G′ → G for connected G′ (these

isogenies are separable — or rather, one should work “modulo” inseparability).

These G′ form a filtered ordered set, and by passing to the limit one obtains a

group G, which is a projective limit of algebraic groups, and an exact sequence:

0→ π1(G)→ G→ G→ 0,

where π1(G) is a Galois-type group, as Tate would say. Tate was actually

the first to encounter this construction: when G is an abelian variety or a

group Gm, the group G is nothing other than the projective limit of the Gn,

where Gn = G and Gnm → Gn is multiplication by m. On the other hand, no

such simple description of G and π1(G) exists for Ga or for a unipotent group,

and that is why Tate did not manage to find a “class formation” back then —

see no5 below.

When G is not connected, with connected component G0, set π0(G) = G/G0

and π1(G) = π1(G0).

These constructions yield formal results of the usual kind. The only surprising

result is the following:

1.1 If G ⊂ G′, then π1(G)→ π1(G′) is injective.

(There is then a delightful exact sequence1/2

0→ π1(G)→ π1(G′)→ · · · → π0(G′)→ π0(G′/G)→ 0.

The proof is trivial, of course.)

I have no trivial proof of 1.1, and I doubt that one exists (since it is more

or less equivalent to saying that some π2 is zero). I manage it by knowing

the commutative algebraic groups explicitly; by dévissage, the problem can

be reduced to the case where G and G′/G are either Ga or Gm, or else an

abelian variety A. One can then use what is known about the classification of
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extensions; two cases need close investigation, namely G = Ga and G′/G = Ga

or A.

All this can be extended to “proalgebraic” groups, i.e. projective limits of

algebraic groups, by passing to the limit.

2. The case of local fields.

Let k be algebraically closed, and consider complete valuation fields with

remainder field k. J.-P. Serre : remainder field = residue field. If U(K) is the

group of units of such a field, K, then it is known that U(K) is canonically

equipped with a proalgebraic group structure (provided the characteristic of k

is p 6= 0, which is the only interesting case — when the characteristic of k

is = 0, it is also necessary to choose a lifting of k to K).

Let L/K be a Galois extension, with Galois group g. It is known

that Hq(g, L∗) = 0 for all q (this is a local Tsen theorem, if you like —

which gets proved automatically when setting up conductor theory, cf. no3).

The exact sequence:

0→ U(L)→ L∗ → Z→ 0

then shows that Hq(g, U(L)) = Hq−1(g,Z) for q ∈ Z, and in particular,

taking q = −1, H−1(g, U(L)) = g/g′.

This can be interpreted as follows: the norm map

N : U(L)→ U(K),

has a kernel IL/K , which is a proalgebraic subgroup of U(L); the set of

combinations of the x1−σ, σ ∈ g, form a subgroup I ′ of I which is obviously

connected. The result above means that I/I ′ = g/g′. Therefore I ′ is the

connected component of I. Thus, there is an isogeny: 2/3

0→ g/g′ → U(L)/I ′ → U(K)→ 0.

As U(L) is connected, this gives rise to a canonical surjection:

π1(U(L))→ g/g′.

Passing to the limit (or alternatively, boldly taking L to be the separable

closure of K), one obtains a surjective homomorphism:

π1(U(L))→ A(K),

where A(K) denotes the Galois group of the maximal abelian extension of K.

Existence theorem: The map π1(U(K))→ A(K) is bijective
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Or, in other words, every isogeny of U(K) comes from a unique abelian

extension of K.

Once again, I have no “nice” proof of this theorem. I construct the

required fields L/K explicitly, using the Whaples-MacKenzie equations J.-P.

Serre : “Whaples-MacKenzie equations”: in [Se61a], §4.4, they are called

“Artin-Schreier equations”. (Amer. J. of Math. 1956) xp − x − λ = 0, with

certain restrictions on the valuation of λ; first showing that such an equation

defines a cyclic extension of order p, and computing the corresponding isogeny

more or less explicitly, then observing that one gets enough of them (except

when there is a p-th root of unity in K, in which case one has to add the

Kummer equations xp = α).

It is not really very complicated. One could ask more precise questions.

Determining the structure of U(K), for example, to begin with — this was

solved by Shafarevich: it is a product of (infinite) additive Witt groups, except

when K contains a p-th root of unity, in which case U(K) is a quotient of a

product of Witt groups by a discrete group isomorphic to Z. Using this structure

and the classification of isogenies, one could ask for an explicit description

of π1(U(K)) → A(K), the group A(K) being described by Kummer theory.

This is known as the “explicit formulas” problem J.-P. Serre : The “explicit

formulas” have been much studied since Shafarevich: see for example chapters

7 and 8 of:

I.B. Fesenko and S.V. Vostokov, Local Fields and their Extensions, A.M.S.

Transl. of Math. Monographs 121 (1993). for local systems (a, b)pn , which

in principle was solved by Shafarevich. The solution is very complicated, and3/4

does not seem worth the effort needed to get it. Ask Tate what he thinks about

it. In any case, I have not yet found the courage to check Shafarevich’s paper

and translate it into my language — all I know is that it is possible.

3. Local fields. Conductor theory and higher ramification.

Since the subgroup U(K) is filtered by subgroups Un(K), the same is true

of the group π1(U(K)), and one is inevitably led to examine the filtration

obtained on A(K) by transport de structure. In other words, one is led to define

the “conductor” f(L/K) of a finite extension L/K as the smallest integer n

such that the associated isogeny U(L)/I ′ → U(K) comes from an isogeny of

U(K)/Un(K).
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It is easy to guess that this will give Hilbert’s ramification groups, intelligently

indexed (so they pass to the quotient). And indeed, that is what one proves;

in fact one obtains a more precise result:

Let L/K be a Galois extension with Galois group g ; let a(σ), σ 6= 1 ∈ g

be the valuation of σx− x, where x is a uniformizing parameter of L, and set

a(1) = +∞. Hilbert’s ramification groups Vx are defined by

σ ∈ Vx ⇐⇒ x+ 1 ≤ a(σ), x ∈ R.

From this, one deduces the existence of a piecewise linear function ϕL/K(x),

one of whose many definitions is as follows:

ϕL/K(x) =
1

e

∑
σ∈g

inf(a(σ), x+ 1)− 1 , e = [L : K].

There is no point in giving the fundamental properties of ϕL/K here; they

are well known (see Kawada, Annals, 1953, for example) and can be formally

deduced from the properties of a(σ). In particular, ϕL/K(x) = ϕL′/K ◦ϕL/L′(x)

whenever L ⊃ L′ ⊃ K. Denoting the inverse function of ϕ(x) by ψ(x), one can

define a new indexation of the higher ramification groups by setting:

V x = Vψ(x), x ∈ R.

4/5

The V x are now numbered in such a way that they “pass to quotients”

(whereas the Vx “passed to subgroups”). It should be noted that the “jumps”

of the Vx are at the points x = ψ(n), where n is a “jump” point of ψ, hence

an integer; x on the other hand is not necessarily an integer.

Theorem: a) If L/K is an abelian extension, then the jumps of the function ψ

are integers.

b) Under the same hypothesis, the conductor of L/K is c+ 1, where c is the

largest integer n such that ψ jumps at n.

The two claims are proved simultaneously. The method is the same as in

the original paper by Hasse (which dealt with the case where the residue field

is finite), except for the fact that computations of norm indices are replaced

by isogenies. More precisely, one shows the following:

Lemma: Let L/K be a Galois extension with Galois group g. For any integer n,

the norm map N : U(L)→ U(K) sends Uψ(n)(L) to Un(K) and Uψ(n)+1(L) to
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Un+1(K); the homomorphism

N : Uψ(n)(L)/Uψ(n)+1(L)→ Un(K)/Un+1(K)

defines an isogeny whose separable degree is ψ′d/g(n).

[The quotient of the right derivative of ψ by its left derivative is de-

noted ψ′d/g(n); this quotient is 1 except when ψ has a “jump”. Also, for

any real number x, define Ux(L) to be Um(L), where m is the smallest inte-

ger ≥ x.]

For the cyclic case of prime order p, the lemma is proved by a brute force

computation of the norm (an old computation dating from the beginnings

of number theory): the general case can be trivially deduced from this by

dévissage, taking the transitivity property of ψ into account.

Let us apply this lemma to the abelian case. It is then known (no2) that

the separable degree of the isogeny deduced from N is equal to [L : K].5/6

Furthermore, this lemma shows what are the “partial isogenies” which appear

above Un(K)/Un+1(K). One first deduces from this that the separable degree

of this isogeny divides the product
∏
ψ′d/g(n), where n runs over the set of

integers ≥ 0. However, it is immediate from the definition of ψ that the

product of all the ψ′d/g(x), for real x, is equal to [L : K]. Comparing, one sees

that ψ′d/g(x) is necessarily equal to 1 for all non-integral x, which is exactly a).

Claim b) for conductors follows.

Corollary The Artin conductor is an integer.

Indeed, it is well known that it is enough to check that the conductor is

an integer for a cyclic extension, with the character being an isomorphism of

the group in question; in this case, the conductor is ϕ(m) + 1, where m is the

largest integer such that ϕ jumps at m; the theorem says that c = ϕ(m) is an

integer. We also see that the Artin conductor coincides with the conductor

defined above in the abelian case, as it should.
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[I thought for a long time that this last result was new, in the case of an

arbitrary algebraically closed residue field — and thus, trivially, for an arbitrary

perfect residue field. — In fact, C. Arf (J. Crelle, t. 181) had already proved it

in 1940, by an extremely complicated computational method.]

4. The case of local fields. A “class formation”.

Keeping the conditions above, associate to any local field K the group BK =

π1(U(K)).

Theorem: The BK form a “class formation”.

The proof uses the fact that the BK are isomorphic to the Galois groups A(K)

of the maximal abelian extension of K. One needs to show (cf. my lecture

notes at the Collège) that if L/K is a finite Galois extension, then the transfer

homomorphism A(K)→ A(L) maps A(K) isomorphically onto the fixed points

of gL/K in A(L); but one sees immediately that the transfer A(K) → A(L)

translates into the homomorphism from π1(U(K)) to π1(U(L)) induced by 6/7

the injection U(K)→ U(L). Using the exact sequence from no1, i.e. the fact

that π1 is an exact functor on connected groups, it follows that π1(U(K)) can

indeed be identified with those elements of π1(U(L)) which are fixed by g,

which gives the result.

(This proof is rather unsatisfactory, since it comes after the existence

theorem, on which it fundamentally depends. It should be possible to show a

priori that π1(U(K)) is a class formation, using the exact sequences:

0 → U(K) → K∗ → Z → 0

0 → π1(U(K)) → U(K) → U(K) → 0

The cohomology of K∗ is known to vanish; one needs to prove that the same

holds for U(K); unfortunately, I cannot see why it does.)J.-P. Serre : “unfortu-

nately, I cannot see why it does. . . ”. Tate explained this to me: cf. [Se61a],

prop. 8.

5. The global case.

Here, it is unfortunately necessary to restrict to the case of equal character-

istic. Consider a non-singular algebraic curve X over an algebraically closed

field k, and the group C0(X) of ideles of degree 0 on X. This is a proalgebraic

group (generalized Jacobians!) and the Lang-Rosenlicht method shows that:
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Theorem : The Galois group of the maximal abelian extension of k(X) is

isomorphic to π1(C0(X)).

Thus, as in the previous no:

Theorem: The π1(C0(X)) are a class formation.

When restricting to “tamely ramified” extensions, it is enough to consider

generalized Jacobians whose modules are of the type
∑
Pi with distinct Pi.

These are extensions of the Jacobian by tori, whose π1 can be constructed by

Tate’s methods, cf. no1. One recovers a “class formation” which had already

been defined by Tate. J.-P. Serre : “which had already been defined by Tate. . .

”. The results in question have probably not been published.7/8

This is how far I have gotten for the present. I still need to clarify the

case where the residue field is not algebraically closed, particularly when it

is finite (or “quasi-finite”, i.e. when the Galois group of the algebraic closure

is the completion Ẑ of Z). I can see more or less how to do it, but the

details are boring.J.-P. Serre : “the details are boring. . . ”. These details

were summarized at the end of the Bourbaki lecture quoted in 3.1, and they

have been given in M. Hazewinkel’s thesis (Amsterdam, 1959 — see also the

Appendix to Chap V of Demazure-Gabriel, Groupes Algébriques, Masson and

North-Holland, Amsterdam, 1970). It seems that group isogenies are not

enough, and homogeneous spaces will be required, J.-P. Serre : “Homogeneous

spaces will be required. . . ”. Grothendieck was to come back to this point a

little later, cf. the letter of 8/9/1960. which is very annoying. Give me some

courage. . .

In any case, I see clearly why local class field theory works over “quasi-finite”

fields, while the global one does not. The point is that the Châtelet-Weil

groups Hq(G/k) have to be trivial over k when G is defined over k, and this is

not true (except for a finite field) unless G is linear — which holds for local

class fields, but not for global ones, because of that stupid Jacobian. Thus,

one sees that in the global case the reciprocity map is not always surjective

— on the other hand, the principal ideles are still contained in its kernel, and

therefore Artin’s reciprocity law gets cut into two, in a rather unexpected way!

I hope you will find the wherewithal to test your various conjectures in the

above. Your letter was very interesting, but I had a hell of a time trying to

decipher it; I had to type it out myself! (In reply to one thing you say, I should

point out that the Société Mathématique de France gives 100 free reprints —
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you will not therefore have to follow my illustrious example — relative to the

Journal de Maths pures et appliquées.)

I have no interesting news. I have been spending my time lately studying

local fields — as you have seen, I could not avoid the detailed study of the

horrible functions ϕ and ψ. Fortunately, Lang sent me an Artin-Tate II report

on the subject, which was a great help.

I also needed to understand the notion of a different, which plays a crucial

role in the proofs. Here is a statement (essentially due to Dedekind, modulo

the language) which surprised me a great deal: 8/9

Let A be a Dedekind ring with fraction field K. Let L be a finite separable

extension of K, and let B be the integral closure of A in L. Then the

module DA(B) of differentials of the A-algebra B is monogenous, and its

annihilator is the different dB/A (defined as the inverse ideal in B of B∗, the

complement of B).

Don’t you find this a very pretty statement? In the geometric case, it

contains the fact that the different is the ideal generated by dT/dt (where T

and t are uniformizing parameters of A and B).

The funny thing is that I just received a manuscript by Auslander and

Buchsbaum J.-P. Serre : This is a reference to: M. Auslander and D.A. Buchs-

baum, On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959),

749–765. to referee for the Amer. Journal, which contains a homological

definition of the different and (I hope) the property in question. They also

define unramified extensions of rings in terms of the vanishing of the different;

we shall have to compare this with our own stuff. Say hello to Tate from me

(and if he is interested, you can show him this letter). Yours,

J-P. Serre
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July 18, 1959 Alexandre Grothendieck

My dear Serre,

Lately I have been thinking again about the general formalism of (Weil)

cohomology and homology of schemes, and so doing, it seems to me that

I have managed to find the correct definition of “homotopic” invariants; of

course, I have not gotten past the definitions, and proving they have reasonable

properties is a very different matter; perhaps it will be possible to attack it

via cohomology (which can be got hold of using sheaf theoretic methods, for

algebraic curves for example) and the “theory modulo C”. Furthermore, the

same restrictions apply to the scope of my definitions as to the definition of π1

(which ignores such phenomena as inseparability). This is only natural if one

wants “topological invariants”, i.e. invariants of morphisms X ′ → X which

are “geometrically” homeomorphisms, i.e. proper, surjective and geometrically

injective.

Here is the general set-up. Let C be a category equipped with products.

For T ∈ C and for any finite set I, one can consider the object T I , which gives

a contravariant functor KT from finite sets to C, i.e. a simplicial object of C.
If T ′ “dominates” T , i.e. if there exists a morphism T ′ → T , then from this

morphism one derives a simplicial homomorphism KT ′ → KT , whose homotopy

class is independent of the choice of T ′ → T ; thus, when T varies in C, the KT

form a projective system with values in the homotopic category (i.e. the

morphisms are simplicial homomorphisms modulo homotopy) of simplicial

objects of C. If (for example) F is a contravariant functor C → C′, then F (KT )

is a cosimplicial object in C′, so if C′ is abelian, then it has a cohomology

which plays the same role as the Čech cohomology of a covering (which is a

special case of it!) and which will be denoted H∗(T/−, F ). The T/− indicates

that T is considered as an object over the right unit in C, if it exists; if T lies

over an object S in C then let us write T/S and hence KT/S and H∗(T/S, F )

to indicate that T is considered as as an object in the category of objects1/2

over S (in which S is a right unit); F is therefore a functor on the latter

(or on a “larger” category: C itself, for example). Furthermore, as T varies,

the H∗(T/S, F ) form an inductive system of objects of C′, whose inductive

limit (if it exists) will be denoted by Ȟ∗(−/S, F ). Of course, instead of taking

the inductive limit over the whole of C, one can take it over a part of C,
but this boils down to replacing C by a subcategory. Here Ȟ∗(−/S, F ) plays

the role of Čech cohomology with coefficients in F (which plays the role of

a presheaf of coefficients). This is a cohomological functor of F , and under

certain conditions which can be easily written down, it depends contravariantly
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on T (when C, F and T all vary. . . ). If S is a scheme, take C to be the category

of S-schemes which are finite unions of flat coverings of open sets of S which

form an open cover of S; a contravariant functor F from C into abelian groups

can be called a Weil presheaf on S, and Ȟ∗(−/S, F ) is the Čech-Weil type

cohomology of S with coefficients in F . If F is actually a Weil sheaf this can

be mapped to the true Weil cohomology with coefficients in F (this is also

valid in the general category-theoretic set-up), namely H∗(S, F ), and this will

be an isomorphism under rather general conditions (for instance if F comes

from a flat group scheme of finite type over S); if F comes from a group

scheme which is simple and of finite type over S, then one can even replace

the category C by the smaller category in which flat coverings are replaced by

unramified coverings. In particular, this will be the case if F comes from an

ordinary finite abelian group, which gives rise to the “Čechist” computation

of the cohomology H∗(S, F ) for a finite group F (on which the fundamental

group of S may act, if one wants “twisted” coefficients).

In the same way, a covariant functor G : C → C′ defines a simplicial

object G(KT ) in C′ for every T ∈ C; thus, as T varies, one gets a projective

system of simplicial objects in C′; if C′ is the category of sets, this is a projective

system of topological spaces, which in turn gives cohomology or homology

groups via inductive resp. projective limits, which are actually special cases of

those considered above. If G even takes values in the category of pointed spaces,

then the G(KT ) form a projective system of pointed simplicial spaces, giving

homotopy groups etc. by passing to the projective limit. Thus, given such a G,

one gets the definition of homotopy groups with “coefficients in G” πi(T/−, G),

πi(T/S,G), πi(−/S,G) having the obvious variance properties.

Starting with a base scheme S, take π0(T ), the covariant functor on C
with values in the category of sets (sets of connected components); in order

for this functor to take values in the category of pointed sets, choose a geo-

metric point a ∈ S and consider the category C of objects (of the specified

type) which are pointed over a (morphisms of such objects should send the

marked geometric point to the marked geometric point). Define homotopy

groups πi(T, S) and πi(−, S) = πi(S) in this way (it is understood that S

and T denote pointed objects). Of course, π0(S) and π1(S) are the ones which

are already known. Furthermore, if F is a finite abelian group, since the value

at T of the “sheaf” associated to F (also called F ) is nothing other than the

set of maps from π0(T ) to F , it follows that H∗(T/S, F ) = H∗(π0(KT/S), F ),

and hence H∗(S, F ) = lim−→T
H∗(π0(KT/S), F ). The “Hurewicz” type theorems

should thus be entirely formal in the context of sheaf homotopy and cohomology
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(modulo the classical Hurewicz theorem). — I forgot to mention that here, C
is taken to be the category of flat pointed S-schemes which are unions of

unramified coverings of open subsets which cover S; this choice being made,

the system of π0(KT/S), and hence also the πi(S), are topological invariants

of S in the sense given above.

To round things off, here are two typical examples of simplicial sets arising

from a pair T/S. If T is an unramified Galois covering of S with group G,

then π0(KT/S) is the simplicial set which in dimension n is given by Gn+1/G

(G acting on Gn+1 on the right via the diagonal); this is a Kan simplicial set,

and unless I am mistaken it is nothing other than BG (the classifying space

of G). If S is normal and connected, mark the generic point of S, i.e. choose an3/4

algebraically closed extension Ω of its fraction field. Let G be the Galois group

over K of the algebraic closure of K in Ω. Giving T ∈ G is then essentially

equivalent to giving a finite set E on which G acts (with a marked point if one

is considering objects T with marked points) such that the following condition

is satisfied: for any x ∈ E, let Gx be the stabilizer and let Ux ⊂ S be the

set of points of S at which the finite extension of E corresponding to Gx is

unramified; one wants
⋃
Ux = S (N.B. If one is interested only in a cofinal

subset of the set of T , one may assume that the Gx are invariant in G.) With T

defined this way, π0(KT/S) is the simplicial set which is equal to En+1/G in

dimension n. I have no idea what the corresponding topological space looks

like (are there only a finite number of non-zero homotopy groups, are these

groups finite, etc.) and in fact I am realizing the extent of my ignorance of

homotopy. If you were to have some more or less secret introductory papers

on this subject, I would be most interested. Actually, I am thinking of going

to Die one of these days and getting Cartan to go through the basics with me.

I may possibly temporarily abandon my cogitations on Picard and Co, which I

had hoped to put in their final form this year, in order to have a closer look

at scheme topology. To begin with, this would require a little multiplodocus

on categories, which seems to me more and more indispensable “to be able to

speak”.

Regards,

A. Grothendieck
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August 18, 1959 Alexandre Grothendieck

My dear Serre, Tate has written to me about his elliptic curves stuff, and

has asked me if I had any ideas for a global definition of analytic varieties J.-P.

Serre : This is a reference to the p-adic theory of “Tate curves”, which is at

the origin of rigid analytic geometry.

Tate’s text, which was written in 1959, was published (and completed) in

1995: J. Tate, A review of non-archimedean elliptic functions, in “Elliptic

Curves, Modular Forms and Fermat’s Last Theorem” (J. Coates and S. T. Yau,

eds.), Intern. Press, Boston, 1995, 162–184. over complete valuation fields.

I must admit that I have absolutely not understood why his results might

suggest the existence of such a definition, and I remain skeptical. Nor do I have

the impression of having understood his theorem at all; it does nothing more

than exhibit, via brute formulas, a certain isomorphism of analytic groups;

one could conceive that other equally explicit formulas might give another one

which would be no worse than his (until proof to the contrary!)

I have given just enough thought to the “infinitesimal” part of the fun-

damental group to convince myself that it exists and is reasonable. Here is

a (surely insufficient, actually) context in which it works. Take a connected

scheme S (for instance an algebraic scheme over a field), an auxiliary category C
(for instance the category of finite algebraic schemes over k), a category G
whose objects are C-groups, and whose morphisms are C-group morphisms (for

instance finite algebraic groups over k). Assume that fiber products exist in C
and that G satisfies the following properties: (i) G is stable under products,

and if u, v : G→ G′ are morphisms in G, then the kernel of the pair (u, v), i.e.

the maximal subgroup on which they coincide — which exists, since it can be

expressed using a fiber product — lies in G. (ii) If u : G→ G′ is a morphism

in G, then the image group exists, is isomorphic to a quotient of G (as it should

be), and belongs to G. (iii) Every decreasing sequence of subgroups ∈ G of

a G ∈ G is eventually stationary. Moreover, assume given a covariant functor F

from G to group schemes over S (for instance G→ S ×k G), and assume that

: (iv) The functor F commutes with products, kernels of pairs of morphisms

and images (one could say that F is “exact”). (v) If H is of the form F (G)

(G ∈ G), then H is “special”, i.e. there is an exact sequence of finite flat group

schemes over S,

e→ Hinf → H → Hsep → 0

where Hinf is purely infinitesimal (i.e. the projection Hinf → S is geometrically

injective) and Hsep is unramified over S. (In the case of a base field k, such

an exact sequence can be deduced from an analogous exact sequence for a



92 CORRESPONDENCE

finite algebraic group G over k; moreover, if k is perfect, this sequence splits

canonically, since Gred is then a subgroup of G which is isomorphic to Gsep

under the projection G → Gsep. Note, however, that Gred does act on Ginf ;

one has only a semi-direct product). Finally, (vi) S is reduced.

Conditions (v) and (vi) look ugly, and are essentially temporary. They are

useful because of this

Lemma: Let H be as in (v), S as in (vi), P a homogeneous principal H-

bundle, Q another, u and v two isomorphisms from P to Q taking some given

“marked point” into another one; then u = v.

By twisting H, the problem can be reduced to the case where P is trivial, and

the result then follows from the following fact: a section of Q is an isomorphism

between S and a connected component of Qred.

Note, however, that conditions (i)-(vi) do not preclude the possibility of

twisted structural groups (with respect to a base field k).

Now let a be a “marked point” of S (i.e. an algebraically closed extension of

the residue field of some s ∈ S). For every G ∈ G, let Z(S, a;G) or simply Z(G)

denote the set of classes (up to isomorphism) of homogeneous principal bundles

over S with group F (G), equipped with a marked point over a. Obviously Z(G)

is a functor from G into the category of sets. This functor has the following

properties: 1) It commutes with products (since F does); 2) It commutes

with kernels of pairs: in other words, if G′′ // G
u //
v
// G′ is exact in G,

then Z(G′′) // Z(G)
Z(u) //
Z(v)
// Z(G′) is exact, i.e. Z(G′′) can be identified with

the set of elements in Z(G) whose images in Z(G′) under Z(u) and Z(v) are

the same. (This follows from the exactness of F and the lemma).

It follows formally from these two properties that one can find a filtered pro-

jective system (Gi)i∈I in G, with morphisms Gi → Gj which are epimorphisms

in C, and which is “essentially unique” in an easily specified sense, such that

there is a functorial isomorphism

Z(G) = lim−→HomG(Gi, G).

It is this projective system (considered modulo an equivalence which intuitively

means that one passes to the projective limit of the Gi) which may be de-

noted πG1 (S, a) and which plays the role of the fundamental group of S at a

(with respect to the category G of groups, equipped with the functor F ). In

the base field k case, where G is the category of finite algebraic groups over k,
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one could write(3) π1(S/k, a): it is the proalgebraic fundamental group (with

infinitesimal part) of the k-scheme S. When k is perfect, the decomposition of a

finite algebraic group into its infinitesimal part and its reduced part shows that

the fundamental group is the semi-direct product of its reduced or separable

part (which corresponds to an ordinary discontinuous compact group on which

the ordinary fundamental group of k — i.e. the Galois group of k over k — acts)

with its infinitesimal part, which actually no longer depends on the choice of the

base point a of S. Note that the separable part of the fundamental group can

easily be recovered using the ordinary fundamental group of S and its natural

homomorphism into Gal(k/k), but is “larger” than the ordinary fundamental

group, since it corresponds to the classification of principal coverings with

structural group not only an ordinary finite group, but also a finite group

which is separable over k (i.e. an ordinary finite group on which Gal(k/k) acts

not necessarily trivially.) I admit that if k is not algebraically closed, then the

fundamental group described above is probably not the right one; one should

probably consider the fundamental group of S ⊗k k, which is a proalgebraic

group defined over k; note that it is equipped with descent data from k to k

and thus is actually defined over k. This would work whenever the base point

is k-rational. In any case, there should be a “pro-group scheme” π1(S) over S

(a local system of fundamental groups). 3/4

Here is how to prove that the projective system (Gi) exists. A pair (G, z)

with G ∈ G and z ∈ Z(G) is said to be minimal if there is no subgroup G′ ⊂
G, G′ 6= G, such that z is of the form Z(i)(z′) where z′ ∈ Z(G′) and i : G′ → G

is the inclusion. Let us say that a pair (G, z) is dominated by a pair (G′, z′) if

there is a homomorphism u : G′ → G such that z = Z(u)(z′). It follows from

(iii) that every pair (G, z) is dominated by a minimal pair, and from property 2)

of Z that if (G′, z′) is minimal and dominates (G, z), then there is a unique u :

G′ → G such that z = Z(u)(z′). From this it follows that the minimal

pairs (G, z) form a projective system for the relation of domination, which is in

fact a directed set (since (G, z) and (G′, z′) are dominated by (G×G′, (z, z′)),
which is itself dominated by some minimal (G′′, z′′)): this is the desired system.

If one wants, one can choose a pair (G, z) in every system of isomorphic minimal

pairs, in such a way that the set I of indices becomes ordered and not simply

pre-ordered. (N.B. This is also the kind of formal argument that is used in

“moduli theory”. . . ).

(3)note in the margin: wrongly!
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I do not yet know how to formulate the homotopy exact sequence; to do it

right, the inclusion of an infinitesimal part into the fundamental group should

provide a satisfactory theory of the behavior of the fundamental group under

specialization. I hope that if f : X → Y is a proper separable morphism with

absolutely connected fibers, i.e. such that f(OX) = OY , where for simplicity’s

sake X is equipped with a section s over Y which determines base points

on the fibers, then the total fundamental groups of the fibers of X form a

pro-group scheme over Y π1(X/Y, S): more precisely, I hope that it is possible

to find a filtered projective system (Gi)i∈I of “special” group schemes Gi
over Y , and homomorphisms Gi → Gj which are epimorphisms of Y -schemes

(i.e. correspond to an injective homomorphism of coherent sheaves on Y ), such

that the total fundamental groups of the fibers of X can be deduced from

the said pro-group scheme simply by specializing. (In any case, this is what

the case where X is an abelian scheme over Y seems to suggest, cf. below.)

Even without choosing a section, one could deduce the existence over X of a

pro-group scheme π1(X/Y ), “the fundamental group of the fibers”. When there

is no base field k, however, it is not clear how and to which fundamental groups

of X and Y one can attach the fundamental groups of the fibers to replace an

exact homotopy sequence. If there is a base field, an initial conjecture would

be that π1(X/Y ), the pro-group scheme π1(X) over X of local systems of

fundamental groups of X at its various points, and the preimage under f of

the analogous pro-group scheme π1(Y ) on Y , are related by an exact sequence.

Have fun with higher homotopy groups. . .

It is not said that the conjecture I look for is more difficult to prove than

the part that is already known for ordinary fundamental groups. It would

imply that for complete schemes X and Y over an algebraically closed field k,

π1(X ×Y/k) = π1(X/k)×π1(Y/k). Using your arguments, it follows that if X

is an abelian variety over k, then π1(X/k) is abelian, and a minimal principal

covering X ′ of X is an abelian variety which is isogenous to X. It follows that

π1(X/k) = lim←− nX,

where nX is the kernel (with its infinitesimal part as well, of course) of

multiplication by n, the homomorphism of mnX into nX being induced by

multiplication by m. (By Cartier’s results, this fundamental group is dual, in

Cartier’s sense of the word, to the ind-algebraic group which is the inductive-

limit of the nX
∗, where X∗ is the dual variety of X.) Taking the p-component

of this fundamental group, one obtains something which, for a prime number p,

should play the role of the Weil module. There is no doubt that it is possible
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(and Cartier must have already done it) to functorially associate J.-P. Serre : “It

is possible . . . a module over the Witt ring”. This was done (and continues

to be done in increasing generality) by Cartier, Gabriel, Manin, Fontaine . . .

See for instance Chap.V of the work by Demazure and Gabriel quoted in note

9.2. a module over the Witt ring to an abelian infinitesimal pro-algebraic group,

and that it is easy to check that the module decomposes into the three parts you

know (corresponding to the three principal types of abelian algebraic p-groups).

Thus, one obtains a more natural formulation of your theorem (which should

give a universal proof which does not distinguish the cases ` 6= p and ` = p),

and at the same time, one sees that your bewildering sum behaves well when X

varies in a family, i.e. if X is an abelian scheme over Y (since in this case

the nX are wonderful finite flat group schemes over Y , whose projective limit

can be taken formally. . . ).

Next year, I hope to getJ.-P. Serre : “Next year, I hope to get. . . ” Hope

springs eternal! This reminds one of the beginnings of Bourbaki, who had

hoped to be done within a few years.

In fact, the EGA’s stopped after chapter IV, a text of almost 800 pages,

whose last part came out in 1967. a satisfactory theory of the fundamental

group, and finish up the writing of chapters IV, V, VI, VII (the last one

being the fundamental group) at the same time as categories. In two years,

residues, duality, intersections, Chern, and Riemann-Roch. In three years, Weil

cohomology, and a little homotopy, God willing. In between, I don’t know

when, the “big existence theorem” with Picard etc., some algebraic curves, and

abelian schemes. Unless there are unexpected difficulties or I get bogged down,

the multiplodocus should be ready in 3 years time, or 4 at the outside. We

will then be able to start doing algebraic geometry! Yours, A. Grothendieck
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October 25, 1959 Jean-Pierre Serre

Dear Grothendieck,

How are the categories? I read in the Tribu that you are “in the process”

of writing them. Is this true, and have you temporarily abandoned the Multi-

plodocus? I would also like to know how the latter is getting on, and if we can

count on a rapid publication.

Princeton is very interesting this year, much more so than usual. Atiyah-

Hirzebruch are giving us a wonderful seminar on their K(X). Weil is telling

us equally exciting things about adelic groupsJ.-P. Serre : This lecture course

was published by the IAS and later reproduced by Birkhäuser: A. Weil, Adèles

and Algebraic groups (notes by M. Demazure and T. Ono), Birkhäuser, Boston,

1982.

See also: A. Weil, Adèles et groupes algébriques, Séminaire Bourbaki 1958/59,

no186 = Oe. Sci. [1959a].; it has recently been discovered that the question

of convergence of the famous product measure that you know is linked to the

computation of the number of points of reductions modulo p; more precisely,

let V be non-singular, defined over a number field (or a field of functions) and

let ω be a differential form of maximal degree on V , everywhere regular and

non-zero (on a group take the translation-invariant form). Let n = dim(V ),

and let Vp (p prime in the field) be the integral p-adic points of V ; then∫
Vp
|ω|p = 1

(Np)n (number of points of Vp reduced modulo p),

which holds for almost all p. (Anyway, Vp and its reduction are only “intrinsic”

for almost all p.) The question of convergence of the infinite product of

the
∫
Vp
|ω|p is hence reduced to a typically Weil-type question about numbers

of points. If V is a semi-simple group, one knows how to do this computation

(I did it with Hertzig in the old days) and thereby prove convergence for

all semi-simple groups, including exceptional groups. Finite volume or the

Tamagawa number are still a long way off, but this is still something. It also

shows (assuming the Weil conjectures) that there will be divergence for any

complete variety.

Another interesting question raised by Weil is that of the restriction of

scalars. This problem can be perfectly well expressed in terms of schemes:

given two “base preschemes” S and T , and a morphism T → S, one would like

to associate to any T -prescheme V an S-prescheme RT/S(V ) and a morphism p :
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RT/S(V )×S T → V such that for every S-prescheme U , the obvious map from

MorphS(U,RT/S(V )) to MorphT (U ×S T, V )

is bijective.

This probably doesn’t exist except under very strong conditions J.-P.

Serre : “This probably doesn’t exist. . . ”: see for instance §7.6 in S. Bosch, W.

Lütkebohmert and M. Raynaud, Néron Models, Springer-Verlag, 1990., like T

finite over S, and the image sheaf of the structural sheaf of T locally free over

that of S. In any case, these conditions make the affine case work, but neither

Tate nor I have had the courage to go farther. The projective case needs to be

dealt with. In any case, the scheme RT/S(V ) does not always exist even in

classical algebraic geometry; there are Nagata-type counterexamples. What is

the link between this and the descent data you told me about?

Lang says he finds all this insufficient, and that one should find a big

bag containing all this stuff together with the “Greenberg functor” (which

Greenberg has apparently only written up for affine spaces). Have you done

this?

I have spent my time thinking about the Artin representation and the

Weil conjectures (particularly the L series formalism). I have nothing precise

to tell you. I am wondering (and have not yet been able to decide) if the

generalization of the Weil formula σ(X.X ′) ≥ 0 might not be σn(X.X ′) ≥ 0,

where X is a algebraic correspondence on V (non-singular of dimension n), X ′ =

transp(X),J.-P. Serre : No, this is not the right way to define X ′ if one wants to

generalize the Castelnuovo-Weil formula σ(X ·X ′) ≥ 0. One has to introduce

a polarization on V , cf. [Se60a]. and σn denotes the trace of the homology

representation in dimension exactly n. A priori, this is not ridiculous, and

would lead to a natural plan of a proof of the Weil conjectures on the absolute

value of the eigenvalues of Frobenius: in dimension n, the equation F.F ′ = qn ·1
(F = Frobenius), together with the positivity of the trace, shows that this

eigenvalue is qn/2, as it should be: in dimension < n, a Lefschetz-type theorem

will hopefully allow us to reduce to a hyperplane section; in dimension > n,

Poincaré duality allows us to reduce to the previous case. It is very tempting,

but one should at least check that σn(X.X ′) is ≥ 0 in the classical case, by

a Kählerian argument, and I have not managed either to do it or to find a

counterexample!
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Our seminar on the Multiplodocus is progressing nicely. On Saturday, I

will do spectra of graded rings and start projective morphisms. Here are some

comments from Tate, Borel, Demazure. . . on what we have done so far:

1) Let us say that a space is “locally ringed” if it is a ringed space whose

rings at points are all local rings. For such spaces, the notion of homomorphism

is restricted, as usual (by requiring them to be “local homomorphisms”); by

the way, the definition you give of them in Chap.I, §2, p.23, Déf.3 is wrong, as

the rings Ox and Oϕ(x) have been exchanged.

Then, for a locally ringed space (Y,OY ) to be an affine scheme, it is necessary

and sufficient that for every locally ringed space (X,OX), the obvious map

from Hom(X,Y ) into Hom(Γ(OY ),Γ(OX)) should be bijective.

This is a more precise statement than prop.3, chap.I, §2, and it is very easy

to prove, as you can guess.

2) The definition of sub-preschemes (I, §3, def.1) is incorrect as given. Why

not define immersions directly, which is easy, and then indicate an ad hoc

procedure for constructing a canonical element in any class of equivalent

immersions, called a sub-prescheme? That would be more honest.3/4

3) In the products (I, §2, prop.10), it is a pity that you use the fact that

two extensions of the same field can be embedded in a third. It would be more

in the spirit of the Multiplodocus to say that the points of X ×S Y over a

pair (x, y) correspond to points of Spec(k(x))×Spec(k(s)) Spec(k(y)), and this

ring is never zero, so has a non-empty spectrum. This has the advantage

of showing that the points in question correspond to “compositions” of k(x)

and k(y), and if you want to refer to Bourbaki, you would do better to refer to

Chap VIII of Algebra.

4) To show that a finite morphism π : Y → X is projective, can’t you just

exhibit a graded algebra, namely A[T ], where A = π∗(OY ) ?

5) When you define locally free sheaves in Chap. II, you say they are

coherent; this is obviously false without the hypothesis that the sheaf of rings

is itself coherent.

By the way, here is an amusing example of a “coherent” ring (i.e. for which

the module of relations between a finite set of elements is finitely generated)

which is not Noetherian: a non-discrete valuation ring. Another amusing

example: let K be a “compact Stein variety” (for instance a real compact

analytic variety), and let A be the algebra of holomorphic functions on a
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neighborhood. One can show that A is coherent, but it is not known to be

Noetherian.

6) It seems to me that in the homogeneous spectrum of a graded ring, you

have forgotten to say that the local ring at a point can be identified with

the degree zero component of you know what; after all, this gives a definition

of Proj( ), which is nice. 4/5

I haven’t got much other news. Ask Dieudonné if there is any chance he

might send me a copy of the final version of all this. I would be very interested

to see it.

Tate gave a very pretty lecture on adelic points from the point of view

of schemes; they are the same J.-P. Serre : I have a very vivid memory of

attempting to explain to Weil (resp. Grothendieck) that Grothendieck’s (resp.

Weil’s) definition is equivalent to his. Neither of them wanted to listen: his

definition was obviously “the right one”, why go looking for another one? as

Weil’s in the separated case. For an arbitrary prescheme, two distinct adelic

points can correspond to the same point in each local field; I constructed

an example of this. Everything I needed was actually already contained in

your Chap.I, §5, since the spectra of local fields form a dense open set in the

spectrum of adeles.

I have taken on the task of presenting Abhyankar’s work in Weil’s seminarJ.-P.

Serre : This is a reference to:

S. Abhyankar, Tame coverings and fundamental groups of algebraic varietiesI,

Amer. J. Math. 81 (1959), 46–94.

I presented this work in a Bourbaki seminar (1959/60, no204).. It is rather

simple in the end, except that the guy appears to muddle everything in sight.

Be particularly suspicious of the statements in his paper noI in the Amer. J.;

all the main theorems are false (or rather, their proofs are false — it is possible

that some of them are true nevertheless) J.-P. Serre : “it is possible that some

of them are true nevertheless. . . ” Indeed, they were justified 20 years later

by the work of W. Fulton and J. Hansen:

W. Fulton and J. Hansen, A connectedness theorem for projective varieties,

with applications to intersections and singularities of mappings, Ann. Math.

109 (1979), 159–166;

W. Fulton, On the fundamental group of the complement of a node curve,

Ann. Math. 111 (1980), 407–409.
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See also Deligne’s talk in the Bourbaki seminar 1979/80, no543. when the

curves have actual double points. This is contained in the noII which will

appear soon. I may talk about it in a Bourbaki seminar shortly.

I cannot resist the pleasure of showing you a cute proof (there are others, of

course) of the fact that the projective space Pn is simply connected: Let V

be an unramified covering of the said space, and let W be the projective cone

over V (that is to say, the affine variety whose coordinate ring is equal to∑
H0(V,OV (n)). It is immediate that this is a normal variety, and that it is a

covering of the plane kn+1 which is unramified except (perhaps) at the origin.

By the famous “purity theorem” it is not ramified at all, whence etc.

Yours,

J-P. Serre

Borel has invited you to come to the Institute next year. Are you tempted? I

would ask for nothing better, especially if you only stay for the first semester,

like me.
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October 31, 1959 Alexandre Grothendieck

My dear Serre,

No, I have not abandoned the multiplodocus for the categories, and am

only writing up the latter in so far as the MasterJ.-P. Serre : “The Master”:

Bourbaki, of course. obliges me to do so, which means I will probably end up

with a completed manuscript in a year’s time. I worked on it for a month this

summer but have dropped it for the moment, in order to spend the last couple

of weeks getting down to the general existence theorem in scheme theory. I

am hopeful of getting it out shortly, and will give a Bourbaki talk on what I

know about descent techniques (which, together with the theorems of formal

geometry, notably its “existence theorem”, should lead to a characteristion

of functors T 7→ HomS(T,X)). Dieudonné has sent Chapters 0 and I to the

press, and I think he will have finished Chapters II and II in time for them

to be printed in December or January. As for me, Chapters IV and V are

essentially finished, and I will be able to send notes to Dieudonné as soon as

necessary; if he works hard we might yet finish Chapters IV, V and VI next

yearJ.-P. Serre : In fact, neither chapter V nor chapter VI were ever written up.

A part of the preliminary notes for Chap. V were translated into English and

published: J. Blass, P. Blass and S. Klasa, EGA V, Parts I-IV, Ulam Quarterly

1-2 (1992–1993). (VI being descent techniques and existence theorems).

Thank you for your comments on the old draft; various corrections had

already been made. I agree with your logical criticism of the sub-preschemes;

I was also uncomfortable with the definition. However, it does not seem to

me to be sufficiently wrong to require yet another change (no more than your

comment on products, with which I otherwise also agree).

I have no comments on your attempts to generalize the Weil-Castelnuovo

inequality; I confess that these positivity questions have not really penetrated

into my yoga yet; besides, as you know, I have a sketch of a proof J.-P.

Serre : This “sketch of a proof” did not work, cf. the letter of April 2, 1964.

of the Weil conjectures based on the curves case, which means I am not

that excited about your idea. By the way, did you receive a letter from

me two months ago in which I told you about the fundamental group and

its infinitesimal part? You probably have nothing to say about that either!

Actually, I have hardly looked at the question since then myself, having been

distracted in the meanwhile by questions of classification (et al.) for algebraic 1/2

(or formal) groups (the latter, in characteristic p 6= 0, form the dual category

of the category of pro-algebraic groups — in which nilpotent elements are

allowed — which are projective limits of finite algebraic groups). I have tried
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in vain to extract something precise from Cartier, who only half-remembers

his own old work, and who has sold me various wrong statements (which will

no doubt become useful when their time comes, however). Alas, he is getting

worked up about probabilities, being in the army, J.-P. Serre : The expression

in the original text is “il est bonvoust”, ENS slang term for “he is doing his

military service”. I already foresee that I will be compelled to include a chapter

on commutative groups (i.e. commutative group schemes, of course) in the

multiplodocus, because of the intersection with Weil cohomology, homotopy

groups (starting with the fundamental group), and abelian schemes. Maybe,

if it seems convenient, we could write that chapter together, if you do not

object in principle to collaborating sporadically on the Multiplodocus. By the

way, when and how are you thinking of giving us your Historical Notes?J.-P.

Serre : Grothendieck had suggested I write Historical Notes for the EGA’s. I

never did. If you still intend to do it, it would be reasonable if you were to

write at least something that would go after Chapter III; after that, Chap. VI

would certainly give you another excellent opportunity to play the historian

(Chapters IV and V are more technical in nature and will probably inspire you

less).

I have indeed fully clarified the Weil and Greenberg operations, J.-P.

Serre : Alas, Grothendieck never wrote up anything on the Greenberg functor.

which at one time I was even thinking of presenting in a Bourbaki seminar; as

Lang said, they go in the same bag, otherwise the proofs have to be repeated.

For simplicity’s sake, let me only discuss Weil here: Given T over S and X

over T , one wants a prescheme N over S and an isomorphism of functors

in S′/S

HomS(S′, N) = sections of (X ′ = X ×S S′)
over T ′ =T ×S S′ = T -morphisms T ×S S′ → X

Such an N , which is obviously unique up to unique isomorphism, could be

denoted by HomT/S(T/T,X/T ); more generally, given X and Y over T , one

might ask whether HomT/S(X/T, Y/T ) exists, but this can be reduced to the

previous question, namely the existence of HomX/S(X/X,X ×T Y/X). An

interesting special case of this problem is the existence of HomS(X,Y ) for

two S-preschemes X and Y , i.e. the existence of HomX/S(X/X,X×S Y/X); if

it exists and X and Y are proper over a locally Noetherian S, then IsS(X,Y )

also exists, and is an open sub-prescheme (when X = Y , this is Matsusaka’s

situation, and one gets a group prescheme, AutS(X)). Actually, in Weil’s
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case HomT/S(T/T,X/T ), assuming HomS(T,X) and HomS(T, T ) exist, then

so does the former, and the following formula holds:

HomT/S(T/T,X/T ) = HomS(T,X)×HomS(T,T ) S

(the preimage of the identity section of HomS(T, T ) under the obvious morphism

HomS(T,X)→ HomS(T, T ) induced by X → T ). However, it is possible for

the Weil scheme to exist even if HomS(T,X) and HomS(T, T ) do not both exist,

which is why it seems to me that the basic fundamental operation to which

all the others can be reduced (unless something goes wrong with existence)

really is the Weil operation. As for terminology and notation, the latter

deserves to be called either the direct image of X/T under T → S or the norm

prescheme NT/S(X/T ). I prefer the second notation, inspired by the case T =

S×I, where I is a finite set as usual (and T is a direct sum of open sub-objects Ti
which are all isomorphic to S): one then has NT/S(X/T ) =

∏
i∈I(X/Ti), which

corresponds well to the idea of a norm (the fiber at s ∈ S is the product of the

fibers of X at those points of T lying over s). The natural map Γ(X/T ) →
Γ(N/S) (the inverse of the bijection in the other direction deduced from the

definition of N) deserves to be called the norm map. When T is finite and

“locally free” of rank r over S, and when X = Y ×ST and there is a symmetric S-

morphism Y r→Z (the Cartesian product obviously being taken over S), it

is possible to define a corresponding map NT/S(X/T ) = HomS(T, Y ) → Z,

whence, given the norm map defined above, there is a composition map(4)

Γ(X/T ) = Γ(Y ×S T/T ) → Γ(Z/S), again called the norm map (associated

to the symmetric S-morphism Y r→Z). If the symmetric power Sr(Y/S) of Y

over S exists, one should introduce the universal morphism HomS(T, Y ) →
Sr(Y/S); when Y is a commutative group prescheme over S, one similarly

obtains a map (usually called the norm map) Γ(Y ×S T/T )→ Γ(Y/S); for the

additive or multiplicative groups, one obviously recovers the usual trace and

norm maps. As for the point of view of the “direct image” of X/T under T → S,

it is suggested by the formula

NT/S(V̌ (E)) = V̌ (p∗(E))

(valid for S, T as above), where E is locally free (of finite rank) over T , and V̌

denotes the vector bundle covariantly associated to a locally free sheaf (the

multiplodocus forces me to keep the notation V for the contravariant functor,

the only one generally defined for an arbitrary quasi-coherent sheaf). However, I

do not want to use the notation p∗(X/T ), as I had started to do, since this leads

(4)N.B. In fact, one starts by defining the latter directly
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to terrible confusion when X happens to be a closed sub-prescheme of T (which

is a very important case, despite its pathological appearance). Finally, to finish

up with these formal generalities, if X is equipped with descent data, i.e. with

a T×ST -morphism from X×ST to T×SX, then if the descent data is effective

(i.e. makes X isomorphic to some Y ×S T ) and if furthermore NT/S(X/T )

exists, then Y can be identified with the sub-prescheme of NT/S(X/T ) defined

by the coinciding of the two natural morphisms NT/S(X/T )→ NT×ST/S(X×S
T )

∼→ NT×ST/S(T ×S X) and NT/S(X/T ) → NT×ST/S(T ×S X), induced

respectively by the two projections from T ×S T to T ; of course this is simply

the definition of the terms that appear, and expresses the fact that the sections

of Y over S should “be the same as” the sections of X over T whose preimages

over X ×S T and T ×S X over T ×S T correspond to each other under the

descent isomorphism.

As for existence questions, note first that if HomS(T, Y ) is to exist for

every Y (or even just for Y finite over S), then T must be flat over S, and

thus it is natural to restrict to this case [although it is possible that there are

other interesting cases in which descent is possible for certain pairs (Y, T )].

Furthermore, it is easy to convince oneself from the affine case that there is

no reasonable hope that HomS(T, Y ) or NT/S(X/T ) should exist when T is

not proper over S (here, again, there is an interesting exception under certain

conditions, if X is a closed sub-prescheme of T and T is not assumed to be

proper over S; such a situation arises when seeking to define the center of a

group scheme, for instance, or more generally the kernel of a representation

of a group scheme by operations on a scheme, or the largest scheme invariant

under G, etc.) Finally, Nagata’s counterexample shows that, at the very least,

additional hypotheses such as quasi-projectivity are needed on X/T . It does

seem to me that my general existence theorem for schemes (which is not yet

absolutely complete) should show that if S is locally Noetherian, then these

conditions (T/S flat and proper, X/T quasi-projective) are sufficient in order

for NT/S(X/T ) to exist. In fact, when T/S is finite and locally free, it is

not difficult (without Noetherian conditions) to do it by direct construction.

Then, if X/T is affine, NT/S(X/T ) exists and is affine (as you checked with

Tate). Furthermore, if every finite subset of X contained in a fiber of X over S

is contained in an open affine subset of X, — in particular, if X/T is quasi-

projective — then NT/S(X/T ) exists and is a union of the open sets NT/S(U/T ),

where U runs over the open affine sets of X. Moreover, in the preceding

condition, it would have been enough to consider the finite subsets of X which

come from sections of X ⊗S K over T ⊗S K, where K is a finite extension of a
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residue field of S; in particular, this condition is satisfied if the morphism T → S

is purely inseparable without any condition on X/T . [This case is particularly

interesting J.-P. Serre : “This case is particularly interesting . . . ”. It is especially

interesting when T = Spec(L), S = Spec(K), where K is a field and L is a

purely inseparable extension of K, cf. J. Oesterlé, Nombres de Tamagawa et

groupes unipotents en caractéristique p, Invent. Math. 78 (1984), 13–88. in

the infinitesimal theory of bundles; Weil’s extended varieties are nothing other

than HomS(T,X), where T corresponds to a locally free sheaf of augmented

local algebras over S; the famous transitivity relation (V A)B = V A⊗B is

nothing other than HomS(T × T ′, X) = HomS(T,HomS(T ′, X)); I spent a

day or two looking into these things, and the operation Hom really seems to

me to be the key element in the differential theory of bundles: in particular,

Weil’s heavy proofs (and statements)J.-P. Serre : “Weil’s heavy proofs. . . ”.

This is a reference to a Bourbaki draft on varieties. If V is a k-variety, and A

is a finite-dimensional local k-algebra, with residue field k, Weil defines the

variety V A of neighboring points of V of type A; if A = k[ε] with ε2 = 0, for

example, then V A is the tangent bundle of V . One of his main results is

an isomorphism (V A)B ∼= V A⊗B, cf. Weil, Oe. II, p. 107. get reduced to

almost nothing.] Restricting for safety’s sake to the existence cases I have just

mentioned, one even easily shows the following: if f : X → X ′ is an affine

map (resp. of finite type, resp. an embedding, resp. an open embedding,

resp. a closed embedding), then so is NT/S(f); thus if f is separated, so

is NT/S(f). If f is quasi-projective, so is NT/S(f), and in the case X ′ = T , a

very ample invertible sheaf on X/T naturally gives rise to one on NT/S(X/T ).

(N.B. every locally free sheaf E on X gives rise to one on N ×S T by inverse

image, and this, by projection, determines a locally free sheaf on N , of rank rn

if E is of rank n; if E is invertible, then the determinant sheaf of the said

sheaf on N is an invertible sheaf on N , which is very ample if E is). Beware:

if X/T is projective, NT/S(X/T ) is not projective in general; that will only

hold if T/S is etale (or, as I said above, unramified). In the latter case (which

is in fact the one considered by Weil), NT/S also takes proper morphisms to

proper morphisms. Note further that even if X/T is finite, it is still possible

for NT/S(X/T ) to be neither proper nor quasi-finite over S: for example, the

algebraic scheme of endomorphisms (or automorphisms) of a finite algebraic

group over a field k (take any which is non-separable) is an affine group which

is in general of dimension > 0. Once again, the dimension of the fibers of

a morphism is only conserved by the functor NT/S if T/S is etale. Neither

does flatness seem to behave well under the functor NT/S (except for this very
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special case which morally is hardly different from T = S × I for a finite set I).

This makes it all the more pleasing that the following thing is true: provided

only that norm schemes exist (and assuming that S is locally Noetherian

and that X, X ′, NS/T (X/T ), NS/T (X ′/T ) are of finite type over T ) NT/S

takes simple maps (resp. etale maps — i.e. unramified maps in my old

terminology) to simple maps (resp. etale maps) J.-P. Serre : “simple” is now

called “smooth”.; in this case, the dimension of the fibers is multiplied by

exactly r (and in the finite case, there is an analogous bound on the maximal

number of geometric points in a fiber). In fact, this result even holds without

any conditions on T/S (not finiteness, nor properness, nor flatness; only that S

and T are locally Noetherian), thanks to the following characterization of simple

maps: let f : X → Y be an S-morphism, where X and Y are of finite type

over a locally Noetherian S. For f to be simple, it is necessary and sufficient

that for any affine S′ of finite type over S, every closed subscheme S′1 of S′

having the same reduced subscheme as S′, and every commutative diagram

of S-morphisms

X
f // Y

S′1

OO

i // S′

OO

(where i is the injection), there is an arrow S′ → X such that this diagram

remains commutative (N.B. This can be reduced to the case Y = S; in this case,

it is enough to check the criterion if S′ is finite over S, and local Artinian.).

This implies that the functor J.-P. Serre : See D. Ferrand, Un foncteur norme,

Bull. S.M.F. 126 (1998), 1–49. NT/S transforms simple principal bundles into

simple principal bundles, etc. When T/S is finite and the geometric rank of

the fibers of T/S is locally constant, one sees that if X is an etale covering

of T , then NT/S(X,T ) over S has the same property as T/S, and, being etale,

is finite over S, i.e. is an etale covering of S. By formal arguments, it follows

that T → S has a canonical factorization through T → T ′ → S, where T → T ′

is a purely inseparable flat covering, and T ′ → S is an etale covering.

Yours,

A. Grothendieck
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November 5, 1959 Alexandre Grothendieck

My dear Serre,

I beg your pardon for the unusual colour of this letter(5) — but as Mireille

is still unwell, I have not had the time to go and buy another ribbon (and you

must have seen from the last letter why a change of ribbon was necessary).

The “Grand existence theorem” J.-P. Serre : “Grand existence theorem”.

See the Bourbaki talks by Grothendieck collected in FGA. is progressing little

by little; many technical difficulties remain, but I am more and more convinced

that there is an absolutely marvellous technique at the end of all this. I have

already come to the practical conclusion that every time that my criteria show

that no moduli variety (or rather, moduli scheme) for the classification of

(global or infinitesimal) variations of certain structures (complete non-singular

varieties, vector bundles etc.) can exist, despite good hypotheses of flatness,

properness, and if necessary non-singularity, the only reason is the existence

of automorphisms of the structure which prevent the descent from working.

However, I am convinced it is true (and that I will shortly be able to prove) that

there exists a scheme M defined over Z which is locally of finite type over Z,

and a simple projective scheme V over M such that the scheme AutM (V )

is reduced to the trivial group scheme over M , so that for every locally

Noetherian prescheme S and every W over S with the same properties as V/M ,

there exists a unique morphism S −→ M such that W is isomorphic to the

inverse image of V/M under the said morphism. However, as can already

be seen for elliptic curves (even with “non-exceptional” invariant, i.e. with

automorphism group Z/2), no such thing is true if there are automorphisms

in the family under consideration. The remedy in moduli theory seems to

me to be to eliminate bothersome automorphisms by introducing additional

structures on the objects being studied: points or differential forms etc. on the

varying varieties (a process which is already used for curves), trivializations

at sufficiently many points of the vector bundles one wants to vary, etc. By

the way, the precise condition AutM (V ) = (e) can be given explicitly: for

every “geometric” fiber X (i.e. over an algebraically closed field k) of W/S, X

does not have any “finite” or “infinitesimal” automorphism, this last condition

meaning that H0(X,GX/k) = 0.J.-P. Serre : The notation GX/k means the sheaf

of k-derivations of OX (tangent sheaf), cf. FGA, 195–197. It follows from the

first in characteristic 0.

(5)It was written in red ink and the previous one was almost transparent!
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In any case, with what I know already, I should be able to show that if

X is such a variety (non-singular, and projective for safety’s sake) without

finite or infinitesimal automorphisms, then there exists a smallest subfield K

of k, which is obviously a finitely generated extension of the original field,

over which X can be defined. Assuming the existence of some (M,V ) as

above, X/k is defined by a k-valued point of V , and K will be the image in k

of the residue field at the corresponding point x in M . Furthermore, the formal

moduli variety of X/k (whose existence I already know in any case) will be the

spectrum of the completion of the local ring of the k-rational point of M ⊗Z k

corresponding to x (N.B. I am taking the formal moduli variety to be defined

over k; if, in characteristic p 6= 0, one prefers to think of it as being defined over

the p-ring A(k) defined by k — which is better — then in the above one should

take M ⊗Z A(k), or alternatively, if one wants an expression intrinsic to M/Z

without base change, it is also the spectrum of lim←−P
(n)
M/Z(x) ⊗κ(x) k, where

the Pn are as in my Bourbaki report). Assume for simplicity that the base

taken for M is not Z but the prime field k0 of k. Then one has the inequalities:

dimK/k0 = dimκ(x)/k0 ≤ dim(Formal moduli variety of X)(1)

= dimension of M in a neighborhood of x(2)

≤ dimH1(X,GX/k).(3)

(The inequalities which do not involve M itself can probably be proved as of

now). The first inequality is an equality if and only if x is a generic point of a

component of M , and the second is an equality if and only if the variety M

(or the formal moduli variety, it’s all the same) is smooth at x. The equality

dimK/k0 = dimH1(X,GX/k)

thus means a combination of both.

I am writing this to you because it should enable you to give me an example

answering (in the negative) Weil’s question on whether the absolutely irreducible

components of the Chow variety are defined over the prime field (it would

serve them right). J.-P. Serre : “an example...in the negative”. I constructed

such an example five years later, cf. [Se64b]. Indeed, Weil’s conjecture implies

that every simple projective algebraic variety X can be obtained from an

algebraic family of such varieties, whose parameter variety T is defined (i.e.

absolutely irreducible) over the prime field. If X had no (finite or infinitesimal)

automorphisms, such a family would come from a morphism from T to M ,

and it would follow that if in addition the point s in M corresponding to X
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is generic, then the smallest field of definition K of X is a regular extension

of the prime field. However, this looks very unlikely to me. For example, it

shouldn’t take witchcraft to find a projective simple algebraic variety defined

over C, without finite automorphisms, such that in addition H1(X,GX) = 0,

and which can therefore be defined (by the above) over a number field, but

cannot be defined over Q itself (which can be seen by showing that there is an

automorphism s of the field of complex numbers such that X is not isomorphic

to Xs). If you find such an example, then it would of course be interesting

to take a closer look at the topological structure of X and Xs, in case X and

Xs might happen to have different topological invariants. [This then assumes

that s 6= complex conjugation.]

I forgot to tell you in my last letter that Dieudonné only has his own personal

copy of the definitive version of Chap. 0 and 1 of the Elements (he is currently

writing Chap. II). He has however sent you the only section you have not been

able to read, namely the sorite on formal schemes. I admit that we have the

impression that this is the heaviest section, and its presentation does not yet

seem very refined; your comments will be particularly welcome. As for the

sequel, you will read it (if you have the courage) in Paris.

I also forgot to reply to Borel about his “initial contact”. It would be easiest

if you were to tell him that there can be no question of my coming to Princeton

next year, since, having already visited the USA recently on an Exchange Visa,

I am not allowed to set foot on their precious soil until two years have passed.

Anyway, I must say that if I were going to the USA at all, I would be more

tempted by Harvard, which I find more pleasant.

After various interruptions, I come back to this letter. About the project

for a counterexample to Weil’s question, let me add that using formal moduli

theory and the existence theory from Formal Geometry (i.e. things that

have been written up), the following is easy to prove: let S be an irreducible

algebraic scheme over an algebraically closed k, and X a proper simple S-

scheme; assume that for every s ∈ S, H1(Xs,GXs/κ(s)) = 0 (N.B. in any case,

the set of s having this property forms an open subset of S); then all the Xt

(where t runs over the k-points of S) are isomorphic to each other. Conclusion:

to find a counterexample to Weil’s question, it is enough to find a projective

and smooth algebraic scheme over k such that H1(X,GX/k) = 0, and which is

not isomorphic to all its conjugates. In other words, there is then no need to

worry about the existence of automorphisms of X.
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There was a slip in my last letter: when I assert that NT/S(X/T ) is simple

over S if X is simple over T , I forgot to specify that T should be affine over S,

otherwise the proof is obviously wrong, and it is even easy to give counter-

examples. As it happens, I have just received a letter from Lang, who is worried

that I may publish something on Greenberg before Greenberg himself does.

He can calm down; it is intended for Chapter 5, which will probably not come

out before the end of 1960 at the very best. Lang claims that in the case of

a local Artinian ring A with perfect residue field k, Greenberg knows how to

“completely characterize” the schemes over k which come from simple schemes

over A, and talks vaguely about successive bundles with affine fibers. . . In

fact, knowing Lang, J.-P. Serre : “In fact, knowing Lang. . . ”. Grothendieck

was right: neither Greenberg nor anybody else has been able to give such a

characterization. I mentioned this question in my talk at the Stockholm ICM,

[Se62b]. I very much doubt that there really is such a “characterization”,

which I think must involve additional rather subtle structures (higher order

connections for equal characteristic, in particular). In any case, this is the

question I have not yet cleared up, and which seems to me to be the really

crucial point if the Greenberg functor is actually to be useful — which I still

hope. In any case, I would be interested to know if Greenberg knows something,

and if so, what. (The fibration business is obvious in any case).

It may be that the Greenberg functor (modulo clarification of the question

above) enables us to resolve by purely formal explicit constructions the question

I asked Tate, namely: if X is an abelian variety over an algebraically closed

field k of characteristic p 6= 0, is it true that its formal moduli variety M

(in the category of simple proper schemes with marked section) is regular

and that the corresponding simple proper formal scheme V/M is abelian (i.e.

equipped with a group scheme structure for which the marked section is the

identity)? In fact, this is an existence question: over the ring B of formal series

in n2 variables (n = dimX) over the p-ring A with residue field k, one needs

to find an abelian scheme V/B such that, reducing B modulo the maximal

ideal pA in A and the square of the maximal ideal of B (so that what remains

is the ring k + V , where V is a vector space of dimension n2 over k whose

square is zero in the ring in question), the element of H1(X,GX/k)⊗ V which

expresses the class of the reduced scheme of V (cf. my Bourbaki lecture) defines

an isomorphism from V ′ to H1(X,GX/k). If this can be proved via explicit

constructions (using hyperalgebras) it would probably be possible to prove at

the same time that there exists an abelian scheme dual to an abelian scheme

(without the polarisability condition) which should itself be abelian.
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I have also just received your letter containing your result on eigenvalues.

J.-P. Serre : This is a reference to a letter to Weil, published in 1960 in Ann.

Math., cf. [Se60a]. It looks very good, of course, but I will probably not

meditate much on it for the moment! Regards, A. Grothendieck
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November 13, 1959 Jean-Pierre Serre

Dear Grothendieck,

Thank you for your letter, but you are laboring under an illusion if you think

it is easy to give an example of a variety “without moduli” which cannot be

defined over Q. The varieties one constructs are usually members of “families”,

and of course these families are always (at least in all the cases I know) defined

over Q. How can one define one variety by itself? I really don’t know, and

rather tend to think that Weil’s conjecture is true.J.-P. Serre : “Is true . . . ”.

In fact, it is false, cf. note 31.1. (I do not think, however, that Weil ever made

a “conjecture” out of it). Be that as it may, I will look at it a little more to

see if I can construct an example, but I don’t have much hope.

We are advancing through the Multiplodocus. I have given two talks

on Proj(S) and projective morphisms. As you have not yet sent this chapter

to the printer, it may be worthwhile sending you criticisms of some detailsJ.-P.

Serre : Once again, most of these corrections were incorporated into the EGA’s

by Grothendieck:
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1) In everything concerning morphisms, one is somewhat bothered by Noethe-

rian conditions which seem to be unnecessary. I have checked that some of

them really are unnecessary: for others, I am morally certain of it but would

have been obliged to reconstruct tiresome proofs. Here are the main examples:

(a) p. II-97, th 3: the Noetherian condition is not needed for (v) and

(vi). Indeed, in general, let C be a category of morphisms satisfying the

following three axioms: (I) Every identity morphism is ∈ C, (II) If X −→ Y

is a closed immersion and if Y −→ Z is ∈ C, then X −→ Z is ∈ C, (III)

If X −→ Y is ∈ C and Y ′ −→ Y is arbitrary, then X ×Y Y ′ −→ Y ′ is ∈ C.
Then C satisfies your properties (v) and (vi); in other words (I am copying

(v)): if X −→ Y −→ Z is ∈ C and Y −→ Z is separated then X −→ Y is ∈ C
(proof: factor X −→ X ×Z Y −→ Y ). The same holds for (vi). It is trivial

that projective morphisms satisfy (I), (II) and (III) (although (II) is not stated

in the Multiplodocus, it obviously follows from the definition!).

The situation for quasi-projective morphisms is even better; they satisfy

axiom (II′): If X −→ Y is an embedding, and Y −→ Z is ∈ C,then X −→ Z

is ∈ C. The argument given above then shows they satisfy (v′): If X −→ Y −→
Z is ∈ C, then X −→ Y is ∈ C. In other words, in your prop. 25, p. II-100,

you can remove all the conditions on g in (v) and your condition on Yred in

(vi).

One might actually wonder whether it might not be worthwhile to have a

short text on morphism classes (in general category theory, for example) in

which it would be shown that certain properties imply others. For example, if

the category is stable under composition, then the weakest axiom on products

(i.e. my axiom (III)) implies the strongest one (the one on f ×S f ′). It is

irritating to keep having to redo these arguments.

(b) p.II-98, th.4, I think (but would have to check) that the Noetherian

condition is unnecessary. As this theorem is more or less analogous to the

“extension of specializations” theorem, and the latter does not use any Noethe-

rian conditions, this would be rather natural, and at the same time it is rather

important. There are two parts to the proof of th. 4:

To start with, one may assume that Y is affine; this is not serious. Then

assume that X = P(E) for E finitely generated, and reduce the problem to

proving that f(X) is closed; this is done by invoking property 21 (ii) in which

the Noetherian hypothesis is used: I think (but have not checked in detail)



114 CORRESPONDENCE

that it could be removed, provided of course that S is assumed to be generated

by a finite number of elements of degree 1.

The second step consists of proving that f(X) is closed. But f(X) is the

set of points where Ey/myEy 6= 0; as E is finitely generated, Nakayama shows

that this means Ey 6= 0, and if a is the annihilator of E , this means that the

ideal py corresponding to y contains a: we thus get a closed set (the reference

to FAC is thus unnecessary).

2) p.II-90, p.II-104 d). You start with a surjective homomorphism

q∗(E) −→ L from which you want to deduce a morphism r : X −→ P.

You deduce from this an algebra morphism S(ϕ) : mess −→
∑
Ln, but it

seems to me you do not exploit it enough: indeed, it is clear that Proj(
∑
Ln)

can be identified with X, and as Proj(mess) = P, you get the required

morphism r (upon noting that the algebra homomorphism is surjective). I

cannot understand why you don’t do it this way.

3) p.III-83 : in the proof of Cor.7, you say that R(X) does not contain

any element which is algebraic over R(Y ), but in fact, it is perfectly clear

that R(X) = R(Y ).

I have not plunged into holomorphic function theory yet. I would like to

simplify your proof, but I am stuck. Could you tell me if you can prove (or

counterexample) the following:

Let A be a Noetherian ring, S = A[T0, . . . , Tn], and let M be a graded

finitely generated S-module. For every i, consider H(T i,M), in the sense given

in Chap.III,§2 (I have not specified the degree of the cohomology, which does

not matter); when i varies, the H(T i,M) form an inductive system, which

becomes “constant” after a certain rank; let i(M) be this rank. My question is

the following: given an ideal a in A, are the i(M/akM) bounded? If so, there

is an essentially trivial proof of the theorem of holomorphic functions (in the

case of a projective morphism). Have you looked at it from this point of view?

Math. Reviews have given Weil the task of reviewingJ.-P. Serre : Weil’s

“review” can be found in Math. Reviews , vol. 21, no4155. Kähler’s 380

page memoir on “Geometrica aritmetica”, i.e. Kähler’s version of schemes.

Apparently there is not much in it, apart from the following, which I did not

know:
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Let V be a non-singular projective variety, defined over a number field K;

let Ω(V ) be the K-vector space of differential forms of the first kind on V .

There is then a canonical finitely generated A-submodule ΩA in Ω(V ) such that

ΩA⊗AK = Ω(V )! Its definition is as follows: a form ω ∈ Ω(V ) lies in ΩA if for

every discrete valuation ring U containing A with fraction field K(V ), ω can be

written in the form
∑
xidyi with xi, yi ∈ U . This is trivially canonical. What

is not obvious is that ΩA⊗AK is equal to Ω(V ): in fact Kähler does not prove

this in the general case, but I have checked it using a rather amusing method

based on the existence of a normal projective scheme S over Spec(A) which

gives V over K; if ΩS/A denotes the differential forms of S relative to A, and

if Ω′′ denotes its bidual sheaf, it is easy to show that the Kähler differentials

contain the sections of ΩS/A (modulo torsion) and are contained in the sections

of Ω′′, which gives the result. If in addition the model is simple over Spec(A),

one finds that the Kähler differentials coincide with the sections of ΩS/A, and

thus the latter do not depend on the chosen model (this case is of course quite

rare).

In particular, given an elliptic curve over Q, it has a distinguished differential

of the first kind, defined up to sign; Kähler determines it in one or two cases,

and I can assure you that it is not easy.

Question: is it possible to define the Kähler differentials morphically as the

inductive limit of sections of ΩS/A when S runs over the ordered set of all the

projective Spec(A)-schemes which give V ?

There isn’t a lot of other news. I have told Borel about your refusal for next

year — I did not tell him your comments on Harvard (on the other hand, Tate

has seen them, since I gave him your letter).

Yours,

J-P. Serre
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November 15, 1959 Jean-Pierre Serre

Dear Grothendieck,

First of all, a surprising piece of news: Dwork phoned Tate the evening of

the day before yesterday to say he had proved the rationality of zeta functions

(in the most general case: arbitrary singularities). He did not say how he

did it (Karin J.-P. Serre : Karin = Karin Tate, née Artin. took the call,

not Tate), but I had already seen a manuscript of his in which he proves a

substantially weaker result: his method consists in assuming that the variety

is a hypersurface in affine space (every variety being birationally isomorphic

to such a hypersurface, so that an easy dévissage lets us to pass from this

to the general case); in this case he does a computation using “Gauss sums”

analogous to Weil’s computation for an equation
∑
aix

ni
i = b. Of course, Weil

himself had tried to extend his method, but with no success; Delsarte also

worked on it; it is thus rather surprising that Dwork was able to do it. Let us

wait for confirmation! J.-P. Serre : Shortly afterwards, Dwork came to IAS to

explain his proof. I found it so interesting that I volunteered to be the referee

for his text (published in 1960 in the Amer. J. Math), and I presented it in

the Bourbaki seminar 1959/60, no198.

On your side of things, how is rationality for arbitrary singularities shaping

up? Do you think you can get it from your stuff? Is there still a link with

homology, and what is it?

Coming back to your projective morphisms and the elimination of the

Noetherian conditions: I have now actually checked everything that I claimed in

my letter of the day before yesterday. In other words, if X −→ Y is a projective

morphism (Y an arbitrary prescheme), there is always a quasi-coherent OY -

algebra S generated by a finitely generated S1, and such that X = Proj(S).

Thus, it would be worthwhile to define projective morphisms this way!

The proof comes down to checking that part (ii) of Prop 21 in §3 (p.II-70)

holds assuming only that S is generated by a finite number of elements of

degree 1; this is indeed the case. More generally, under these conditions,

if M is a graded S-module and F is a quasi-coherent subsheaf of M̃ , then the

submodule N of M made of the guys that locally “belong” to F is such that

Ñ = F ; the proof is straightforward and very simple.

Once this is done, one feels much more comfortable. In part (ii) of th.3,

p.II-97, you can replace “Z Noetherian” by “Z quasi-compact”. In th.4,
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p.II-98, you can remove all the conditions on Y . By the way, I had not noticed

(Tate pointed it out to me yesterday) that the proof of the said th.4 is wrong; it

can of course immediately be corrected: the aim is to show that if Y = Spec(A),

and X = Proj(S), where S satisfies our usual conditions, then f(X) is closed.

Now, let an be the annihilator of the A-module Sn: as Sn · S1 = Sn+1, we

have an ⊂ an+1; let a be the union of the an. Then, saying that p contains a is

equivalent to saying that (Sn)p 6= 0 for all n, which means precisely that the

inverse image of p in X is non-empty, so that f(X) is closed (and corresponds

to a).

It follows in particular that projective morphisms are “proper” in a stronger

sense than the one of your §5: one may put any prescheme Y ′ as a direct

factor. As I have not gone into the theory of properness in detail, I do not

know which definition is right (this should be made clear by “Chow’s lemma”).

Nevertheless, th.2, p.II-116, for example, is surely true if A is any valuation

ring: I cannot believe that there is anything Noetherian behind it.

By the way, do you intend ever to give the criterion for properness via

valuations, J.-P. Serre : “. . . to give the criterion for properness via valua-

tions”: Despite his dislike of valuations (cf. the letter of October 19, 1961),

Grothendieck included this criterion in the EGA’s: Chap. II, th. 7.3.8. which

is actually very convenient: if f : X −→ Y is a morphism (separated and of

finite type, I suppose), X and Y are irreducible and reduced, and f(X) is

dense in X, so that the field of functions R(X) on X can be identified with

a subfield of R(Y ), then for f to be proper it is necessary and sufficient that

every valuation ring in R(Y ) which dominates a local ring of X also dominates

a local ring of Y . (Under Noetherian conditions, discrete valuation rings should

be enough).

Yours,

J-P. Serre
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August 9, 1960 Alexandre Grothendieck

My dear Serre,

I have spent the last month thinking (quite outside of my planned program).

about generalized Jacobians, local symbols, adeles, and duality theorems. I am

beginning to understand a little, largely heuristically for the moment, and have

remarked that my duality theory for coherent sheaves will be a wonderful guide

to constructing a general duality theory encompassing it together with duality

theory for algebraic groups or group schemes and duality of Weil cohomology.

This has led me to similarly expand my planned program, since such questions

now seem much more amenable to attack than previously. Once this theory has

been developed, I hope the Weil conjectures will come out all by themselves. I

will work on this next year at the same time as I put the finishing touches to

the theory of torsors and cotorsors.

Today I would like to make a few comments on your Rosenlicht-Lang

course. J.-P. Serre : “Your Rosenlicht-Lang course.”. This is a reference to

the first course I gave at the Collège de France (1956/1957), later published

under the title “Groupes Algébriques et Corps de Classes” (Hermann, Paris,

1959). In my opinion, there is not enough emphasis on principal homogeneous

spaces P under algebraic groups (over an arbitrary field k or even an arbitrary

base S). Giving such a P is equivalent to giving a group scheme P ∗, augmented

towards the group scheme Zk, where P is the inverse image P 1 of the section 1

in Zk. Homomorphisms of principal homogeneous spaces (with varying groups)

correspond to homomorphisms of augmented group (schemes) etc. Given

a k-scheme X, the functor which associates Homk(X,P ) to all P is left exact,

and hence (since the P are Artinian objects) it is prorepresentable, whence one

obtains a generalized Jacobian (an extension of Zk by an algebraic progroup)

which represents this functor. Starting from an extension K/k, i.e. setting X =

Spec(K), one similarly obtains a generalized Jacobian J∗K/k which represents

the functor P 7→ P (K), which is also (if K is finitely generated over k) the

projective limit of the generalized Jacobians J∗X/k for models X of K. Of

course, there is no reason for excluding the nilpotent elements of the local

rings (of algebraic groups, for example). The definition and existence of

Jacobians is therefore trivial; on the other hand, even the behavior of J∗X/k
for an extension k′ of the base k is a serious problem, even in the base-field

case. When k′ is finite over k (and consequently also when it is an algebraic

extension, X being assumed of finite type over k), it is easy to see that base

change works well, i.e. J∗X′/k′ can be identified with J∗X/k ⊗k k
′. When X is a
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non-complete algebraic curve, one probably needs Rosenlicht’s theory to get

the same result for an arbitrary base change; hopefully, it will be possible to

pass from there to the case where X is of finite type over k (and otherwise

arbitrary).

Consider an algebraic group G, and the augmented group extensions of J∗

by G. In the absence of a thorough analysis of groups over k not of finite type,

such as J∗, nobody seems to have noticed that it is extensions of such groups

(and not of J0) which give the right intrinsic functorial object for the application

of generalized Jacobians to class field theory. (From the “classical” point of

view, such an extension can be interpreted as being given by the following

data: an extension E0 of J0 by G, a principal homogeneous space E1 under E0,

and an isomorphism between E1 ×E0 J0 — the principal homogeneous space

associated to E1 via E0 −→ J0 — and J1). When J∗ = J∗X/k (where X is

any k-scheme, for instance X = Spec(K)), the canonical morphism X −→ J1

defines by pullback a canonical functor from the category of extensions of J∗

(by commutative algebraic groups) to the category of principal bundles over X

with varying commutative algebraic groups. It follows easily from the definition

of the generalized Jacobian that this functor is fully faithful; in particular,

if a principal bundle on X comes from an extension E of J, then the latter

is determined up to unique isomorphism. As to whether or not such an E

exists (for a given structural group, for example), uniqueness makes it possible

to apply descent theory and observe that the problem is in fact geometric

(i.e. one can pass to the algebraic closure of k). It follows for example that

if Ext1(J∗,Ga) −→ H1(X,OX) is surjective (which is the case if X is affine

but in many other cases as well), then for any unipotent algebraic group G

defined over k, the map Ext1(J∗, G) −→ H1(X,G) is bijective. If in addition

the map Ext1(J∗,Gm) −→ H1(X,Gm) is surjective (after passing to the

algebraic closure of k if necessary) then the map Ext1(J∗, G) −→ H1(X,G) is

bijective for any affine commutative algebraic group (prove this result first for

connected groups by dévissage, then deduce the finite case by embedding G in

a connected group, and finally get the general case). In particular, taking G

to be an ordinary finite group, one finds that the unramified coverings of X

are classified by separable isogenies of the Jacobian. In particular, this always

works when X = Spec(K), since H1(K,Ga) = H1(K,Gm) = 0, or for a

non-singular affine algebraic curve, and it partially works for a non-singular

complete algebraic curve (here, one does not get the whole of H1(C,Gm) by

extensions of the Jacobian, but for any G it is possible to specify exactly which
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part of H1(C,G) comes from extensions of the Jacobian). I have restricted

myself to affine groups, but the case where there is an abelian component can

be reduced to this case if X is non-singular, since, as you know, there always

exists an affine subgroup G′ of G such that a given element of H1(X,G) comes

from H1(X,G′).

Of course, Ext1(J∗, G) should be compared with the Ext1(J0, G) which are

usually studied, thanks to the cohomology exact sequence derived from 0 −→
J0 −→ J∗ −→ Z −→ 0:

0 // G(k) // Hom(J∗, G) // Hom(J0, G)

ss
Ext1(Z, G) // Ext1(J∗, G) // Ext1(J0, G)

ss
Ext2(Z, G),

taking into account the fact that

Exti(Z, G) = H i(k,G)

which in particular is trivial if i > 0 and k is algebraically closed (in this

case Ext1(J∗, G) = Ext1(J0, G)), so that in this case one may identify J∗

and J0. When J1 is trivial (i.e. has a rational point over k), the exact sequence

above breaks up into exact sequences

0 −→ Exti(Z, G) −→ Exti(J∗, G) −→ Exti(J0, G) −→ 0.

This is the case, in particular, if J0 is connected (for example if X is connected

— by which I mean relatively connected) and k finite, by Lang’s theorem. One

recovers Lang’s class field theory by defining a canonical isomorphism

Ext1(J∗, G) ∼= Hom(J∗(k), G)

for a finite field k and an ordinary finite group G in the following way: by

Yoneda, an element of the left-hand side gives a homomorphism

J∗(k) = H0(k, J∗) −→ H1(k,G);

however, since the Galois group of k over k is the completion of Z and acts

trivially on G, one has

H1(k,G) = Hom(Z, G(k)) = G,

giving the homomorphism above, which is easily checked to be an isomorphism.
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It seems to me that the most comprehensible way of presenting Rosenlicht’s

theory is to start with the Picard P ∗C/k of complete singular curves C (whose

structure is determined quite easily once the existence of Picard is established),

and consider the natural morphism C ′ −→ P 1
C/k which maps the non-singular

part C ′ of C to the Picard group, induced by the diagonal divisor in C ⊗k C ′.
Rosenlicht’s theorem can then be formulated as saying that for fixed C ′, taking

the projective system of Picard groups of Ci with more and more singularities

yields a generalized Jacobian for C ′. A bunch of short computations have

convinced me that the theorem in this form remains valid for curve schemes

over a Noetherian base S. J.-P. Serre : “the theorem in this form remains valid

for curve schemes”. See:

C. Contou-Carrère, Jacobiennes généralisées globales relatives, in The

Grothendieck Festschrift, vol.II, Birkhäuser-Boston 1990, 70–109. I have

worked out a precise statement which seems reasonable, and I even have an

idea of a proof. But I will of course have to start by proving the existence

of Picard, which I intend to do during the holidays, with the tools I have

available.

The proof I have in mind is linked to a direct definition of local symbols,

obtained as follows. For simplicity, let us work over a field k; let A be a regular

complete local ring of dimension 1 which is an algebra over k with residue

field k (hence isomorphic to k[[t]]). It is then natural to define a proalgebraic

group J∗A/k augmented towards Z, whose k-rational points are the elements

of K∗ where K is the fraction field of A. For any algebra k′ over k, J∗A/k(k′) is

thus a group augmented towards Z, which moreover can be identified (once

a uniformizing parameter t of A is chosen) with the multiplicative group of

series
∑

i cit
i, where the ci ∈ k′ vanish for small i, and the first non-zero ci is

invertible. Set k′ = K, and consider the formal series∑
i≥1

(1/T i)ti,

where T = t viewed as an element of the ring of coefficients K (and not as an

indeterminate.) This gives an element of J1(K); note that on changing the

uniformizing parameter, this element gets multiplied by an element of J0(A)(1),

where J0(A)(1) is the subgroup of J0(A) which is the kernel of the specialization

homomorphism J0(A) −→ J0(k). This gives a canonical element

ξA/k ∈ J1(K)/J0(A)(1).
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It can still be defined without the assumption that A is complete. This

element has the following universal property: for any principal homogeneous

space P 1 under a commutative algebraic group G over k, and any element of

P 1(K)/G(A)(1), there is a unique homomorphism from J∗A/k to P ∗A/k such that

the given element is the image of ξ under this homomorphism. It would be

good to find a direct proof of this result, which in any case follows by global

arguments from Rosenlicht’s theory.

Once this local result has been obtained, local class field theory can certainly

be developed, for equal characteristic, just as in the global case; in particular,

it is possible to define an abelian extension of K directly by inverse image,

using a separable isogeny of J∗A/k (where this extension is defined modulo an

abelian extension unramified over A, i.e. modulo nothing at all in the complete

“geometric” case). As you yourself remarked in your course this year, it is easily

checked that this map is the inverse of the one you defined (in the geometric

case) which goes in the other direction; this gives a simple proof of the existence

theorem in local class field theory, in equal characteristic. Naturally, as in the

global case, there is no reason to restrict to abelian extensions; one should

consider the classification of extensions of J∗A/k by arbitrary commutative

algebraic groups, and principal homogeneous bundles defined over K. I have

not gone into this in detail.

Unfortunately, my understanding of unequal characteristics has still not

improved, except that I have a clearer idea of what I do not understand. It

would be enormously helpful to have a direct description of the extension of

K corresponding to an isogeny of the Jacobian, as well as an interpretation

of the extensions of the Jacobian by algebraic groups which are not ordinary

finite groups.

On the other hand, I have some very precise ideas about generalized Jaco-

bians of local rings of any dimension, in equal characteristic. If A is such a

local ring, which is regular and is also a k-algebra (whose residue field can

have any transcendence degree over k), I can associate to it a proalgebraic

group JA/k which deserves to be called a generalized Jacobian. If A is a field,

this is the J∗K/k considered above, which represents the functor G(K). If A

is 1-dimensional, consider the functor G(K)/G(A) (where K is the fraction

field of A), i.e. the G-divisors of the local ring A; this is left exact in G and

corresponds to a proalgebraic group JA/k (with the notation above, this would
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be J0
A/k if the residue field were k). This is a relatively connected proalge-

braic group, which no longer has an abelian part, but a multiplicative part

isomorphic to Gm. For dimA ≥ 2, one obtains relatively connected unipotent

proalgebraic groups, which pro-represent local cohomology functors, namely

Hn−1(Spec(A)− origin, G); cohomology is taken to mean ordinary sheaf coho-

mology, and one would obtain a uniform definition (independent of dim(A))

of the functors defining the local Jacobians by using relative cohomology

of Spec(A) modulo the complement of the origin; this relative cohomology

vanishes for all G except in dimension n (an analogous local result proves the

duality for topological varieties!) so the relative Hn with values in G is a

left exact functor of G. . . If X is now a non-singular scheme over k, of finite

type over k for simplicity, consider the pro-group Ji, product of the JA/k for

places A of X of Krull dimension i; the Ji form a complex J∗:

0← J0 ← J1 ← J2 ← · · · ← Jn ← 0

whose 0-th homology group, for example, is the Jacobian J∗X/k. For any

algebraic group G, the cohomology of Hom(J∗, G) is canonically isomorphic

to H∗(X,OX(G)), where the cohomology of X is taken in the usual sheaf-

theoretic way. The Ji are actually projective relative to exact sequences of

algebraic groups defining locally trivial bundles (i.e. for which the sequence of

corresponding sheaves on X is exact). One may possibly find another, more

satisfying, theory (with Ji which are truly projective) by working with some

Weil cohomology.

There are some slightly more complicated results when X is not assumed to

be regular; the complex J is replaced by a double complex (whose Hom into G

is the first term of a spectral sequence which abuts at the sheaf-theoretic

cohomology on X with values in G); this double complex can be derived from

a certain simplicial ring, which deserves to be called the adelic simplicial ring

of X, which provides a flasque resolution of OX by sheaves of flat algebras.

I can provide the details on demand — it is probably not worthwhile to give

the rigorous definition here.

I am coming back to Paris at the beginning of September; will you be there?

Have you received chapter I of the hyperplodocus? J.-P. Serre : hyperplodocus

= multiplodocus = EGA.
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Yours,

A. Grothendieck
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September 20, 1961 Jean-Pierre Serre

Dear Grothendieck,

Auslander has just found J.-P. Serre : Cf. M. Auslander, On the purity of

the branch locus, Amer. J. Math. 84 (1962), 116–125. a “homological” proof

of Nagata’s purity theorem. Here is an outline of the idea of the proof:

Let A be regular and let B be a finite normal Galois extension of A, unram-

ified outside the origin. Assume that dimA ≥ 2; the aim is to prove that B is

free (which will imply that B is unramified).

[The general (“quasi-finite”, non-Galois) case can trivially be reduced to

this one without even having to pass to completions.]

Let G be the Galois group and n its order. Associate to s ∈ G and b ∈ B
the endomorphism x 7→ b · s(x) of B. In this way, B × · · · × B (n times)

maps to HomA(B,B); as these two modules are reflexive and the map is

a localized isomorphism in codimension 1, it is an isomorphism. It follows

that HomA(B,B) = Bn. From this point on, it is a problem about modules;

indeed, Auslander shows that:
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Theorem: Let A be regular and let M be a reflexive A-module which is free

outside of the origin and such that Hom(M,M) is isomorphic to Mn. Then M

is free.

This is trivial in dimension 2. In dimension 3, he gives a very ingenious proof,

which I am too lazy to reproduce here (but I have checked it); the dimension n ≥
4 case can be reduced fairly easily (yes indeed!) to the dimension n− 1 case.

(Note that the theorem above, applied to a rank 1 module, gives an alterna-

tive proof that A is factorial.) Yours,

J-P. Serre

P-S. I will be taking the boat for New York the day after tomorrow.
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October 1, 1961 Alexandre Grothendieck

My dear Serre,

Thank you for your letter. Auslander’s proof is indeed ingenious, but I do

not find it that exciting any more, since I can now prove the purity theorem

and various generalizations in a much more natural way.J.-P. Serre : For the

proof of the purity theorem, see SGA 2, exposé X, th. 3.4. In fact, I have

translated all the stuff on formal completions along a hyperplane section into

local algebra, and have obtained its exact analog with respect to the relation

between a local ring A and a quotient ring A/fA. (Actually, I have not yet

written up the main theorem in detail, but I have no doubt at all that it works.)

To tell the truth, it seems that the local theorems one obtains this way are

always stronger than the global theorems which were known before, in the

sense that the projective statements can be deduced from the local algebra

statements by standard arguments. Here are two products derived from the

general stuff:

A denotes a complete Noetherian local ring, f an element of its radical,

assumed for simplicity not to be a zero divisor, X = Spec(A), Y = V (f) =

Spec(A/fA), x is the closed point of X, X ′ = X − x, Y ′ = Y − y. Then

1) If X is of depth ≥ 2 at the closed points of X ′ (for instance if A is of

depth ≥ 3), then π1(Y ′) −→ π1(X ′) is surjective (“Bertini’s theorem” which

implies the “purity theorem” for a local regular ring starting from the fact

that it is known in dimension 2). If X is of depth ≥ 3 at the closed points

of X ′ (for instance if A is of depth ≥ 4), then every etale covering of Y ′ can be

extended to a covering of X ′ which is etale outside of a finite subset of X ′−Y ′;
thus under the additional assumption that the local rings of the x′ ∈ X ′ − Y ′
satisfy the purity theorem, π1(Y ′) −→ π1(X ′) is actually bijective.

N.B. I say that a local Noetherian ring B satisfies the purity theorem if,

on setting Z = Spec(B) and Z ′ = Z − z, where z is the closed point, the

restriction functor induces an equivalence of categories between the category

of etale coverings of Z and the category of etale coverings of Z ′. Thus, using

the second part of 1) and the purity theorem, one easily obtains: If B is a

complete intersection of dim ≥ 3, then B satisfies the purity theorem (B not

necessarily complete).

2) If depth A ≥ 4, i.e. depth A/fA ≥ 3, then Pic(X ′) −→ Pic(Y ′) is injective;

if depth A ≥ 5, i.e. depth A/fA ≥ 4, then any invertible Module over Y ′ can

be extended to a Module over X ′ which is invertible except at a finite subset



128 CORRESPONDENCE

of X ′ − Y ′; consequently, if in addition the local rings of x′ ∈ X ′ − Y ′ are

quasi-factorial, then Pic(X ′) −→ Pic(Y ′) is bijective.

N.B. A local ring B is said to be quasi-factorial if Pic(Z ′) = 0. Thus,

using the second part of 2) and the unique factorization theorem for regular

local rings, one easily obtains: If B is a complete intersection of dim ≥ 4 (B

not necessarily complete), then B is quasi-factorial. It follows that if B is a

complete intersection which is factorial in codimension ≤ 3 (for instance if B

is regular in codim ≤ 3), then B is a factorial ring: this is Samuel’s conjecture.
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These local results immediately yield global results of the following kind:

let X be a locally Noetherian prescheme and Y a closed subset of X, and

assume that X is a complete intersection at all points of Y . If Y is of codim ≥ 3

(resp. of codim ≥ 4), then the restriction functor from etale coverings of X

(resp. invertible Modules on X) to etale coverings (resp. invertible Modules) on

X − Y = U is an equivalence of categories, and in particular there are iso-

morphisms π1(U) ∼= π1(X) (resp. Pic(X) −→ Pic(U)). On this topic, let me

mention an analogous result one degree lower, which was just proved by a

student here, Hartshorne: J.-P. Serre : Cf. R. Hartshorne, Complete inter-

sections and connectedness, Amer. J. Math. 84 (1962), 497–508. if Y is of

codim ≥ 2, then π0(U) −→ π0(X) is bijective. (Even better, it is enough for

the local rings of X at the points of Y to be of depth ≥ 2. This proves that

if X satisfies your condition S2 and is connected, then it is in fact “connected

in codim 1”, i.e. two irreducible components of X can be joined by a chain of

components of which any two consecutive members meet in codimension 1. I

do not believe that this was known even for complete intersections in projective

space. The proof of Hartshorne’s theorem is actually practically trivial using

the relative cohomology sorites and writing the desired relation in the stronger

form that H0(X,OX) −→ H0(Y,OY ) is bijective.)

One obvious moral of this story is that it is necessary to make a systematic

study of the topology of local schemes, and more precisely of differences of local

schemes, especially in the “geometric” case, i.e. with respect to a complete local

ring whose residue field is algebraically closed. For example, I am convinced

that if A is a complete local ring with algebraically closed residue field, such

that the components of X = Spec(A) are all of dim ≥ 2, then π1(X ′) is

topologically finitely generated. J.-P. Serre : “π1(X ′) is topologically finitely

generated”. This statement was given as a conjecture in SGA 2, exposé XIII,

p. 181. I do not know whether any progress has been made on it since. In fact,

Lefschetz ideas and descent techniques can be used to reduce the problem to the

case where X is normal and 2-dimensional, i.e. to the case studied by Mumford

in the analytic complex case, where desingularization gives some fairly precise

ideas as to the probable shape of the fundamental group. Actually, in the case

of equal characteristic, I have just proved a conjecture from Mumford’s paper

J.-P. Serre : “Mumford’s paper”. Reference:

D. Mumford, Topology of normal singularities and a criterion for simplicity,

Publ. Math. IHES 9 (1960), 1–22. which says that Pic(X ′) should be the

set of rational points of a group scheme of finite type over the residue field.
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Indeed, if X1 is a regular projective scheme over X and E1 denotes the fiber

over the closed point x, equipped with an induced structure defined by a

sufficiently small ideal over X1, i.e. E1 is sufficiently large, then it suffices

to take the Picard scheme of E1/k and to divide it by the discrete subgroup

induced by the invertible Modules over X1 defined by irreducible components

of E1 (considered as prime divisors on X1) — a group whose rank is exactly

the Néron-Severi rank of E, so what is left is an extension of a finite group

(the H2(X ′,Z) of Mumford’s article) by the connected Picard of E1/k. It is

quite amusing to note that this algebraic structure actually depends on the

way in which the residue field k of A has been lifted; however, the very fact of

its existence gives finiteness information on the “Kummerian” part of π1(X ′).

It is not out of the question that a suitably adapted version of the technique of

specialization of the fundamental group might make it possible to prove that

π1(X ′) is topologically finitely generated.

These results suggest, in topology as well, the existence of “local” versions of

the Lefschetz theorem: Let X be a complex analytic space, Y an analytic subset

of X, and assume that X is locally a complete intersection at the points of Y ,

and codim Y ≥ r. Show that for the homology, homotopy, cohomology groups

etc. of X and U = X − Y . there are isomorphisms in dimension ≥ r − 2 and

epimorphisms resp. monomorphisms (according to the situation) in the critical

dimension r− 1.J.-P. Serre : See lectures XII (Grothendieck) and XIV (Michèle

Raynaud) from SGA 2. This can be expressed, at least for cohomology, by the

vanishing of relative local cohomology groups defined by the local embedding

of Y into X, and analogous invariants can probably be defined for homotopy.

Likewise, the global Lefschetz theorems for projective varieties X should remain

true when replacing the non-singularity condition on X by much weaker local

conditions, which are satisfied for instance whenever X is locally a complete

intersection.

The mathematical atmosphere at Harvard is absolutely terrific, a real breath

of fresh air compared with Paris which is gloomier every year. There is a

good number of intelligent students here, who are beginning to be familiar

with the language of schemes, and ask for nothing more than to work on

interesting problems, of which there is obviously no lack. I am even selling

(the little I know of) Weil sheaves and Weil cohomology with the greatest of

ease, including to Tate, who has just seriously started work on the “global”

analytic structures which have been bothering him for two years, and which

appear to be easiest to express in terms of “Weil ringed spaces”. On this topic,
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it seems more and more obvious to me that the concept of a formal scheme

will need to be completely reworked, together with that of an analytic space

(or a “rigid-analytic” space as Tate and I call his “global” structures), in order

to unite them into a single framework, which has yet to be found. Meanwhile,

Mike Artin is getting excited about global degeneracy phenomena for elliptic

curves (linked to the work of Kodaira, Néron and Ogg), which he wants to

understand in terms of Weil cohomology. In principle, he will start a seminar

with Hironaka on the subject in the near future. In addition, there is a course

by Zariski on desingularization of surfaces (which I am following) and a kind of

course by Kodaira, who will prove the grand theorem on the characterization

of ruled surfaces by P12 = 0, starting next week. What with my course, and

my seminar, it will almost be too much!

I am pushing ahead with the writing of chapter IV, which I hope to finish

by the end of the year. (Chap.III, on the other hand, has temporarily stopped

progress, since I intend to add a load of local stuff of the kind I have sketched in

this letter). We are going to put a paragraph into Chap 0IV in which the right

theorems for the “good rings” will finally appear all together; they were turning

into a little nightmare for me. I have the impression that in the end it will be

easy [. . . ]. One of the recent “incentives” for writing up something for Chap 0IV

came from Tate, who needed the finiteness theorem for the normalization, for

a quotient ring of a ring of restricted formal series over a complete discrete

valuation ring or its fraction field. He has worked out the following theorem on

this subject, which generalizes Nagata’s theorem (for a complete local ring) with

a very elegant direct proof: let A be Noetherian and normal, x ∈ A; assume

that A is separated and complete for the x-adic topology, and that A/xA is a

domain whose normalization in any finite extension of its fraction field is finite

over A/xA. Then A has the same property.

Would you like to come and pay a visit over here in the autumn?

Cordially,

A Grothendieck
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October 19, 1961 Alexandre Grothendieck

Dear Serre,

Thank you for your letter. The theory of which I gave you several subproducts

asserts that under certain conditions, the study of coherent sheaves over certain

(projective, or local) schemes is equivalent to the study of coherent sheaves on

the formal completions along “hyperplane sections” ... It is probably useless to

give you the results in detail; I have already repeated them n times here, there

and everywhere, and they will be carefully developed in my Paris seminar.

What I am saying will be enough to convince you that you have played a mean

trick on poor Schwarzenberger by giving him non-existent results. J.-P. Serre : I

had given Schwarzenberger some false statements, claiming that Grothendieck

had proved them. Maybe you could let him know this yourself, which would

save me the trouble of writing to him. My program is a little upset at the

moment, as I just spent a few days in California (where besides Berkeley, there

is also my sister. . . ).

As promised, I have indeed worked out the theory of good rings, local or

otherwise, J.-P. Serre : The theory of “good rings” can be found in EGA

0.13 and EGA IV.7. and will write them up shortly, as much for my course

as for Chap. IV. I suggest that Bourbaki use them as inspiration for a nice

Chapter on Commutative Algebra! I have read Bourbaki’s general comments

on Commutative Algebra in the last Tribu. Here are my personal impressions,

suggested in part by my recent reflections on Chap. III and IV of the Elements.

As far as I can remember, Chaps. I to V of Commutative Algebra are satisfac-

tory and well-adapted to users. On the other hand, Chaps. VI and VII appear

to me to be unworthy of Bourbaki. I have proposed several times in vain that

VI (Valuations) should be purely and simply thrown out; although since then I

have come to understand why resolution of singularities is useful, I nevertheless

remain of the opinion that VI should be removed, or at the very least moved

from its current position to the end of the book, among the things “not to

be read”. Its current central position will mislead the reader as to the right

ideas and methods. Even concerning the resolution of singularities, which to

be perfectly honest is not yet finished even in dimension 2 (because of unequal

characteristics), I really have the impression that the whole question will have

to be taken up again with an approach entirely different from Zariski’s, and

it would be premature to predict whether and in what form valuations will

be needed; I suspect not at all. In these circumstances, the importance given

to valuations in the current plan, for the sole reason that this concept was
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central to Krull and Zariski (who have also done better things) is anti-Bourbaki.

Equally, Chap VII is essentially copied from Krull, and appears to me to be

currently far removed both from geometric intuition (which is a good guide)

and from actual practice — starting with the very definition of a Krull ring

via the sempiternal valuation families, and the misleading symmetry between

Dedekind and factorial rings, which have been proudly thrust beneath the

Krullish hat. I confess I did not manage to understand this Chapter throughout

its N successive drafts, except for an ancient draft on factorial rings dating

from before it started getting so complicated. It is a fact that one can only

understand properly if a geometric language is available, including non-affine

schemes. A striking example of this fact is your proof of the fact that regu-

lar =⇒ factorial (which I have written up in detail); J.-P. Serre : “. . . Your

proof of the fact that regular =⇒ factorial”. In fact, this is a reference to a

proof of Auslander and Buchsbaum’s (P.N.A.S. 45 (1959), 733–734), which I

had explained to Grothendieck in a slightly different form, cf. Bourbaki A.C.

VII.68 and A.C. X.53. such proofs ought to be written up by Bourbaki. On

the same subject, such properties as “factorialness” also exist for non-normal,

and even non-reduced, local rings, as you know (“complete intersections”, for

example). Even if Bourbaki does not launch into such things, it would be nice

if he at least had the right “yoga”. At the moment, Chap. VII reeks of dusty

academics. As for your paper on modules over normal rings, I am critical of the

fact that the “lattice” point of view sometimes obscures the more important

“modules” point of view. It seems to me that in fact most of the properties you

give follow from Serre’s S2 propertyJ.-P. Serre : “Serre’s S2 property”. This

is the property: “depth(Ap) ≥ inf(2,dimAp) for every prime ideal p of A”, cf

EGA IV.5.7.

One day, Grothendieck asked me “What does it mean for a ring to be

normal?” I pointed out to him the criterion “R1 +S2”, cf. EGA IV, th. 5.8.6. I

had made up this criterion (which for integral rings is due to Krull) in order to

understand Seidenberg’s theorem which says that a general hyperplane section

of a normal variety is normal. (which holds for reflexive modules over a ring

satisfying S2 and many others besides). I encounter this property frequently;

it is equivalent to the following, whose geometric significance is clear: For any

open subset U in X = Spec(A), and for every closed subset Y in U , consider

the homomorphism Γ(U,F )
u−→ Γ(U − Y, F ), where F is the sheaf associated

to the module M ; assume for simplicity that supp F = X. Then u is injective

if Y is of codimension ≥ 1, and bijective if Y is of codimension ≥ 2. (Here it

is enough to have U run over a basis of open sets.)
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Nothing actually compels us to put normal rings before the two Chapters on

dimension, depth, Cohen-Macaulay and regular. Those chapters are essentially

complete, and do not depend in any way on the current Chapter VII (and even

less on Chapter VI!). Note that the most useful characterization of normal

rings, apart from their definition as Noetherian + integrally closed, is your

characterization by S2 + R1, which relies on the two Chapters that I just

mentioned. In fact, I did not really understand what normal rings or Dedekind

rings were, until after understanding dimension and depth of modules. Why

should Bourbaki suddenly require himself to follow the historical route?

As for Cohen’s theorems, they come out quite nicely without using Witt

vectors. Here, again, I was uncomfortable to see such conceptually simple

theorems emerging from extremely off-putting formulas on Witt vectors. All

this will be covered in detail in Chapter 0IV of the “Elements”, which will

also absorb the idea (from my IHES seminar) of an algebra which is “formally

simple” over another. Naturally, nothing stops us after that from defining Witt

vectors over a ring, and noticing with pleasure that when the latter is a perfect

field, one gets a “Cohen ring” whose residue field is the field in question. But

it still strikes me as more reasonable to put it in with the algebraic groups, or

the Greenberg stuff — that is to say, where it is certain to be useful.

I have no definite opinion on non-ramification and differential calculus. Here,

again, one understands everything so much better in geometric terms!

On the subject of the Bourbaki Seminars 61-62: my second talk “on

Grothendieck” will in fact be on modules, i.e. on Mumford. In addition, there

are some extremely interesting results by Hochschild-Kostant-Mostow, which

state that for any homogeneous affine space under an affine algebraic group

over C, the “algebraic” de Rham cohomology is isomorphic to the classical de

Rham cohomology — and various other related results. Kostant goes as far as

conjecturing that the same result holds for any non-singular affine variety over

C, and it actually is the case for a non-singular affine curve! J.-P. Serre : The

result conjectured by Kostant was proved a little later by Grothendieck: On

the de Rham cohomology of algebraic varieties, Publ. Math. IHES 29 (1966),

95–103 (extract from a letter to M.F. Atiyah dated 10/14/1963). — I do not

think it is very smart to let Néron talk about himself: we will be no better off

afterwards than we were before. Couldn’t we try to find someone courageous

enough to try to understand what Néron is doing? Maybe we could have a

series of talks by Cartier or someone else, on Néron-Kodaira-Ogg-Tate, since



CORRESPONDENCE 135

all this is linked, and should be understood together. Here is another potential

lecture topic: Tate’s rigid-analytic spaces (unless you are including them in

your course at the Collège). Maybe this will incite some Normalien(6) (I am

thinking of Houzel) to work on the subject; there would be good reasons for

rewriting at least a large part of the theory of complex analytic spaces (Stein

spaces, Grauert’s finiteness theorem, Remmert-Grauert GAGA, maybe also

Rothstein-type theorems. . . ) in this context. I am convinced that sooner or

later it will be necessary to subsume ordinary analytic spaces, rigid analytic

spaces, formal schemes and maybe even schemes themselves into a single kind

of structure, for which all these usual theorems will hold: there is certainly

some fun to be had doing it.

I have also read the draft on the fundamental group and covering spaces.

J.-P. Serre : “Fundamental group and covering spaces”. This Chapter of

Bourbaki’s General Topology has now been a work in progress for more than

forty years. It is rather nicely written. The weak point seems to me to be

§5 on covering spaces, where Cartan has to deal separately with coverings of

simplicial spaces, groupoids and topological spaces, despite which the sorites

do not apply to covering of schemes, for example. There is a way to unify all

this — I even believe it can be done rather simply — using the concept of a

Weil space (which comes up whenever one has any kind of “localization”). In

this context, the fundamental group via coverings can be defined as a progroup,

which is a group if and only if a universal covering exists. This holds for all the

spaces considered by Cartan, but not in the case of general preschemes. Some

time, I will have to write up the basic sorites on Weil spaces in the style of

“results”; Bourbaki will probably back away in horror, but they could be useful

to less inhibited people! Another suggestion for Bourbaki: try to include a

generalized van Kampen theorem like SGA IX 5.1 and its corollaries, notably

5.8, which among other things yields the fact that the fundamental group of a

symmetric power of X is the abelianization of the fundamental group of X.

Of course, such descent results are basically sorites (although they are not yet

well known) and can probably be easily expressed in the general context of

Weil spaces which I recommend. Even if Bourbaki does not adopt this context,

he could make an effort to obtain a van Kampen theorem (which is in fact

a descent theorem) which is as general as possible in the usual topological

setting. Another criticism: the emphasis on connected coverings is excessive; it

(6)Normalien = student at the Ecole Normale Supérieure in Paris.
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must be said explicitly that arbitrary coverings correspond to sets on which

the fundamental group acts.

Tate has just given me the manuscript of Nagata’s book on local rings. It

is vintage Nagata — however, I spotted a few interesting results, notably the

following, which answers a question Zariski asked me recently and which I

did not know how to answer: Let A be a local ring, and p a prime ideal of A

such that dimA/p + dimAp = dimA, and the completion of A/p does not

have nilpotent elements (clearly harmless conditions). Then multAp ≤ mult A.

Applying this to a quotient ring B/xB, where B is regular, it follows that

for any prime ideal q of B, one has q(n) ⊂ mn, where m is the maximal ideal

of B. (N.B. On localizing, it also follows that q ⊂ r implies that q(n) ⊂ r(n)).

This was Zariski’s question. — I thought some more about local intersections,

but with no success: I understand that I don’t understand, which is at least

something.

I have found a relatively quick proof of the theorem of resolution of sin-

gularities for a locally Noetherian 2-dimensional prescheme whose local rings

are (let us say) formally normal with residue field of characteristic 0. J.-P.

Serre : This is a reference to Jung’s method for resolving the singularities of

a surface. I had explained it to Grothendieck some years previously; he had

forgotten it and then rediscovered it. The problem reduces to the case of a

formally normal local 2-dimensional ring A; it is easy to see that A may be

assumed to be complete (since a desingularization can always be obtained by

blowing up an ideal which is primary for the maximal ideal); hence by Cohen,

A is finite over a regular 2-dimensional B. Let X = Spec(A), Y = Spec(B);

the claim is that A can be resolved by constructing a series of Yi (projective

over Y ) one at a time by successive blow-ups of Y , and taking Xi to be the

normalization of X×Y Yi: in this procedure, Yi+1 is constructed as the blow-up

of Yi at all points over which there is a non-regular point of Xi. Here is the

proof: let C be the ramification curve of X over Y , let Ci be its inverse image

in Yi, and use the fact (which is certainly easy, since Y is regular) that over the

bad points of Yi, Ci will either be non-singular or have ordinary double points

for i large. The problem is then reduced to an exercise in Galois theory: let a

regular 2-dimensional B be finite and normal over A, such that the ramification

set is contained in the curve xy = 0 (x, y being a regular sytem of parameters);

then the base Y can be desingularized by a finite number of blow-ups of Y .

Obviously, this is where one makes essential use of the characteristic 0 condition,

which allows one to say (using Abhyankar via purity) that X is a quotient of a
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covering B(x1/m, y1/n), so that the situation is under control. But “for all one

knows”, it is not clear that the same straightforward procedure wouldn’t work

for a characteristic-p residue field, by making ingenious use of local class field

theory. Do you have any ideas? I am now convinced that resolution of singu-

larities is a good thing, for instance for (Mumford-style) topological studies of

a singularity, and apparently also for (Néron- or Kodaira-type) minimal model

questions for curves over the field of a valuation ring.

Yours,

A. Grothendieck

P.S. Could I have a copy of the new draft of Hensel?
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October 22, 1961 Alexandre Grothendieck

My dear Cartan, J.-P. Serre : This letter from Grothendieck to Cartan is

included here (with Cartan’s permission) because it is the subject of the two

following letters.

I am writing this letter to submit to you some general thoughts concerning

the mathematical situation in Paris. I know you have been worrying for

years about the “ageing” of Bourbaki, and have been preaching the virtues

of rejuvenation. This issue did not worry me at the time, but I have come

to the realization that something is indeed going wrong, not so much with

Bourbaki, who in my opinion needs nothing more than an infusion of fresh

blood, but through a dearth of talented young researchers united around some

subject or other, and the absence of the stimulating atmosphere produced by

strong shared scientific interests. There used to be such an atmosphere in

Nancy in the old days; I also found it in Paris up until around 1959 (the year

that Lang and Tate were there), and I find it to a very strong degree here at

Harvard, whereas Paris seems to be getting more gloomy every year as far as

the scientific atmosphere goes. Everyone incubates his own ideas in his own

corner, and the seminars are turning into some kind of social ritual, after which

everyone runs home as fast as possible. . . Ṫhe young researchers maintain a

respectful distance from their hierarchical seniors, and moreover, since they

often force themselves to follow about ten lecture courses and seminars a week,

they do not necessarily have a lot of time left for thinking, and they therefore

do not always have much to say, or even to ask.

Obviously, foreign mathematicians have started to notice this state of affairs,

even if they are too tactful to say anything without being asked. I have talked

to several of them about it, such as Zariski, Tate and Chern, because it was

starting to embarrass me. There are obviously a number of factors, of which

the most important is perhaps a question of “genes”: no striking talent has

appeared on the horizon in Paris for years. There is also Paris’s geographical

sprawl, which is less suited to scientific life and discussion than the university

towns in the USA or small towns such as Nancy and Strasbourg, where everyone

lives very near the University. But I think that neither of these explains the

near sterility of recent years. On the other hand, I am starting to realize that

the long military service has a disastrous influence. Surely it is not necessary

for me to explain to you that an enormous effort and a continual tension are

necessary for the beginner to be able to absorb a mass of very diverse technical
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ideas in order to get to the point where he may be able to do something useful,

maybe even original. For our part, we use up enough chalk and saliva until

the moment finally arrives when the fellow can pull his own weight. Alas,

that is precisely the moment when he is called upon to serve his country, as

they say, and the beautiful enthusiasm and subtle cerebral reflexes acquired by

years of studying and meditation will be put aside for two years, provided the

General consents not to keep him at the shooting range for even longer. With

such a prospect in view, I quite understand that a budding Mathematician is

inhibited before he starts, and his natural enthusiasm is blunted. Whether he

manages to hastily cobble a thesis together before his military service, or plays

it smart and enrolls early, he will be useless for several years as an “insider”

or at least as a “Parisian” i.e. someone who contributes to the fertility of

the scientific atmosphere of Paris. Cartier has not been a Parisian for ages,

and even his lectures at the Collège have not changed this, being nothing

but the fugitive appearances of a fellow on leave carrying out a social duty

of no importance. Just when Gabriel is beginning to be interesting, off he

goes to the army, J.-P. Serre : The French term is “bonvoust”, ENS slang for

military service. and when he comes back he will go to Strasbourg, which I

feel as a serious loss for Paris. Apparently we cannot even invite him to IHES

immediately, as this would not go down well with the University, which does

not have enough professors! The situation is absolutely grotesque. With some

difficulty, I have managed to scrape together four or five ex-Normaliens for

my algebraic geometry seminar at IHES, who are just beginning to have some

vague glimmers of understanding, and one or two of whom even appeared to

be about to start on some useful and even urgent work, namely Verdier and

Giraud. Nothing doing: unless I am mistaken, both of them, and certainly

Verdier, are enrolling early, and in the end someone else (myself if necessary)

may end up doing the work for them. If I do not actually have the impression

of preaching in the wilderness in Paris, I am at least certain of building on

sand.

This situation does not exist in the USA, where at least the State is intelligent

enough not to waste its “brain-power” on military exercises. There is no

difficulty for a talented student to get exempted from the draft on the grounds

of being “indispensable to the defense of the nation”, a euphemism which has

probably never fooled a single American civil servant. This is exactly the point

I wanted to make in this letter. We cannot require the soldiers or the politicians

or the princes that govern us to be aware of the psychological subtleties of
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scientific research, or to realize that it affects the scientific level of a country

when the development of their young researchers is halted or put on hold for

two critical years of their training. If they need to be informed of this fact,

the only people who can do so with a certain degree of authority are yourself

and our colleagues. (I personally am in any case completely out of it.) I am

thinking particularly of you, because of your position at the Ecole Normale,

which does after all potentially carry with it non-standard duties towards your

present and former students. What is more, as you are not suspected of any

political “partiality”, you are in a better position to do something about it

than Schwartz would be, for example: something like writing a series of articles

in “Le Monde”, or a personal letter to the President, or whatever. In any case,

if you do not speak out, I really wonder who will.

It is strange that the French, with their reputation of rebelliousness, are in

fact less politically-minded than the Americans. I am also thinking of the fact

that it is impossible for a foreigner to teach in a State institution in France,

despite a dearth of teachers which is becoming more acute every year. To the

best of my knowledge, although all academics personally agree that this law is

out-dated and absurd, none of them have ever raised the question with public

opinion and public authority, and the timid changes to this law (foreigners in

the CNRS, temporary associate professorships for foreigners) were not even

initiated by academics “who should know”.

I will stop my cogitations here, since I am not very comfortable preaching

action and virtue when I am not in a position to act myself. All told, the only

practical question arising from this for me is a strictly private one, namely

whether I will stay in France or emigrate as other mathematicians have done

before me, even if the actual working conditions here do not compare.

Thank you for your letter, and the trouble you have taken to correct my

text. How is “expression latine” going?

Regards,

A. Grothendieck
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October 26 1961 Jean-Pierre Serre

Dear Grothendieck,

Your letters raise a number of questions, to which I will try to give short

answers.

(1) I was very interested by your letter to Cartan, and I more or less agree

with what you say. However, you may have some illusions about what Paris

used to be; it was never a “hothouse” like Göttingen in the old days, then

Princeton, and now probably also Harvard, where people continually exchange

ideas and see each other every day. In Paris, everyone works at home, and is

more independent of the “latest fashion”, and most collaborations happen by

telephone... I suppose that geography has a lot to do with this, but I am not

sure that it is such a bad state of affairs.

What is certainly more serious is the rather low level of the current generation

(“orphans”, etc.) and I agree with you that the military service is largely

responsible. But it is almost certain we will get nowhere with this as long

as the war in Algeria continues: an exemption for scientists would be a truly

shocking inequality when lives are at stake. The only reasonable action at the

moment — we always come back to this — is campaigning against the war in

Algeria itself (and secondarily, against a military government). It is impossible

to “stay out of politics”.

(2) I have tried to clear things up with Schwarzenberger.

(3) Bourbaki’s Commutative Algebra. You are very harsh on Valuations! I

persist nonetheless in keeping them, for several reasons, of which the first is

practical: n people have sweated over them, there is nothing wrong with the

result, and it should not be thrown out without very serious reasons (which

you do not have). Of course, if it were proved to be of no use and misleading,

this first argument would not hold water. But that is not the case. Even an

unrepentant Noetherian needs discrete valuations and their extensions; in fact,

Tate, Dwork and all the p-adic people will tell you that one cannot restrict

oneself to the discrete case and the rank 1 case is indispensable; Noetherian

methods then become a burden, and one understands much better if one

considers the general case and not only the rank 1 case. Finally, the general

theorem of extension of specializations is a very beautiful and aesthetically

satisfying result, which has the advantage (for example) of making it clear that

a valuation has an extension to an overfield. It is not worth making a mountain

out of it, of course, which is why I energetically fought Weil’s original plan to

make it the central theorem of Commutative Algebra, but on the other hand it

must be kept. [As for the fact that Zariski and Krull have done better things
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than valuations, that is certainly true, but I do not see how it is relevant to

the discussion.]

Nor do I really agree with your objections to the Krull chapter. You must

remember that on several occasions we wrote drafts following each of the

two points of view: Noetherian and integrally closed, or general Krull. The

comparison between them, and (whatever you may say) the factorial case

where discrete valuations fit in perfectly well, ended up deciding in favor of the

general (Krull) case, and I do not regret it. There is only one thing I really do

not like in the draft, namely the definition using discrete valuation systems,

when it would be so simple to say that an integral domain A is Krull if Ap

is a discrete valuation ring for any prime ideal p of height 1, A =
⋂
Ap, and

every x ∈ A, x 6= 0, is only contained in a finite number of p. I tried to get the

congress to change its mind about this, but it would have then been necessary

to rewrite the chapter, which was contrary to decisions that had already been

made. In any case, it is only a minor detail.

[It is clear that these two chapters are basically an insertion into Bourbaki

of “Papa’s Commutative Algebra”, as de Gaulle would say. But I am much less

“fundamentalist” than you on such questions (I have no pretension to know

“the essence” of things) and this does not shock me at all.]

In any case, these chapters are as good as printed J.-P. Serre : “These chapters

are as good as printed. . . ”. Chapter 7 was only printed four years later. and

discussing them is now a moot question. I am much more interested by the

next part of Commutative Algebra, and there the outlook is rather gloomy:

Bourbaki showed little enthusiasm for embarking on further chapters, and I

myself had great difficulty in making coherent propositions, largely because I

do not know what should fit into the algebraic context or the scheme-theoretic

one. We agreed on hardly anything except a single chapter, which does look

very nice:J.-P. Serre : The publication of the end of Bourbaki’s Commutative

Algebra took a long time: Chapters 8 and 9 came out in 1983 and chapter

10 in 1998. It is a pity; these chapters are well written, and would have been

very useful if they had appeared twenty or thirty years earlier. Fortunately,

provisional drafts circulated, and Grothendieck himself occasionally used them

for the EGA’s. the one on dimension that Tate is supposed to write. After

that comes chaos: what will we say about homology theory? The risk, as I

clearly saw when writing exterior algebra, is of being immediately dragged into

abelian categories and ending up doing nothing at all; the other risk, of course,

is of being tempted to wait for the geometric language. I would very much like

to know how you view these things. Idem for Cohen.
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(4) Factoriality of regular local rings. You have probably noticed that the

proof of Kaplansky’s I sold you proves the following: if A is local and integrally

closed and a is a reflexive module of rank 1 over A which is of finite homological

dimension, then a is free. In fact, it seems that a student of Kaplansky’s has

managed to replace the condition “a of rank 1” by “Hom(a, a) is free”, but I

guarantee nothing.

(5) Desingularization of surfaces in characteristic 0. It is funny you should

have rediscovered “Jung’s” old method, which I myself actually explained to you

(having more or less rediscovered it myself) quite some time ago. Abhyankar,

who includes it at the end of one of his papers on coverings (I think it is in

“Ramification of algebraic functions” in the American Journal) explains why it

does not work in characteristic p, essentially because the ramification is not

“tame”. Perhaps it is somehow possible to make it so? J.-P. Serre : “possible to

make it so”. No: it is not that easy to get rid of wild ramification.

On this topic, note that when you blow up a non-singular point P on

a surface S, then a point P (1) of the line obtained in this way, and so on

indefinitely, you get an increasing sequence of local rings whose union O is

a valuation ring; this is another way of saying that eventually this sequence

of blow-ups ends up “separating” distinct branches. This is one of the most

interesting examples of a non-banal valuation ring.

Still on the subject of Jung’s method: you may have noticed that when a cover

contained inB(x1/m, y1/n) appears, it is not generally possible to simultaneously

desingularize the base and the cover. J.-P. Serre : “Simultaneously desingularize

the base and the cover . . . ”. According to Shephard-Todd, this is only possible

if the local inertia groups are generated by pseudo-reflections. (The first

example of this, if I remember rightly, involves a cyclic covering of degree 5.)

In particular, one needs general blow-ups on the base, and not just blow-ups

with the maximal ideal; have you ever carefully investigated what the right

thing to do is? It is classical, of course, but I have always been too lazy to look

into it.

(6) What you say about rational cohomology of affine varieties does not

surprise me much. It is basically a return to the viewpoint of our fathers, who

were so fond of their integrals of the n-th kind, n = 1, 2, 3. One would have to

check in Atiyah-Hodge, for example, but I think what is already known should

be enough to prove Kostant’s conjecture for affine varieties of the form X −H,

where X is projective and non-singular, and H is not too badly behaved.

(On the subject of affine varieties, can you decompose (filter or whatever)

their cohomology in such a way as to highlight the parts that come from

the completed variety? I cannot express what I mean J.-P. Serre : “I cannot
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express what I mean . . . ”. The language of motives was missing., but you will

understand what I want if I put it in the following form: what conjectures

should be made on the zeta function of a non-singular affine variety? I find it

scandalous that it should be necessary to embed it (if that is even possible!)

in a horrible non-singular projective variety, which is not at all unique; on the

other hand, I have not been able to formulate anything. Have you any kind

of homology to hand, besides than the usual one (for example, “with closed

support” or God knows what) J.-P. Serre : “with closed support or God knows

what”: with proper support. which could be of some use?)

I would have liked to talk to you about Dwork J.-P. Serre : “About Dwork

and Fredholm theory”: see [Se62a]. and Fredholm theory J.-P. Serre : “Your

paper on the subject” (cf. footnote): [Gr56b]. (7) and complete valuation

fields, but I will keep it for another time. Yours, J-P. Serre

(7)I am aware of your paper on the subject where you say that “everything works”. But you

had a fair number of illusions on valuation fields at the time, and you tended to use bounds

of the type
∣∣ 1
n!
x
∣∣ ≤ 1

n!
|x|; horror of horrors! It has to be looked into more closely.
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October 31, 1961 Alexandre Grothendieck

My dear Serre,

I do not agree with you that nothing should be done against the military

service — for gifted scientists in particular — before the end of the Algerian

war. To start with, as far as injustice is concerned “when lives are at stake”,

if it is an injustice to exempt certain people from national service, then the

difference between doing so during or after a time of guerilla war is one of degree

and not of essence. I do not think that the danger of losing one’s life is such,

at this point, that it has become more important than the loss of two years of

training (for any young person, scientist or otherwise), leaving aside entirely the

moral question (to which most people are apparently indifferent). The minimal

probability of being killed does not seem to me to make a big difference. On

the other hand, if certain Academics brought the effects of military service

(and, by implication, of the Algerian war) on the scientific level of the country

to the attention of the public and the authorities, and required some reforms, it

would not exclude the possibility of classical scholars, technicians, firemen and

lamp-lighters grouping together to require analogous reforms for themselves, on

analogous and to my mind equally valid grounds. Any action in this direction,

even if very limited, will contribute to making people realize the consequences

of the militarization of the country, and might create a precedent for analogous

and vaster actions. But in this case it is obvious that it is only by limiting the

problem and the proposals to a restricted situation which from many points

of view is “ideal” that there is any chance for rapid success, especially if it is

done by Academics without political affiliations, such as Cartan. Note that

the arguments being put forward are just as valid in wartime, if not more so,

I mean from the government’s point of view, as it is quite obvious that the

Americans, for example, are even more careful to keep from removing their

scientists and their high-class technicians from their laboratories in wartime

than in peacetime. — And finally, I have a very down to earth point of view

on the military service, namely catch as catch can, and the more people there

are who, by whatever means, be it conscientious objection, desertion, fraud

or even knowing the right people, manage to extricate themselves from this

idiocy, the better.

Your argument in favor of valuations is pretty funny: “ n people have

sweated over it, there is nothing wrong with it, and it should not be thrown out

without very serious reasons”. The principle generally respected by Bourbaki

is rather that there should be very good reasons for including a huge mess,

especially in a central position; the fact that n people have sweated over it is
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certainly not a good reason, since these n people had no idea of the role of the

mess in commutative algebra, but had simply received an order to figure out,

Bourbakically, some stuff that they unfortunately did not bother to examine

critically as part of a whole. Your comments on rank zero valuations constitute

an argument for removing it from where it is now. Indeed, the right point of

view for this is not commutative algebra at all, but absolute values of fields

(archimedean or not). The p-adic analysts do not care any more than the

algebraic geometers (or even Zariski himself, I have the impression, as he seems

disenchanted with his former loves, who still cause Our Master to swoon) for

endless scales and arpeggios on compositions of valuations, baroque ordered

groups, full subgroups of the above and whatever. These scales deserve at

most to adorn Bourbaki’s exercise section, as long as no one uses them. A

solution which seems reasonable to me (but it is probably too late for the first

edition) would be as follows: a) Two or three pages on general valuation rings

with the integers: definition, extension, application to the characterization of

the normal closure, and that’s it. b) Discrete valuation rings anywhere after

that, for example (if the Krullians remain inexorable) as paragraph 1 of Krull

rings. [On the subject of Krull, it is funny to notice that the term “Krull ring”

probably does not appear in any paper by a disciple, and will probably not

appear in the future either, so certain are the disciples that Bourbaki is one

thing and Mathematics is another . . . ]. Of course, we can have them whenever

we want. c) Absolute values (which were defined ages ago by Bourbaki) to be

put in a final chapter if need be or kept in reserve for “the part of our Treatise

devoted to the Theory of Analytic Spaces, also known as p-adic Analysis.”

This last solution is perhaps the most reasonable.

I have the impression that after the dimension, there are a couple of beautiful

Chapters which could be written in a fairly down-to-earth way, hardly using

any more Homological Algebra than Chapter 1 on flatness, and to which

geometric language would not add very much, namely 1o) Depth, Cohen-

Macaulay, Serre’s Sk property, regular rings and the Rk property (rings which

are regular in codimension ≤ k). 2o) Good rings. It is true that depth and Sk
are notions which mean something for an abelian sheaf on any Noetherian

space, and can be better understood from this point of view via relative

cohomology. (This will be written up in Elements III.9.) Nevertheless, the

definition of depth via M -sequences is perfectly adequate, and is indeed the

one best adapted to the immediate use we have in mind for it: there will be

a short report on this in Elements IV with the properties that are specific

to the situation A → B, M , N , where A → B is a local homomorphism
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of Noetherian local rings, M (N) a finitely generated B (A)-module, and

one wants to determine the properties of M ⊗A N , for M flat over A. We

have dimBM ⊗A N = dimAN + dimB⊗kM ⊗ k; the same formulas hold for

depth, codepth, cohomological dimension, and there are variants for Rk and Sk.

These results will arrive just in time for 2o, which explores the conditions

under which the fibers of Spec Â over SpecA are regular or even “geometrically”

regular schemes. It is true that one is often tempted to go off into schemes

or abelian categories, but I do not believe it is morally impossible to prevent

this. — There might also be a 3o) on Cohen algebras, a kind of variation

on Hensel, disjoint from the preceding ones, except that the Cohen structure

theorem may be needed in 2o), leading to the exchange of 2o and 3o. Anyway,

3o could be put in anywhere earlier, for instance it would have been very

good as a paragraph in “filtrations and topologies”: too late! Apart from

ramification theory, about which I have no ideas in any case, it does not seem

to me necessary to add anything else to Commutative Algebra, since all the rest

(including intersections, as long as everything necessary about multiplicities of

local rings is there) will be better expressed in geometric terms. By the way,

the result on a flat extension of a Noetherian local ring corresponding to a

given residue extension (which can often advantageously replace the method of

extension of a valuation) fits very well in the context of Cohen Algebras.

I have not really understood your question on (Weil, I presume) cohomology

of affine varieties, and moreover I know nothing about a potential natural

filtration, even on a complete variety. We will talk about it again when you

come to Harvard. Regards,

A. Grothendieck
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September 6, 1962 Alexandre Grothendieck

My dear Serre,

I have been thinking again about your stuff on Lie algebras associated

to groups of Galois type. It seems quite obvious to me that to be usable,

everything will have to be expressed in terms of representations of pro-Lie

algebras (otherwise you are screwed for expressing even the most obvious

functorialities). More precisely, if ` is a fixed prime number, associate to any

group G of Galois type a “pro-Lie algebra” over Q`, g = (gi), where the gi are

finite dimensional and the map gj → gi is surjective. Then g = L`(G) depends

functorially on G; in particular, if G acts continuously on a module of finite

type over Z` (or even over Q`), then g acts on M ⊗Z` Q` (resp. on M) via

one of the gi. This g only depends on the germ of G. It would be nice to

have a dictionary allowing us to pass from g to G (or rather to the germ of G);

maybe there are some tangible results to be proved when the group G is a

germ of `-groups, i.e. when there is an open subgroup U which is an `-group.

Thus:

Question 1. J.-P. Serre : Questions 1 and 2: no, cf. the letters of September

7, 1962 and September 12, 1962. Let H ⊂ G: is it true that h = L`(H)→ g =

L`(G) is injective?

(N.B. The corresponding statement for an epimorphism is trivially true.)

It would be enough to be able to solve the following question: let u : H → Γ

be a continuous homomorphism, with Γ of Galois type (it is enough to take Γ =

GL(n,Z`)); can u then be extended to a homomorphism of an open subgroup

of G?

Question 2. Let H1, H2 be closed in G, with Lie algebras h1, h2 ⊂ g. If h1 ⊂
h2, is it true that germ(H1) ⊂ germ(H2) (thus h1 = h2 implies germ(H1) =

germ(H2))?

It would probably be enough to prove this when H1 = Z`. If the answer

were positive, then a homomorphism of germs of Galois `-groups would be

determined by the homomorphism on the Lie algebras (but it is probably

impossible to start with an arbitrary Lie algebra homomorphism and define a

homomorphism of germs of groups from it).

Another remark: There is a canonical map log : G → g [N.B. Write also g

for
←−
lim gi], as can be deduced from the case where G is an analytic group, by

forming 1
n · log xn for large n (log is defined in a neighborhood of e in any case,

and y is such that log(zm) = m · log z). (If the answer to question 2 is positive,
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then log x = log y if and only if there is an n such that xn = yn). Thus, in all

the situations you consider with abelian varieties, for instance, which can be

assumed to be defined over rings A of finite type over Z, to any closed element

of Spec(A), there corresponds via Frobenius, taking the log, a well defined

element of g (not just a line in g) and hence a well-defined endomorphism

(modulo G actions) of V` = T ⊗Z` Q`, not just a 1-dimensional subalgebra

of gl(V`). If one desires a construction invariant under base change A → B,

then logF can be replaced by 1
n logF , where n = [k(x) : Fp]. Moreover,

knowing these operations on V completely determines the representation

of g on V by . . . ’s density theorem, J.-P. Serre : “. . . ’s density theorem. . . ”.

Grothendieck had forgotten the name Chebotarev. at least if A is a subring of

a number field. On the same subject, you must know the answer to:

Question 3. J.-P. Serre : The answer to Question 3 is “almost yes”, cf. the

letter of September 7, 1962. Let S be a normal scheme of finite type over Z,

and let S′ be a Galois etale covering with group G: does the density theorem

hold, i.e. for any g ∈ G, do there exist closed points of S whose Frobenius lies

in the class of g?

Yours,

A. Grothendieck
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September 7, 1962 Jean-Pierre Serre

Dear Grothendieck,

Here is a remark on your letter received this morning, even though I cannot

answer all your questions:

Question 1 (does G ⊂ H imply that g ⊂ h?) resists my efforts. A positive

answer would in particular imply the following: if C is a subgroup of G

isomorphic to Z` (i.e. “a 1-parameter group”) there is a linear representation

of G (over Q`) which is injective on C. This does not look easy to me, but on

the other hand I cannot find a counterexample.

The answer to Question 2 is negative. In fact, this would imply that if g = 0,

then the germ of G is trivial, i.e. G is finite. However this is obviously false

(take G to be an infinite product of copies of Z/`Z).

The answer to question 3 (density) is positive, provided it is stated more

carefully:

Let T → S be a Galois etale covering, with Galois group G, where S is of

finite type over Z. Assume T is irreducible and of dimension ≥ 1. Then for

any s ∈ G, there are infinitely many closed points of T whose Frobenius is

equal to s (and something can be said about their density, but in general one

doesn’t care).

This is proved using Artin’s L-functions (Lang had done it in the “geometric”

case, but in my course in 1961, I did it in the general case).

I will try to look at Question 1 some more, even though I do not really have

much hope: it would imply a characterization of analytic groups (the one I

told you about in your office) which would really be too nice. I am hindered,

when dealing with this kind of question, by my unfamiliarity with p-groups,

particularly free p-groups; I may try to get Lazard interested in this kind of

question one of these days: it is right up his street.J.-P. Serre : “I may try to

get Lazard interested in this kind of question”. I succeeded. The result was

his grand memoir:

M. Lazard, Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965),

389–603. Yours,

J-P. Serre
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Tuesday evening, September 1962 Jean-Pierre Serre

Dear Grothendieck,

The answer to your first question is also negative. There is even a

commutative counterexample — I should have spotted it earlier! Here it is:

Take G to be the product, for n = 1, 2, . . ., of cyclic groups Gn = Z/pnZ

(where p is the prime number which interests me). It is easy to prove (by

dualizing, for example), that Hom(G,Zp) is trivial; it follows that any morphism

from G into an analytic group over Qp has finite image; in other words, the

Lie algebra g of G is trivial. But on the other hand G contains elements which

are not of finite order; such an element topologically generates a subgroup H

of G which is isomorphic to Zp, i.e. a 1-parameter subgroup. The Lie algebra h

of H is 1-dimensional, and this gives the desired counterexample.

Yours,

J-P. Serre
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September 12, 1962 Alexandre Grothendieck

My dear Serre,

I have the impression that the answer to my Question 1 is also false. Take

for example

G =
∏
n

Z/`nZ.

Then for any linear representation of G the image of the group is finite (since

by a remark of Serre-Borel, for any linear group over a field of characteristic 0

there is an upper bound for the order of elements of finite order. On the other

hand, an analytic group over a field of characteristic 0, all of whose elements

have m-th power equal to e where m is fixed, has trivial Lie algebra and is

hence discrete. . . ). Thus, the Lie algebra g of G is trivial, but G contains

elements which are not of finite order, so subgroups which are isomorphic to Z`
(1-parameter subgroups).

[. . . ]

Yours,

A. Grothendieck
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Friday morning, September 1962 Jean-Pierre Serre

Dear Grothendieck,

I had a look at Mike Artin’s argument which proves that any non-singular

variety can be covered with “good” open sets ; it is less trivial than you seemed

to believe, and I would like to point out some of the difficulties (which to be

frank are specific to characteristic p): Start with a normal V n embedded in a

projective space PN . Take a hypersurface W in V n containing the singular

points S (of dimension ≤ n − 2), and a point x ∈ V −W . The aim is to

prove that there is a “good” neighborhood of x contained in V −W . The

method you pointed out to me consists in slicing V (and therefore also V −W )

with a suitable family of linear varieties LN−n+1 in such a way that the

intersections L ∩ V are curves. Let Lx be the L that contains x. There are (at

least) two precautions to take:

(i) V ∩ Lx must be a non-singular curve

(ii) Lx must cut W transversally (indeed, one wants W to define an etale

multisection of the base).

Note that x is given: no choice there; thus one cannot invoke (for (i))

the fact that the intersection V ∩ Lt is non-singular for generic t; one must

restrict oneself to those L passing through x, i.e. show that V ∩ L is non-

singular if L is generic among the linear varieties of codimension n+ 1 passing

through x. However, I am not at all sure that this is true; it could be possible

(in characteristic p) that all the linear varieties tangent to V pass through x

(without V being linear), in which case we are screwed. Fortunately, it can be

shown that this hitch does not arise if one considers a projective embedding

of V which is the double of another oneJ.-P. Serre : It is indeed by means of

hypersurfaces of degree > 1 that M. Artin proves that his “good open sets”

exist, cf. SGA 4 III, exposé XI, th. 2.1, p. 65. (this is a harmless condition);

the proof is not difficult: one needs to check that the generic quadric passing

through x is not tangent to V , which can be done by a dimension count. I

feel no desire to give you the details. (Another method: show that if all linear

varieties tangent to V pass through x, then the projective degree of V is ≡ 1

mod p; but one can always find an embedding whose projective degree is ≡ 0

mod p.)

Analogous precautions have to be taken for condition (ii): starting with a

stupid embedding of V , it is possible that every hyperplane passing through x

is tangent to W ; once again one can get around the problem by taking the

double of a projective embedding.
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I think these are the only hitches, i.e. the construction you explained to me

works after this with no other problems.

Yours,

J-P. Serre

P.S. To convince you, here is a numerical example: in the space P 3 parametrized

by homogeneous coordinates (x, y, z, t), let V be the surface of equation

tpz + xp+1 + yp+1 = 0.

V is normal, and its unique singular point is (0, 0, 1, 0). Set x = (0, 0, 0, 1),

which is a simple point. The generic plane Lx passing through x can be written

as uX + vY + wZ = 0, and you can easily check that it is tangent to V at

the point (x, y, z, t) such that xp = u, yp = v, tp = w, z = whatever. The

intersection Lx ∩ V therefore always has a singular point.

P.S.2. In case you receive this before Monday: Hyman Bass will be speaking

on Monday morning at 10:00 at IHP on his construction of an algebraic K1,

inspired by J.H.C. Whitehead’s “simple homotopy types”.
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Friday evening, September 1962 Jean-Pierre Serre

Dear Grothendieck,

Here is another little paper, inspired by Mike Artin’s method. J.-P. Serre : See

the exercises in Galois Cohomology, LN 5, Chap. I, §2.6. It deals with the

relation between the cohomology of “discrete” groups and of “Galois” groups

(i.e. “ordinary” cohomology and “Grothendian” cohomology). Let G be a

group and let u : G→ K be a homomorphism from G to a totally disconnected

compact group K. Assume that the image of G is dense in K (the most

interesting case is when K is the separated completion of G with respect to the

finite-index subgroups topology). It is clear that a topological K-module M is

also a G-module, whence Hq(K,M)→ Hq(G,M) for any q ≥ 0. Consider the

following properties:

Cn — For any finite K-module M , Hq(K,M) → Hq(G,M) is bijective

for i ≤ n and injective for i ≤ n+ 1.

C ′n — Hq(K,M)→ Hq(G,M) is surjective for i ≤ n.

En — For any x ∈ Hq(G,M), 1 ≤ q ≤ n, there is a finite M ′ containing M

such that x becomes 0 in Hq(G,M ′).

Fn — For any x ∈ Hq(G,M), 1 ≤ q ≤ n, there is a subgroup G0 of G, the

inverse image of an open subgroup of K, such that x induces 0 in Hq(G0,M).

These four properties are equivalent. Cn ⇒ C ′n is trivial, C ′n ⇒ En, and C ′n ⇒
Fn are easy, En ⇒ Cn follows by a standard little dévissage, and Fn ⇒ En
thanks to “induced” modules.

Note that C0, . . . , F0 always hold and if K = Ĝ, then so do C1, . . . , F1

(C ′1 — or else F1 — is the easiest to prove). I will say a group is good if it

satisfies all the Cn (for K = Ĝ, of course). I should immediately say that I

do not know any “bad” groups, but they surely exist (I have a candidate in

mind, but I have not yet looked into it in detail). I am no less certain that

all interesting discrete groups are “good”; J.-P. Serre : “I am no less certain

that all interesting discrete groups are good” . I was entirely wrong. I quickly

realized that most arithmetic groups of rank > 1 (such as SLn(Z), n > 2) are

not “good” in the sense given here. in particular, this should be true for unit

groups of arithmetic groups — and probably also for fundamental groups of

algebraic varieties.

Here is another property of good groups: let E/N = G be an extension, and

assume that N is finitely generated. If G is good (it is enough that just C2

hold), then any subgroup of finite index of N contains a subgroup N ∩ E0,
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where E0 is of finite index in E; in other words, there is an exact sequence:

0→ N̂ → Ê → Ĝ→ 0.

(This is easy to prove when N is abelian, and then standard methods of group

extensions reduce the general problem to this case.)

This yields the following:

Let E/N = G be an extension with N and G good, N finitely generated,

and such that Hq(N,M) is finite for any finite E-module M . Then E is good.

This is trivial upon mapping the spectral sequence of Ê/N̂ = Ĝ to that

of E/N = G.

Corollary: a successive extension of finitely generated free groups is a “good”

group.

Indeed, a finitely generated free group is “good”.

This corollary is the point I wanted to get to; the π1’s of Mike Artin’s

good neighborhoods are precisely such groups, and their πi’s are trivial; their

cohomology can therefore be identified with Hq(G,M), and property Fn shows

that this cohomology is killed by passage to a suitable finite etale extension,

whence etc.

I also checked that the fundamental group of an algebraic curve is good —

as it should be!

Yours,

J-P. Serre
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April 10, 1963 Alexandre Grothendieck

My dear Serre,

Could you shed some light on a question on local fields (which crops up in

some integrality questions in cohomology). The motivation is the fundamental

Ogg-Shafarevich formula, which it is a good idea to write in terms of etale

cohomology as follows. Let C be a connected complete simple algebraic curve

over k, where k is algebraically closed, and let F be a “constructible” torsion

sheaf on C, i.e. having finite fibers and “locally constant” (in the etale topology)

over some suitable open set U = C − S (i.e. defined over U by an etale group

scheme over U , or alternatively by a finite etale group G over K = k(C) which

is unramified at the points of U). Let us say that F is tamely ramified at

points of S if this holds for G. Then Ogg’s formula, for F tamely ramified and

of course relatively prime to the characteristic, can be written

(0) E(C,F ) = nE(C)−
∑
x∈C

εx(F )

where E(C,F ) is the Euler-Poincaré characteristic of C with coefficients in F :

(1) E(C,F ) =
∑

0≤i≤2

(−1)ilengthH i(C,F ),

E(C) is the usual Euler-Poincaré characteristic of C, namely 2− 2g, and the

local correction terms are given by

εx(F ) = n− nx,

where nx is the length of Fx and n is the value of nx for general x, i.e. the

length of G considered as a Galois module. As you are not supposed to know

what the right-hand side of (1) means, I shall make it explicit by noting that

if S is any finite subset of C then

(2) E(C,F ) = E(C − S, F ) +
∑
x∈S

nx

(which holds without the tamely ramified condition), and if S is non-empty

then H2(C − S, F ) = 0, so that

(3) E(C − S, F ) = lengthH0(C − S, F )− lengthH1(C − S, F )

and finally, if S contains the singular set of F , one can interpret the H i of the

right-hand side of (3) in terms of the Galois cohomology of the fundamental

group of C − S. Bearing (2) in mind, (0) is equivalent to the same formula

for C − S (where of course

E(C − S) = 2− 2g − s),
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and taking S large enough to contain all singular points of F , Ogg’s formula

becomes simply

(4) E(C − S, F ) = nE(C − S).

The proof is easy using the structure of the “tame” fundamental group of C−S,

which is more or less free on r generators, with E(C − S) = 1− r.

Unfortunately, by a counterexample due to Tate and quoted by Ogg, this

formula is false if F is no longer assumed to be tamely ramified. The natural

question is whether or not (0) remains valid provided a suitable definition of

the εx(F ) is given, it being understood that they must be “local” invariants

in an obvious sense. There is a very tempting analogy with Weil’s formula

involving the Artin representations; one would like a formula containing both

Weil’s theorem and Ogg’s formula in the not necessarily tame case. I have

tried this, using K-formalism as a guide, but have not found a reasonable

formulation and am not even convinced that one exists. In any case, the

existence of local invariants εx which would make Ogg’s formula valid is a

perfectly precise mathematical question, and if the answer is negative we

will have to find a counterexample (two sheaves with the same numerical

invariants n and E(C) and the same kinds of local singularities, but different

Euler-Poincaré characteristics). Otherwise, the search for local invariants with

reasonable variance behavior leads naturally to the following problem, for which

you may have some feeling:J.-P. Serre : I had no difficulty defining the invariants

Grothendieck was asking for (cf. the following letter of April 10, 1963) and he

immediately deduced from them the Euler-Poincaré formula that he wanted

(which is known as the “Ogg-Shafarevich-Grothendieck” formula). For more

details, see Raynaud’s presentation to the Bourbaki seminar 1964-1965, no286,

and SGA 5, exposé X (by I. Bucur), and J. Milne Étale Cohomology, Princeton

Univ. Press, 1980, p. 190, th. 2.12.

For any “geometric local” field K (i.e. fraction field of a complete dis-

crete valuation ring with algebraically closed residue field), and any finite

etale group F defined over K (i.e. a finite Galois module over the Galois

group G(Ks/K)) whose order is relatively prime to the residue characteristic,

define an integer ε(F ) satisfying the following conditions:

a) ε(F ) + lengthH0(K,F ) is additive in F (for exact sequences).

b) ε(F ) + lengthH0(K,F ) = lengthF if F is tamely ramified.
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c) Let L be a finite separable extension of K, G a finite etale group defined

over L (of order relatively prime to the residue characteristic), then

ε(
∏
L/K

G) = ε(G) + θ(L/K)length(G),

where θ(L/K) is the degree of the discriminant of L/K.

Finally, if there is such an invariant one hopes it will satisfy the following

condition:

d) Let A be an algebraic connected group defined over K, and let ` be a

number which is relatively prime to the residue characteristic. Then ε(`A) is

independent(8) of `, where `A = Ker ` idA.

Note that it may be more practical to work with

λ(F ) = ε(F ) + lengthH0(K,F );

a) and b) are then simpler and c) and d) do not change. It is actually not

out of the question that there is no such invariant for finite groups, but that

there is one when working with the rank of cohomology groups with `-adic

coefficients (instead of lengths of finite groups).

Another question: working over the complex numbers, assume that an abelian

variety defined overK = k(C) is given, hence by Néron a group schemeG over C

which is simple over C. Following Kodaira, consider the group subscheme G0

made up of the connected components of the fibers of G, and the corresponding

analytic bundle G′0, considered as a quotient V/Γ, where V is the tangent

bundle along the zero section, and Γ is made up of the fundamental groups of

fibers of G′0. Then H1(C,G0) can be interpreted as the subgroup of points

of finite order in H1(C ′, G′0) (the classes of analytic principal homogeneous

G′0-bundles); on the other hand, by the exact cohomology sequence, H1(C,G0)

has a “connected component” isomorphic to

(∗) H1(C ′, V ′)/ImH1(C ′,Γ),

where ImH1(C ′,Γ) = H1(C ′,Γ)/ImH0(C ′, G′0).

Note also that by GAGA,

H i(C ′, V ′) = H i(C, V ), H0(C ′, G′
0
) = H0(C,G0).

Given this, is it true that ImH1(C ′,Γ) is a discrete subgroup of H1(C ′, V ′)?

Might the quotient by this subgroup be an algebraic group, or even an abelian

variety? In any case, using duality, one can define an alternating bilinear

(8)note in the margin (Serre) “No : λ instead of ε”
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form on H1(C ′,Γ) (coming from a polarization of A) which suggests it may

be possible to polarize (∗). If it is true that ImH1(C ′,Γ) is discrete, it would

follow that

r ≤ 2 dimH1(C, V )

where r is the “rank” of H1(C,G), given by Ogg’s formula, and dimH1(C, V )

is given, if dim(A) = 1, by Riemann-Roch as a function of the degree of V ,

which Kodaira expresses uniquely in terms of the “kinds” of reductions A has

at points of C. This inequality would be an equality if the quotient (∗) were

an abelian variety. But the experts must know if such an equality or inequality

is reasonable: it may be viewed as a relation:

r0 ≥ 2(g − 1) +
∑
p

εp − 2δ,

where


g = genus of C

εp = the Ogg invariant

δ =
∑

p δp as in Kodaira p.133 prop.4

linking r0 (the rank of the group A(K)), the genus of C and numerical invar-

iants depending only on the “types” of the reductions of A at the points of C; A

is of course assumed to be “non-constant”.

Are you coming to eat here next Tuesday?

Yours,

A. Grothendieck

Thank you for Shafarevich’s manuscript, which I have received and passed on

to Motchane. J.-P. Serre : “Shafarevich’s manuscript”. This is a reference to

a text by Shafarevich, published in Russian (with a French abstract which I

had written) in Publ. Math. IHES 18 (1964), 295–319 (English translation:

Transl. A.M.S., Series II, 59 (1966), 128–149).



CORRESPONDENCE 161

April, 1963 Jean-Pierre Serre

Dear Grothendieck,

As promised, here is a short summary on your ε and λ. Let G denote the

Galois group of a finite extension of the given local field, and let

G = G0 ⊃ G1 ⊃ · · ·

be the ramification groups of G; let me remind you that G1 is a p-group and

that G/G1 is of order relatively prime to p.

Consider a prime number ` and a finite G-module A which is an `-group.

Assume of course that ` 6= p.

Let gi denote the order of Gi and write g = g0 for that of G. Set

ε(A) = (d(A)− d(AG)) +
g1

g0
(d(A)− d(AG1)) +

g2

g0
(d(A)− d(AG2)) + · · ·

[d(A) denotes the length of A].

Then λ(A) = ε(A) + d(AG) = linear comb. of d(AGi). As the Gi, i ≥ 1, are

of order relatively prime to `, the AGi depend additively on A, and it follows

that λ(A) is additive in A. This makes it possible, in what follows, to restrict

to those A which are annihilated by `, or more generally, which are vector

spaces over a field of characteristic `.

Let χ be the modular character associated to A. It is elementary that d(AGi)

is equal to 1
gi

∑
s∈Gi χ(s). Applying this expression to λ(A) and denoting the

character of the Artin representation of G by aG yields

λ(A) = 〈aG + 1, χ〉,

with the usual notation for the scalar product [note that χ is only defined

for `-regular elements of G, but the others lie in G−G1 and aG + 1 is in fact

zero on G−G1].

Let us now check that λ(A) has the desired properties. This would be

horrible with the direct definition, but luckily one can use the formal properties

of aG + 1.

(i) Independence of G. One must check that if a normal subgroup N of G

acts trivially on A, then λ(A) is the same relative to G and to G/N . But this

follows easily from the formula

aG/N = (aG)\, cf. Corps Locaux, p.108.

(ii) Formula for induced modules. As above, using the cor. to Prop. 4 in

Corps Locaux, p.109.

(iii) Integrality. It is known (by Brauer) that any modular character is a

combination with integral coefficients of restrictions of ordinary characters.
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However, it is also known that 〈aG + 1, χ〉 is integral for ordinary characters

(Artin’s theorem — non-trivial!) Whence etc.

Searching through Brauer, I noticed a curious thing, which I will initially

state incorrectly in order to sell it better: using the fact that aG + 1 is

zero on the `-singular elements, one can find a projective Z`[G]-module L of

character aG+ 1, and the above expression for λ(A) can then be written simply

as:

λ(A) = d(HomG(L,A)),

which beautifully highlights its integrality and additivity.

There are two corrections to be made to this: a) it may be necessary to use a

“virtual” L, i.e. an element of the corresponding Grothendieck group (although

I don’t think so), b) it may (very probably) be necessary to act on a larger

field of characteristic ` than the first one. These are details — and probably

even useless details. J.-P. Serre : These details are indeed useless. Using results

of Fong and Swan, one can construct a projective Z`[G]-module L having the

desired properties, cf. Représentations Linéaires des Groupes Finis, §19.2. (9)

Analogous things are possible for infinite A (free of finite type over Z`, say),

but I have not yet clarified this properly; one needs to beware of ramification

in the infinite case.

I have no idea about the algebraic groups question. It looks strange.

Yours,

J-P. Serre

(9)note in the margin : “exists by Swan!”
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March 31, 1964 Jean-Pierre Serre

Dear Grothendieck,

I have constructed J.-P. Serre : Grothendieck had hoped to prove the Weil

conjectures by showing that every variety is birationally a quotient of a product

of curves.

In the present letter, I construct a counterexample in dimension 2. There

are certainly simpler ones! an example of a surface whose function field is not

contained in that of a product of two curves (nor, of course, of a product of n

curves, since the case of n can be trivially reduced to that of 2).

I start with an abelian variety with origin 0 and an irreducible subvariety S

of A of dimension 2, passing through 0, non-singular at this point and having

the following bizarre property:

(*) If C and C ′ are two irreducible curves passing through 0 contained in S,

then the sum C + C ′ (given by the composition law on A) is not contained

in S.

Assume for the moment that such a pair (A,S) exists. Then I claim that S

is the desired example. Indeed, suppose there were a dominating rational

map X ×X ′ f−→S, where X and X ′ are two non-singular curves; by a well-

known theorem of Weil, f is in fact a morphism (since it takes values in an

abelian variety). It follows that f is surjective, so there is a point (x, x′) of

X×X ′ which is mapped to 0. Let C be the image under f of the curve X×x′,
and define C ′ in the same way; by another theorem of Weil, the image of f

is C + C ′ (any morphism from a product of varieties to an abelian variety is

a sum of morphisms); as the image is S, this contradicts (*) (since neither C

nor C ′ can be reduced to a point, because C + C ′ is of dimension 2).

It remains to find an example of a pair (A,S), and this is not much fun

(even though a priori one expects any sufficiently “general” surface embedded

in A to work). To simplify things, I will work over C.

Lemma: Let V = C2 ×C3 = C5; consider the local analytic germ given by

the equations:

x3 = x2
1 + ϕ(x1, x2),

x4 = x1x2 + χ(x1, x2),

x5 = x2
2 + ψ(x1, x2),

where ϕ, χ, ψ are convergent series (or formal series if one wants to go beyond C)

beginning with terms of degree at least 3. Let S be the germ of surface thus

defined. Consider two systems of 1-variable series (xi(t)), (x′i(θ)), i.e. two

germs of curves, passing through the origin at t = 0 (resp. θ = 0), and contained
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in S. Assume the point x(t) + x′(θ) belongs to S for any sufficiently small

pair (t, θ). Then one of the systems x(t), x′(θ) is identically zero.

This is just a stupid computation. Look at the first terms in the expansions

of x1(t), x2(t), x′1(θ), x′2(θ), substitute x(t) + x′(θ) in the equations for S, and

see that this cannot vanish. I am too lazy to copy it out; I suppose that you

are convinced anyway.

Now take A to be a product E × F , where E is a 2-dimensional abelian

variety and F is a 3-dimensional abelian variety. From a “formal” (or even

convergent!) point of view, it is possible to choose local coordinates such that

the composition law on A is addition; moreover, it is trivial to construct a

surface in A whose local equations are of the type in the lemma (they need

only be given up to order 3 — it is not too hard). It is now clear that this

germ (or more precisely, its Zariski closure) answers the question.

Yours,

J-P. Serre
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April 1, 1964 Jean-Pierre Serre

Dear Grothendieck,

I have ended up by sending you the books by Hodge and Wallace by post.

Give them back to me reasonably soon (in a month, say); in fact, why not

have them bought by Motchane; it would be convenient to have them around

in Bures (along with Weil’s Variétés Kählériennes and Zariski’s Algebraic

Surfaces).

I would like to show you an example of non complete reducibility for the

Galois group of a number field; I don’t really know whether this example fits

into your general yoga; you will see for yourself. J.-P. Serre : No, the example

given here does not really fit into Grothendieck’s general yoga, since it comes

from a “mixed” motive, and not from a “pure” one.

Let A be an elliptic curve defined over a number field k, and let Ex be an

extension of A by Gm; it is known that such an extension is classified by an

element of A(k); I denote this element by x. Consider the Tate module Tp(Ex);

there is an exact sequence

0 // Tp(Gm) // Tp(Ex) // Tp(A) // 0,

which is an exact sequence of modules over the Galois group g of k/k. If I

have correctly understood your terminology, Tp(Gm) is a g-module of weight 2

(the eigenvalues of Frobenius have absolute value `), and Tp(A) is of weight 1.

However, I can construct an example where the preceding exact sequence does

not split (even up to isogeny, i.e. after tensoring with Qp). In Lie algebra

terms, the Lie algebra of the group defined by g is an algebra of dimension 6,

explicitly: a+ d e f

0 a b

0 c d


with a, b, . . . , f arbitrary.

Note that Ex can be considered as a generalized Jacobian (that of the

curve A with respect to the “modulus” m = P +Q, where P and Q are two

points such that P −Q = x); it follows that Tp(Ex) is the first p-adic homology

group of the affine curve A− {P} − {Q}. [I forgot to say what I had taken Ex
to be: I take A to be an elliptic curve whose j-invariant is not p-integral, and

I take x to be a point of A(k) which is not of finite order.]

I have just received a note from Šafarevič; he cannot come to the Clermont

conference. Not surprising!

Otherwise, my Izvestia paperJ.-P. Serre : “my Izvestia paper”: this is a

reference to [Se64a]. has appeared, without my even having seen the proofs!
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Fortunately, it is not too badly printed, and at first glance I did not see many

errors. Šafarevič tells me I will get 25 copies, which is not much.

Manin’s paper on Mordell — function fields has also appeared. (On this

subject, what should I do with Grauert’s manuscript? For the moment, I do

not intend to talk about it at Bourbaki; shouldn’t it be sent back to him?)J.-P.

Serre : It was Samuel who presented to the Bourbaki seminar the work of Manin

and Grauert proving the Mordell conjectures for function fields (Séminaire

Bourbaki 1964/65, no287).

Yours,

J-P. Serre

P.S. Good luck for your “second attack” on the Weil conjectures. I may have

been a bit too pessimistic on the telephone; it is not entirely out of the question

that it works. J.-P. Serre : This “second attack” on the Weil conjectures was

quickly abandoned by Grothendieck, cf. the letter of April 2, 1964.
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April 2, 1964 Alexandre Grothendieck

Dear Serre,

Thank you for your two letters and the books; you will explain your example

of non complete reducibility to me when the opportunity arises. Can you

construct an analogous example in characteristic p > 0? Probably not over

a finite ground field, since unless I am mistaken that would contradict the

Weil conjectures + complete reducibility in the projective non-singular case +

resolution of singularities!

. . . I have convinced myself that my second approach to the Weil conjectures

cannot work in its original form, i.e. that it would not suffice to use only the

Riemann hypothesis for curves. One idea which is probably worth keeping, and

which fits in very well with your yoga, is as follows. Let π be the fundamental

group π1(X, a), where X is a scheme of finite type over the finite field k = Fq,

and let a be an element of X(k). (N.B. it is enough to assume that X= a

rational line minus a finite number of rational points). Consider the Q`-analytic

quotient groups G = π/R, where R is invariant under the Frobenius φ, so

that φ acts on G, and hence on its Lie algebra g. What can be said about

the eigenvalues of φ on g? Ideally, they should be algebraic numbers whose

absolute values are all of the form q−
i
2 where i ∈ N. The Riemann hypothesis

for curves says that this is the case when g is abelian (and i is then 1 or 2);

unless I am mistaken, it follows formally that the same holds when g is solvable

(and i is then ≥ 1). In the situation I am now reduced to, letting r be the

radical of g, it so happens that r is abelian and φ, acting on g/r, has eigenvalues

which are algebraic numbers of absolute value 1, and everything boils down

to showing that the eigenvalues of φ acting on r are algebraic numbers whose

absolute values are of the form q−
i
2 , where i ≥ 2. Is this a general fact? I am

not very optimistic, since it is highly likely that the quotients G coming from

the cohomology of algebraic varieties satisfy rather subtle conditions which

need to be taken into account. In any case, it is certainly true that (from the

Galois point of view) the cohomology spaces of algebraic varieties are successive

extensions of spaces which are (up to twisting by a suitable Q`(N)) tensor

products of spaces such as r; one can even restrict to the case where π is the

tame fundamental group, so as to obtain a group which is essentially free . . .

By the way, have you ever investigated the general relation between the `-

adic Galois cohomology of a Galois-type group π and that of the projective

system of its analytic quotients?

Regards,



168 CORRESPONDENCE

A. Grothendieck
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August 2-3, 1964 Jean-Pierre Serre

Dear Grothendieck,

I am just back from the “Summer Institute” at Woods Hole, which was quite

interesting. In order to clarify my ideas, I would like to tell you what went on

there. Actually, you will soon receive the text of the main talks (in several

copies, so that you can distribute them to your “stable”); however, none of the

seminars has been written up, and they were the most interesting part.

1. A generalized Lefschetz formula.

You must already know this formula — at least partially. Shimura mentioned

it as a conjecture at the beginning of the “Institute”, and more or less everyone

got down to it, J.-P. Serre : See Atiyah’s comments in his Coll. Works, vol.

III, no61, 62, 63.

The algebraic case (in arbitrary characteristic) was dealt with by P. Donovan:

The Lefschetz-Riemann-Roch formula, Bull. S.M.F. 97 (1969), 257–273; see

also SGA 5, exposé III (L. Illusie), Appendix. particularly Atiyah, Bott (who

both lectured on it), Verdier and Mumford. At any rate, by the end of their

stay they had proved the “elementary” version Shimura wanted, namely:

Let X be non-singular, projective and defined over k (of any characteristic

— but I assume it is algebraically closed, since the question is “geometric”).

Let F be a locally free sheaf on X (coherent, of course) and let f : X −→ X

be a morphism; also, assume there is a map of sheaves

f ′ : f∗F −→ F,

so that (f, f ′) can be made to act on H
·
(X,F ). Set:

Tr·(f) = Σ∞q=0(−1)qTrq(f) ,

where Trq(f) denotes the trace of the endomorphism on Hq(X,F ) defined

by (f, f ′). The aim is to compute the “Lefschetz number” Tr·(f).

For this, assume that the fixed points of f are isolated. The formula can

then be written:

Tr·(f) = ΣP∈S LP (f) ,

where the sum is taken over the set S of fixed points, and LP (f) is defined by

a local formula which is rather complicated in general. The “elementary” case,

which is Shimura’s case, is the one in which the diagonal ∆ cuts the graph of f

transversally. In this case,

LP (f) = tP (f ′)/det(1− dfP ) ,

where the symbols have the following meaning:
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dfP = the tangent map to f at the fixed point P ; 1 is not an eigenvalue of

this linear map (by the transversality condition) and det(1− dfP ) is therefore

indeed invertible.

tP (f ′) = the trace of the endomorphism of F (P ) = FP /mPFP defined by f ′.

The general case (non-transverse intersection) gives an expression for LP (f)

(this is not guaranteed, as I am not sure that I really understand everything)

connected to your higher residues. More precisely, let x1, . . . , xn be a system

of parameters at P (“regular” parameters, of course), and set yi = xi − f(xi);

the ideal (y) generated by the yi is therefore mP -primary. The formula J.-P.

Serre : I wrote this formula incorrectly. Its correct form is given, and proved,

in SGA 5, loc cit., p. 133. is then

LP (f) = ResP

(Tr F/(y) dx1 ∧ · · · ∧ dxn
(y1, . . . , yn)

)
,

using notation that you probably understand better than I do.

In any case, this is not general enough, since there is surely a formula

for Lp(f) which is valid without the non-singularity condition, and for an

arbitrary coherent sheaf. Perhaps it is already somewhere in your papers?

Atiyah gave an (algebraic) proof of the above result, using elementary facts

(duality theory + some local Ext). For a compact complex analytic variety,

Bott gave an analytic proof involving differential forms of the type introduced

by Leray in his own residue theory. Atiyah and Bott have some ideas for a

potential extension of this formula to more general elliptic systems than the

wretched d operator.

Applications.

a) The case of a finite group acting on X with isolated fixed points: the

results obtained were more or less known (to you and me at least) and were

not very surprising.

b) The Hermann-Weyl formula giving the character of an irreducible repre-

sentation of a semi-simple group (in characteristic zero).

This is surprisingly straightforward: Let G be semi-simple over C (for

simplicity), let B be a Borel of G, let T be a maximal torus in B and let X =

G/B be identified with the Borel variety. Assume that a character

λ : B → Gm
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is given; then one has a rank 1 bundle F (λ) over X on which G acts. This

yields an action of G on each Hq(X,F (λ)), and thence a trace:

Tr·(g) =
∞∑
q=0

(−1)qTrq(g),

defined in an obvious way. The H. Weyl formula boils down to giving Tr·(g)

explicitly. [One recovers the usual point of view upon assuming that λ is

“positive”; J.-P. Serre : One should pay attention to sign conventions. See:

M.F.Atiyah and R.Bott, A Lefschetz fixed point formula for elliptic complexes:

II. Applications, Ann. Math. 88 (1968), 451–491, §5 (= M.F.Atiyah, Coll.

Works, vol.3, 129–169),

and, for the algebraic case:

J.C.Jantzen, Representations of Algebraic Groups, Acad. Press 1985, §II.5.

then Hq = 0 for any q ≥ 1, and H0 is the irreducible representation of highest

weight λ.]. It is enough to do this for g ∈ T , since every semi-simple element

has a conjugate in T . One may even assume that g is regular in T , since these

elements are dense. But then the action of the element g on the Borel variety X

has only a finite number of fixed points, corresponding to elements w ∈W , the

Weyl group. Each of these fixed points is of the “elementary” type described

above. The computation of the two terms tP (f ′) and det(1 − dfP ) is trivial.

Unless I am mistaken, one finds:

tP (f ′) = w(λ)(g) (if P → w − or w−1!)

det(1− dfP ) =
∏
α>0

(1− w(α)(g)) .

The desired formula follows:

Tr·(g) = Σw∈W
w(λ)(g)∏

α>0(1− w(α)(g))
,

which is equivalent to the classical Weyl formula. (Note that I have used the

multiplicative convention for weights and roots: in “Lie algebra” terms, one

should replace my λ by eλ, etc.) Isn’t this magnificent?

c) Algebraic varieties having rational points over a finite field. Here I assume

that Tr·(f) = 0 has already been proved for any projective variety X and any

fixed-point free morphism f : X −→ X (for the moment, this has been proved

only for non-singular X). I assume that X is defined over Fq and has the

following properties:

H0(X,OX) is 1-dimensional, Hq(X,OX) = 0 for q ≥ 1.
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Applying the formula Tr·(f) = 0 to f = Frobenius yields a contradiction.

Corollary: Such a variety always has at least one Fq-rational point. (If one

had a more precise formula, one could deduce that the number of such points

is ≡ 1 mod p — in any case, this holds if X is non-singular.) J.-P. Serre : “If

one had a more precise formula, one could deduce that the number of such

points is ≡ 1 mod p”. This was proved by N. Katz without any smoothness

condition, cf. SGA 7 II, exposé XXII, 410–411.

This statement is very reasonable. Indeed, if for example X is a complete

intersection of hypersurfaces of degrees m1, . . . ,mk in projective space Pr, the

triviality of the cohomology of X is equivalent to the condition m1 + · · ·+mk <

r+1, which is exactly what appears when writing that Fq is (C1)! Note further

that all known (non-singular) rational varieties satisfy the condition Hq = 0 —

although no one can yet prove that this is always the case.

Playing the usual little game,J.-P. Serre : This “usual little game” consists

of replacing “finite field” by “field of cohomological dimension 1”. It is a

dangerous game! For instance, the result conjectured here is false; it is easy

to give counterexamples using fields of cohomological dimension 1 which are

not C1 (see the examples constructed by J. Ax and reproduced as exercises in

Cohomologie Galoisienne, Chap.II, §3.2).

On replacing “cohomological dimension 1” by “C1”, the question becomes

a bit more reasonable. This is actually the form in which it is mentioned

in SGA 5, p. 134. An interesting special case (which is not yet settled) is

that where k = C(T ) and the variety is k-rational, cf. J. Kollàr, Rational

Curves on Algebraic Varieties (Ergebn. der Math. 32, Springer-Verlag, 1996),

§IV.6 (this reference was pointed out to me by J-L. Colliot-Thélène.) I am

tempted to conjecture the following: Let k be a (perfect) field of cohomological

dimension 1. If a projective variety X over k is such that H0(X,OX) = k,

Hq(X,OX) = 0 for q ≥ 1, then X contains a k-rational point.

This is probably too optimistic; in any case, let us say that the above claim

should hold for all fields which are “clearly” of dimension 1, such as the field

of functions in one variable over an algebraically closed field. But even this

case does not look easy. (Note for example that if this theorem could be

applied to the Borel variety, it would yield my beloved “conjecture I”, proved

by Steinberg.)
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The Lefschetz formula(s) in question have been christened the “Woods Hole

fixed point formula”. If you have any comments to make on them, I advise

you to send photocopies to Atiyah and Bott, who are both at Harvard.

2. Ogg’s results plus a beautiful conjecture on `-adic cohomology.

Ogg is interested in elliptic curves defined over a local field k whose residue

field k0 is algebraically closed (for simplicity). Denote the residue characteristic

by p, and consider prime numbers ` 6= p (déjà vu!). The points of order ` on E

form a Galois module E`, and this Galois module has an invariant β(E`) —

the one whose existence you once asked me to prove. One of Ogg’s results is

that — as you yourself conjectured — β(E`) is independent of `.

This, plus other (partial) results of Ogg’s, led Tate and myself to conjecture

heaps of beautiful things:

With the same conditions on k, consider a non-singular projective variety V

over k; let V denote the variety V ⊗k k, where k is the algebraic closure of k.

Let H i
`(V ) be the `-adic cohomology of V ; it is a module over the Galois group

G = G(k/k).

Conjecture: J.-P. Serre : This conjecture has not yet been proved, except

for i = 1, in which case it follows from the existence of semi-stable models.

There exists an open normal subgroup U of G such that for any g ∈ G:

(a) The trace of g acting on H i
`(V ) is an integer, denoted by Tri(g), which

is independent of ` and depends only on the image of g in G/U .

Note that this statement is trivial if V has “good reduction” V0, sinceH i
`(V ) =

H i
`(V0), on which the Galois group acts trivially.

Note further that (a) does not assert that the elements of U act trivially

on H i
`(V ) (there are simple examples which show that this is impossible);

however, the elements of U give rise to automorphisms of H i
`(V ) of which 1 is

the only eigenvalue. It is clear that the conjecture could be rewritten saying

that the `-adic representation H i
`(V ) “does not depend on `” in a suitable

sense (i.e. in a specially created Grothendieck group); I preferred to start by

giving it to you in down-to-earth terms.

Ogg’s results can be stated (and generalized) in the following way:

Theorem: (i) If the conjecture above is true for an abelian variety A, then the

invariant β(A`) is independent of `, and its value is given by :

β(A`) = 〈bG/U ,Tr1〉,

where bG/U = Artin char. of (G/U)− augm. char.(G/U)
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(ii) The conjecture above is true for an elliptic curve.

The first part is easy. For the second part, consider two separate cases:

iia — The j-invariant of the elliptic curve is not integral. In this case, the

curve becomes “of Tate type” (i.e. admits a description using theta functions)

over a quadratic extension of k. The situation is so well under control that the

result can simply be read off (cf. my Clermont lecture notes).

iib The j-invariant is integral. There is a finite Galois extension k′/k over

which E has good reduction. Let U be the corresponding open subgroup of G.

Letting E′ denote the corresponding elliptic curve scheme over the ring o of

integers of k′, the uniqueness of this scheme shows that it is stable under G/U ;

hence, G/U acts as a group of k0 automorphisms of the reduced curve E′0 (note

that the residue field of k′ is equal to that of k). Thus, there is a G/U -action

on H1(V ) = H1(E′0), and Weil’s theorems on abelian varieties then show that

the conjecture holds. (Of course, the same argument can be applied to any

abelian variety with good reduction over a finite extension of k.)

The proof Ogg gave for a special case of (ii) was substantially less straight-

forward; he had to examine the case p = 2, 3 in detail using the Kodaira-Néron

classification. From the point of view taken here, these cases correspond to the

case where Aut(E′0) is very large (of order 24 at most). J.-P. Serre : “of order

24 at most”. This only happens if p = 2 and the group Aut(E′0) is isomorphic

to SL2(F3).

3. Another beautiful conjecture.

Keep the same conditions and notation as in no2, but assume now that the

residue field k0 is a finite field Fq. There is therefore an inertia subgroup I of the

Galois group G = G(k/k) which is the kernel of the canonical homomorphism

G→ Ẑ = G(k0/k0).

As previously, let V be a non-singular projective variety V over k, and consider

the Galois module H i(V ).

Conjecture: There is a normal subgroup U in G, which is open in I, such

that property (a) on page 5 holds for every g ∈ G whose image under G→ Ẑ

is an integer ≥ 0.

For the elements which map to 0 (i.e. which belong to I), this conjecture is

equivalent to the one on page 5. Of course, the most interesting elements are

those that map to 1; they deserve to be called “Frobenius”. They are not well
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defined, but there are only a finite number of them modulo U ; thus one can

talk about their average, and the characteristic polynomial of this average is

well-defined. Denote it by Pi(V, t). When V has “good reduction V0”, Pi(V, t)

is the characteristic polynomial of the Frobenius of V0 acting on degree i

cohomology. What has been done here, therefore, is to define a local “zeta

function”, as it were (or more exactly, the i-th component of the said zeta),

even for bad reduction.

Example. The method used to prove the theorem on page 6 (elliptic curves)

should also show that the conjecture above holds for an elliptic curve. I do

not entirely guarantee this, however, since I have not done the computation in

detail.

The point (for me) of the constructions and conjectures above is that they

make it possible to define the missing factorsJ.-P. Serre : It took me several

years to understand what the local (archimedean or ultrametric) factors of

zeta functions should be, cf. [Se69]. of the zeta function. Let me explain

myself: take a non-singular projective variety V over Q. Over a non-empty

open set U in Spec(Z), V can be replaced by a smooth projective scheme,

giving a reasonable zeta function for each of the corresponding fibers Vp (and

this function does not depend on the choice made, even if there are several

non-isomorphic possibilities — this follows from Galois arguments). But one

wants more: a reasonable definition for exceptional p, which should be such

that the global zeta function thus obtained no longer needs anything except

factors at infinity of the type
∏

Γ( s+mα2 )As in order to satisfy a perfectly clean

functional equation, i.e. f(s) = ±f(k − s).

I hope the Pi I defined above give us such a “reasonable” definition. Unfor-

tunately, there is little material to work with, basically just the elliptic curves

dealt with by Deuring and Shimura; Shimura’s case seems to work; I do not

know Deuring’s well enough to be able to figure it out, at least for the moment.

It is clear that the ultimate aim is to be able to completely write down

the factors Φi(s) of the zeta function, with their exceptional terms and their

terms at infinity; this no longer seems too far away. Hopefully, once this has

been done, the result will suggest a proof. . . It will certainly be necessary to

use cohomological adeles (i.e. integrate over both the space H i
`(V ) and the

cohomology at infinity). These questions cannot reasonably be attacked until

the elementary `-adic conjectures (i.e. the various positivity conjectures and

the Weil conjectures) have been proved.
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4. Yet more `-adic cohomology.

Tate has written up a very beautiful talkJ.-P. Serre : Tate’s talk appeared:

Algebraic cycles and poles of zeta functions, in “Arithmetical Algebraic Geom-

etry”, Harper and Row, New York (1965), 93–110. (of more than 20 pages),

which explains the state of the art, Weil-type conjectures and his own conjec-

tures, and discusses a certain number of applications and examples. Here is a

(non-trivial) consequence of his conjectures:

Let X be a regular scheme of finite type over Z. Then:

The order of ζ(X, s) at the point dimX − 1 = rk H0(X,O∗X)− rk H1(X,O∗X).

(Note that the two groups in question are finitely generated over Z, and their

rank is well-defined.)

There is a young Italian, Bombieri, who is working on zeta functions. He

noticed all by himself that it was necessary to prove in all characteristics

that the intersection form on “primitive” algebraic cycles of half dimension

is definite; furthermore, he also apparently spotted the conjecture according

to which the factors of an algebraic cycle in a “Künneth” decomposition are

algebraic. By the way, what are you up to in these directions?

Here is an exercise (inspired by Bombieri): Let X be an n-dimensional

projective, non-singular variety defined over a finite field. Assuming the Tate

conjectures, prove that the rank of the group of n-dimensional algebraic cycles

in X ×X (modulo numerical equivalence) is ≥
∑2n

i=0Bi(X), where Bi(X) is

the i-th Betti number of X. Example: if X is an elliptic curve,
∑
Bi(X) = 4,

and one recovers the fact that X necessarily has complex multiplication.

5. One-parameter formal groups (Lubin).

Tate and I have organized a seminar on elliptic curves and formal groups;

this started with a general talk, which I gave, essentially going over §2 (with

hardly any extra details) from my Clermont lecture J.-P. Serre : “my Clermont

lecture”: [Se66]. (of which you surely have a copy, since it was printed by

IHES). Lubin then gave three talks on formal groups. The most interesting

part is the construction of (formal) moduli. J.-P. Serre : For more information

on moduli of formal groups, see:

J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups,

Bull. S.M.F. 94 (1966), 49–60.
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Let R be local, complete and Noetherian, with residue field k of characteris-

tic p 6= 0, and let F (x, y) = x+ y + · · · be a one-parameter formal group law

on the residue field k. Assume that F is of height h <∞; let me remind you

that this means that the homothety of ratio p in the given formal group is of

degree ph, i.e. can be written

[p]F (x) = u.xp
h

+ · · · , u ∈ k∗.

Assume that a local Noetherian R-algebra R′ is also given: consider the formal

group laws F ′ on R′ whose reduction modulo the maximal ideal of R′ is F .

Two such laws will be considered to be isomorphic if one can pass from one

to the other via a change of variable ϕ(x) such that the reduction of ϕ(x) is

x ∈ k[[x]]. This gives a set T (R′), which is functorial in R′. The theorem (if I

have not screwed up by trying to make everything canonical) is that T (R′) is

representable by a smooth formal scheme of dimension h− 1 over R, i.e. there

exists a “universal lifting” of F to the local algebra

R = R[[T1, . . . , Th−1]]

where the Ti are indeterminates.

The nicest case is when k is complete;J.-P. Serre : “complete” should be

“perfect”. it is then useful to take R to be the ring of Witt vectors W (k) over k;

the algebra structure on R′ then boils down to giving an injection of k into

the residue field k′ of R′.

Lubin did not give the proof in detail. He uses very explicit Lazard-style

methods of climbing up the degrees of series (and also filtrations of local rings,

of course). One key point is the following: if one defines in an obvious way the

cohomology groups

Hq
form(F,Ga) (where F acts trivially on Ga),

one has H1
form(F,Ga) = 0, and H2

form(F,Ga) is of dimension h− 1. I suppose

you have some general stuff lying around which gives the theorem starting

from these two relations.

The case h = 2 is particularly interesting. Indeed, F can be interpreted

as the formal group of an elliptic curve (at least when the residue field k is

algebraically closed); let E be this curve. As above, the formal moduli of F

depend on “one parameter” since h− 1 = 1; on the other hand, those of an

elliptic curve do the same. Here is a naive question: is there an isomorphism

between these two moduli varieties (there is in any case an obvious arrow).
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Answer: yes. It should also be possible to prove this via “general nonsense” by

comparing the H2; we did not do it this way, since in any case it follows from

Tate’s theory, which was the subject of the following seminars (see below).

An amusing question: with the assumptions from the beginning of this

section, assume that R is a discrete valuation ring of characteristic 0. The

Tate module Tp(F
′) (where F ′ is a lifting of F to R) is well-defined; it is

a free Zp-module of rank h − 1 J.-P. Serre : “of rank h − 1” should be “of

rank h”. on which the Galois group Gal(E/E) acts, where E = Frac(R). The

aim is to construct a formal group, of height 1, which would naturally be

called N(F ′), such that Tp(N(F ′)) =
∧h Tp(F

′). The existence of N(F ′) is

obvious when h = 1; when h = 2 and k is algebraically closed it follows from

the fact that by what is already known, F ′ comes from an elliptic curve. J.-P.

Serre : N(F ′) is known to exist, but only indirectly. This follows from a theorem

due to Raynaud which says that the action of the inertia group on detTp(F
′)

is given by the cyclotomic character (M. Raynaud, Schémas en groupes de

type (p, . . . , p), Bull. S.M.F. 102 (1974), 241–280, th.4.2.1.). The general

case would be particularly interesting since it would give some information on

the Galois group action on Tp(F
′). If luck is with us, it should be possible to

answer this question by defining exterior powers of formal commutative groups

(first over a field, then over a ring) with the obvious base change properties.

This would also be useful for Lubin-Tate style questions, where the local class

fields are constructed by means of formal groups; it is clear that this is what is

needed to prove the base change theorems (by this method).

6. Tate’s funny cohomology.J.-P. Serre : Tate’s “funny cohomology” was

never published.

(A useful aid for the theory of formal moduli of abelian varieties.)

Let S be a scheme, X a group scheme over S, and B a commutative group

scheme over S; assume that X acts on B in an obvious sense.

Tate then defines, by means of a rather complicated double complex, co-

homology groups Hq
lt(X,B), which are a mixture of group cohomology and

Zariski cohomology (they are defined by Cech’s methods, using open covers.)

Denoting by Hq
reg(X,B) the groups defined in your seminar (dropping the

Zariski part and keeping only the “group cohomology” part), then there are

homomorphisms Hq
reg → Hq

lt. In dimension 1, this is an isomorphism. In
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dimension 2, there is an exact sequence

0→ H2
reg(X,B)→ H2

lt(X,B)→ H1(X,BX),

whose interpretation in terms of group extensions is as follows:

H2
reg(X,B) describes the extensions of X by B which are trivial as fiber

spaces,

H2
lt(X,B) describes the extensions of X by B which are locally trivial (in

the Zariski sense) as fiber spaces,

H1(X,BX) is the group of locally trivial principal bundles with structural

group B and base space X.

Nobody has any doubt that it is also possible to define an H2
flat, by replacing

Zariski by fpqc, or God knows what. But as Tate’s explicit formulas are rather

ugly, one doesn’t want to do it until one is forced to — unless you can see a

more straightforward definition of these wretched cohomology groups.

7. Formal moduli of abelian varieties.

This was the subject of Tate’s second talk (and mine, later). It is really very

pretty.

i/ Lifting of morphisms. — Let R be a local Artinian ring with residue

field k = R/m. Let I be an ideal contained in m such that mI = 0. SetR′ = R/I.

The aim is to “lift” certain objects from R′ to R.

Let B be a commutative group scheme (commutative is surely an unnecessary

assumption, but it doesn’t matter for the application to abelian varieties),

smooth over R.

Let X be a group scheme over R.

Set B′ = B⊗RR′, X ′ = X⊗RR′, B̃ = B⊗R k, etc. Let t(B̃) be the tangent

space to the origin in B̃; the tensor product t(B̃)⊗ I is a finite-dimensional k-

vector space. Denote the corresponding k-scheme by W (we have tried to use

notation compatible with yours).

Theorem: There is an exact sequence:

0→ Hom(X̃,W )→ HomR(X,B)→ HomR′(X
′, B′)

δ→ H2(X̃,W ).

[It should be mentioned that the Hom are “group” homomorphisms; the H2

is the one defined in no6. J.-P. Serre : “the H2 is as defined in no6”: H2
lt. Finally,

the image of δ is contained in the symmetric part of H2, i.e. in Ext1(X̃,W ).]

Tate proves this theorem by taking the exact sequence of complexes

0→ C ·(X̃,W )→ C ·(X,B)→ C ·(X ′, B′)→ 0,
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where C ·(X̃,W ) is the complex giving rise to the cohomology in no6. The fact

that this sequence is indeed exact comes from the fact that the cochains can

be defined over open affine covers. Passing to cohomology gives the desired

result.

Of course, the interesting thing here is δ: the obstruction to lifting a

homomorphism to another homomorphism lies in an Ext(X̃,W ). A geometric

description of this group extension would be very useful: Tate’s complex in

no6 would then not be needed. There are also good reasons for examining

the relation between this and the obstruction given by the Greenberg functor

(assuming that k is perfect for simplicity); the general situation is not clear;

when I = m, I am pretty much certainJ.-P. Serre : “I am pretty much certain”:

I am still just as certain, but have never written it up. that the Greenberg

obstruction can be deduced from the other by applying a suitable power of

Frobenius.

ii/ Formal moduli of abelian varieties — Keep the same conditions, but assume

now that k is of characteristic p 6= 0.

Tate formulates the theorem as saying that there is an equivalence of

categories C1 → C2, where

(C1)= the categories of abelian schemes over R,

(C2) = the category of pairs (Φ, X), where Φ is an abelian variety over k

and X is a lifting of Φ∗ over R; I should say what A∗ is when A is an abelian

variety over R:

A∗ = limn→∞Apn , where Apn = Ker(pn : A→ A).

Beware: the kernel Apn should be considered as a (finite, flat) group scheme

over R. As for A∗, it should be considered as an Ind. object; a lifting of Φ∗ is

therefore equivalent to a sequence of liftings of the Φn, with suitable injections.

In what follows, I will do as if A∗ (or Φ∗) were a genuine group scheme —

clearly this assumption cannot lead us too far astray(!).

The functor C1 → C2 is clear; to any abelian variety A over R, it associates

its reduction Ã, which is an abelian variety over k; one takes X = A∗, which

is indeed a lifting of Φ∗. The wonderful thing is that it is an equivalence of

categories! J.-P. Serre : “equivalence of categories. . . ”. This is sometimes

known as the “Serre-Tate theorem”, even though my contribution was limited

to ordinary abelian varieties. For a proof (different from Tate’s), see V. G.
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Drinfeld, Revêtements de domaines symétriques p-adiques (in Russian), Funk.

Anal. i Prilozen. 10 (1976), 29–40; this proof is reproduced in: N. Katz,

Serre-Tate local moduli, LN 868 (1981), 138–202. In other words, given the

reduction Ã of an abelian variety A, the only extra thing needed to determine A

is a lifting of the Ind. group Ã∗, which is harmless enough (see below).
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Proof of the theorem: This follows more or less formally (I am cheating a

little) from the lemma:

Lemma: For every i, Exti(Φ,Ga) = Exti(Φ∗,Ga).

(In fact, these groups vanish for i 6= 1, and are k-vector spaces of dimen-

sion dimA for i = 1.)

Here is a (not entirely correct!) proof of the lemma: Φ/Φ∗ is uniquely

divisible by p, so all the Ext with Ga are trivial.

In fact, one has the feeling that the equivalence theorem should be completely

formal, given the lemma. Furthermore, the fact that Ext2(Φ,Ga) vanishes

should give the right proof of the fact that Φ lifts to R.

iii/ Application to the case where Φ does not have any point of order p. — In

this case, Φ∗ is simply the formal group associated to Φ. Hence, lifting Φ is

equivalent to lifting its formal group. In the case dimA = 1, this is the theorem

I alluded to on page 10.

iv/ Application to the case where Φ has a maximal number of points of

order p. — (This is the case I had already dealt with by the Greenberg method.

Tate’s theory gives a new proof of this which is more satisfying from certain

aspects.)

I will assume (this seems essential — and not just a consequence of my

natural taste for Galois theory) that k is perfect.

Let n = dim Φ. The hypothesis on Φ can be translated as saying that Φp is

a direct sum of an etale k-group of order pn and an infinitesimal k-group; the

former is a Galois twisted (Z/pZ)n, and the latter is a (µp)
n with an analogous

twisting. More generally, there is a canonical decomposition:

Φ∗ = Φ∗m + Φ∗et.

Now, it is clear that Φ∗et has only one lifting to all R (Hensel!). The same

holds for Φ∗m, by Cartier duality, for example — or by Dieudonné-style results,

I suppose. It is therefore immediate that there is a canonical lifting of Φ∗,

namely the direct sum of the liftings of Φ∗m and Φ∗et. These are my beloved

canonical liftings, which I have often told you about. It is clear that one thus

gets a functor from the category of Φ to the category C1, which is the inverse

of the reduction functor (warning: it is only defined on the Φ with the maximal

number of points of order p). Passing to the limit over R gives something

which is a priori a formal scheme canonically lifting Φ, but Mumford pointed
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out to us that one can prove that it is actually an abelian variety. There would

be a great deal to say about these canonical liftings (I gave a whole talk on

them); I will come back to them a little later on.

I should say something about other liftings. Being lazy, I will assume that k

is algebraically closed. It is (almost) obvious that any lifting A∗ of Φ∗ is an

extension:

0→ A∗m → A∗ → A∗et → 0,

where A∗m and A∗et are the canonical liftings over R of Φ∗m and Φ∗et. Assuming

that k is algebraically closed allows me to identify these groups with the groups

(Formal- Gm)n, and (Qp/Zp)
n,

these groups being taken over R in an obvious way. It is then an exercise

to show that an R extension of Qp/Zp by formal-Gm is characterized by an

element of the group R∗1 = 1 +m(R), the multiplicative group of elements of R

congruent to 1 modulo the maximal ideal m(R).

Passing to the limit over R, one sees that this result still holds in the more

general context of a complete local Noetherian ring with residue field k. Of

course, in this context there no longer is any guarantee of ending up with

actual abelian varieties, but one does in any case get formal schemes. Thus,

the points of the formal moduli variety are systems of n2 Einseinheiten; J.-P.

Serre : “Einseinheit”: element of R∗1 = 1 + m(R). moreover, it has a canonical

group structure.

The abelian varieties whose moduli (in the sense given above) are of finite

order deserve to be called quasi-canonical. When R is a discrete valuation

ring, such a variety is isogenous to a canonical variety; it is not clear what

happens in general.

Still assuming R to be a discrete valuation ring of characteristic zero, there

is a simple characterization of quasi-canonical varieties: they are those for

which the Tate module Tp, tensored with Qp, splits as a module over my

beloved p-adic Lie algebra. This justifies th.1, p.9 of my Clermont lecture

notes.

(Of course this is all still very woolly, and much cleaner statements could

surely be made: I realize that I am handicapped by my poor knowledge of the

basic generalities on group schemes. . . rejoice!)
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v/Canonical lifting of elliptic curves — Consider the following problem: let k

be perfect, and let E be elliptic with j-invariant ∈ k and Hasse 6= 0J.-P.

Serre : “Hasse 6= 0”. This is a reference to the Hasse invariant of an elliptic

curve — an invariant differential form of weight p−1. Saying that this invariant

is 6= 0 means that that the curve is ordinary, i.e. has a point of order p. (i.e.

having the maximal number of points of order p); by noiv/, there is a canonical

lifting of E to the ring W (k) of Witt vectors. The j of this lifting is thus a

function

θ : k−Ker(Hasse) −→W (k).

How can θ be computed?

I almost know how to answer this question. More precisely, set:

a) s= Frobenius acting on W (k) [ = (x0, x1, . . . ) 7→ (xp0, x
p
1, . . . )].

b) Tp(j, j
′) = the classical equation relating the modular invariants of two

elliptic curves related by an isogeny of degree p. This is an equation with

coefficients ∈ Z, which is symmetric in j, j′.

Given this:

Theorem: (i) Let λ be in k−Ker(Hasse) and x = θ(λ) ∈W (k). Then

(∗) Tp(x, s(x)) = 0 and x ≡ λ mod p.

(ii) If λ ∈ k is not contained in Fp2, the system (∗) has one and only one

solution.

(Combining (i) and (ii) thus shows that (∗) characterizes x = θ(λ), provided

that λ /∈ Fp2 .)

To prove (i), start with the isogeny Frobenius : E → E(p), and apply the

“canonical lifting” functor. The canonical lifting of E(p) can be deduced from

that of E by applying the automorphism s; its modular invariant s(x) is thus

related to the invariant x of the lifting of E by Tp(x, s(x)) = 0, which gives

(i). The assertion (ii) can be proved by successive approximation in a standard

way; the hypothesis λ /∈ Fp2 , which looks strange, is needed to ensure the

non-vanishing of a certain partial derivative of Tp.

Just for fun, here is a numerical example J.-P. Serre : One may find other

examples of canonical liftings in my Bourbaki talk 1966/67, no318.: for p =

2, λ = 1, the canonical lifting θ(λ) is equal to −3353.
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I believe this is more or less all I can tell you. Of course, there were several

other seminars, but either I hardly followed them, or I am not competent to

discuss them. For example: singularities (removal of — , variation of — ):

speakers, Zariski, Hironaka, Abhyankar; commutative algebra (factorial rings,

differentials, by Samuel, Lichtenbaum and another guy from Harvard — I did

not go), families of abelian varieties, moduli, class fields (by Kuga and Shimura

— on a generalization of Shimura-Taniyama to families of abelian varieties

with complex multiplication — it is technically rather complicated and it did

not seem to me that anything really new was going on), etale cohomology

of number fields, etc. (M. Artin and Verdier; I followed part of it, but you

have known all this for ages); formal groups over a field (Barsotti; a not very

understandable talk on something which is probably equivalent to results of

Manin and Gabriel — still, it will one day be necessary to link this up with

Lazard’s “naive” point of view, and pass to rings).

Yours,

J-P. Serre

Remorse. The hopes mentioned at the bottom of page 7 and at the top of

page 8 (a “reasonable” definition of the missing factors of the zeta function)

now seem to me to be somewhat exaggerated. In any case, peculiar things

happen for the elliptic curve considered by ShimuraJ.-P. Serre : “. . . considered

by Shimura”. This is a reference to the modular curve X0(11), which is a

remarkable example of the Eichler-Shimura-Igusa theory. This example helped

me enormously to understand the structure of the L-function of a motive;

I believe it helped Langlands in a similar way., and I don’t understand the

situation at all. J.-P. Serre : “I don’t understand the situation at all. . . ” See

note 96.1.

(The case which worried me was that of an elliptic curve E over Q with

bad reduction of multiplicative type at a prime number p. I was certain that

the corresponding local factor was of the form (1 − a · p−s)−1. Should a be

the eigenvalue of Frobp acting on the subspace of V`E, ` 6= p, fixed by inertia

at p, or acting on the corresponding (“invariant” or “co-invariant”) quotient?

The first choice yields a = ±p and the second a = ±1. It was a long time

before I understood that the second choice is the right one.) Perhaps it will be

necessary to alter these missing factors a little? Yet I am convinced that this

is the right direction.
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August 8, 1964 Alexandre Grothendieck

My dear Serre,

Thank you for your detailed report on Woods Hole, which I have just read

over briefly. I have hardly any comments to make for the moment. Given

my current concerns, I am mostly interested in nos 2, 3, 4. (I suppose that

on p.8, X should be assumed proper over Spec Z?). I do not find no 1 very

exciting, despite the pretty applications; the fixed-point theorem itself seems

to me nothing more than a variation on a well-worn theme! I did appreciate

your diophantine conjecture on page 4, even though I do not know what the

“usual little game” is.

I have nothing very interesting to tell you. I have been trying to learn

Néron-style height theory, J.-P. Serre : “Néron-style height theory”: A. Néron,

Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. Math. 82

(1965), 249–331. and intend to try to generalize his local symbols and their

interpretation as intersection multiplicities to cycles of arbitrary dimension. I

checked the compatibility of the Néron-Tate form on the Jacobian with the

intersection form on a non-singular projective surface fibered over a curve with

irreducible geometric fibers, using local Néron theory (which Lang avoided in

his talk) plus the theory of Picard schemes. Néron’s results are terrific, and I

believe they will turn out to be very important.

Regards,

A. Grothendieck

I have re-read your nos 2 to 4, and would like some more enlightenment

if possible, since I don’t have the impression that I really understand the

conjectures. Can you see a transcendental proof of the conjecture on page

5 when V comes from a projective morphism X −→ Y with smooth generic

fiber, with base a smooth algebraic curve over C, by a base change of the

form Spec ÔY,y −→ Y ? At the bottom of the page, what is “the specially

created Grothendieck group”? On page 7 I do not understand what the

averaging operation means, given that on page 5 you explain that the g ∈ U do

not act trivially in general! Indeed, the theory of “vanishing cycles” gives some

typical examples (the operation of going around the singular fiber defines a

transvection in the cohomology of a neighboring fiber which is of infinite order).

If V is the generic fiber of a scheme over Y = Spec(A) which is smooth over Y

except perhaps over at most a finite number of points, and possibly imposing

some conditions on the nature of these points (non-degeneracy in Morse’s sense

of the word, for example) which I have no desire to go and fish out of my
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notes from last spring, I think a generalized version of the theory of vanishing

cycles makes it possible to determine the nature of the Galois operation in the

critical dimension Hn(V ) (which would then imply the conjecture); however,

the conditions mentioned above are probably very restrictive on V , since they

imply for example that for p 6= n = dimV , Galois acts trivially on Hp(V ), so

there isn’t much hope of a general proof by this route. It might perhaps be

possible to get at least the abelian variety case by this method via Jacobians,

since it is possible that if V is a curve, one can associate to it a Néron-type

model X, projective over Y = Spec(A) (something much less precise should

suffice. . . ). This would at least get us a bit further than the sempiternal elliptic

curves via Tate’s sempiternal construction. . . The irritating thing is that one

never seems to be able to get past abelian varieties!

I believe that nos 5,. . . in your report will more or less form the contents of

your course for next year? What is the “canonical group structure” on the

formal moduli variety which you mentioned on p. 16?
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August 8, 1964 Jean-Pierre Serre

Dear Ogg, J.-P. Serre : This letter to Ogg has been reproduced with his

permission.

I have again been looking at your results on “good reduction” of elliptic

curves (and abelian varieties, while we are about it). There is no doubt that

they become simpler (although less precise) if one considers the whole of the

Tate module, and not just its reduction modulo `.

More precisely, let A be an abelian variety over a local field K with alge-

braically closed residue field k (perfect k can be dealt with in the same way —

the case of general k worries me a little). Let ` be a prime number different

from the characteristic of k, and as usual, let T`(A) be the Tate module of A

with respect to `; the Galois group G(K/K) acts on T`(A). The (T`-style)

analog of your fundamental lemma is:

Theorem: J.-P. Serre : This theorem is known as the “Ogg-Néron-Shafarevich”

criterion, and was published by Tate and myself in [ST68]. Grothendieck

generalized it, cf. [Gr66b]. For A to have good reduction, it is necessary and

sufficient that G(K/K) act trivially on T`(A).

(If k is only assumed to be perfect, one should say that the action of G(K/K)

is “unramified”, i.e. factors through the group G(k/k).)

We have to prove that if A has bad reduction, then G(K/K) acts non-trivially

on T`(A), which boils down to saying that A has not enough K-rational points

of order `n. Now, let R be the ring of integers of K, and let N be the Néron

model attached to A; here I assume all the properties of N given in Néron’s

Bourbaki seminar (or in my Stockholm talk)J.-P. Serre : “Néron’s Bourbaki

seminar”: Séminaire Bourbaki 1961/62, no227.

“my Stockholm talk”: [Se62b]., plus the fact that N is quasi-projective over R,

which is certain to follow from Néron’s construction. Let Ñ denote the reduction

of N , i.e. the group scheme N ⊗R k. Since ` is relatively prime to the

characteristic of k, the K-rational points of order `n of A correspond (by

reduction) to k-rational points of Ñ of order `n. Assuming that G(K/K) acts

trivially on T`(A), one thus obtains many such points, i.e. rankT`(Ñ) = 2n,

where n = dimA = dim Ñ . But this implies that the connected component

of Ñ is an abelian variety (since any other commutative group has fewer points

of finite order). Using the fact that N is quasi-projective and has connected

generic fiber (namely A), it follows that N is proper (and indeed projective)

over R, i.e. A has “good reduction”.
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Corollary: For A to have good reduction after finite extension of the base

field, it is necessary and sufficient for G(K/K) to act on T`(A) “via” a finite

group.

This is clear. Moreover, one sees that in this case there exists a smallest

finite extension K ′/K such that A⊗K ′ has good reduction; this extension is

Galois over K; its Galois group G acts faithfully on the T`(A), and hence also

on the abelian variety Ã obtained by reducing A⊗K ′. For elliptic curves this

is the case where j is integral.

The nice thing about these results is that they more or less trivially imply

Deuring’s “subtle” results on elliptic curves with complex multiplication. In-

deed, for such a curve, which is assumed to be defined over a number field, the

action of the Galois group on the T` can be explicitly defined (as a function

of the “Grössencharakter” which gives Frobenius). Using this, one can first

prove that the action of the inertia group on T` is always “finite” (giving

yet another proof of the fact that j is integral!) and then that this action is

trivial if and only if the given place does not appear in the “conductor” of the

Grössencharakter. This is very nice, especially since nothing stops us from

doing all this for Shimura-Taniyama’s abelian varieties of (CM) type. Thus,

such an abelian variety has good reduction everywhere, J.-P. Serre : All this

is explained in detail in [ST68]. after finite extension of the base field, and

this should also give an explicit description of the set of places of a given

base field at which the reduction is bad (as a function of the conductor of the

Grössencharakter giving Frobenius). Even the first result (which corresponds

to the fact that j is integral if dim = 1) was not known.

Let us return to the case of an abelian variety A defined over a local field K

with algebraically closed residue field k. One needs to know a little more about

the case of “bad reduction”. Here is a “naive” question:J.-P. Serre : “Naive

question”. The issue at stake here is the existence of a semi-stable model

(after finite extension of the base field), which was proved shortly afterwards

by Mumford (when the residue characteristic 6= 2), and by Grothendieck (in

the general case).

Does there always exist a finite extension K ′/K, such that the reduction Ñ ′

of the corresponding Néron model N ′ is an extension of an abelian variety by

a torus (and a finite group, of course)?

This may be a stupid question. Do you see a counterexample?
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I looked again at the question of “exceptional factors” of zeta functions of

elliptic curves. I had already told you about Shimura’s curve, where 11 is

exceptional (Tate’s case); we had seen together that the global zeta function

obtained satisfied a clean functional equation (i.e. one having terms only

“at infinity”); nevertheless, the fact that one does not get exactly the same

function as Shimura bothers me, since the latter appears to be “the right one”;

in particular, it is an entire function on the whole complex plane (unless I am

mistaken), whereas the one I told you about is not. I do not understand what

is going on, and yet I do have the impression the “Galois action on cohomology”

point of view is the right one.

Best regards,

J-P. Serre
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August 13, 1964 Jean-Pierre Serre

Dear Grothendieck,

Before answering your questions, I want to add a supplement to my “letter

to Ogg” of which I recently sent you a copy. The “good reduction” criterion it

contains (namely that the Galois group of the local field should have “unramified”

action on some T`, where ` 6= the residue characteristic) trivially implies

the following corollary (due to Shimura plus another Japanese, unless I am

mistaken): J.-P. Serre : This is a reference to: S. Koizumi and G. Shimura, On

specializations of abelian varieties, Sc. Papers Univ. Tokyo 9 (1959), 187–211.

Let A be an abelian variety defined over the local field K (with perfect

residue field), with good reduction. Let B be an abelian variety over K

equipped with a K-homomorphism f : B → A with finite kernel. Then B has

good reduction over K. (For how else could Galois act on T`(B), given that it

is embedded in T`(A)?).

I believe I remember that you had a proof of this result in your language.

Am I right, and what is it?

More generally, if V is a smooth projective algebraic scheme over the local

field K, and the G(K/K)-action on all the H i
`(V ) is unramified, one can ask

whether V does not necessarily have good reduction. This is probably a little

too optimisticJ.-P. Serre : “A little too optimistic”. Of course it is! A curve

of genus 2 may have as bad reduction two elliptic curves intersecting in one

point. Its Jacobian has good reduction, and the local Galois group acts without

ramification on its cohomology., but nevertheless I cannot see any obvious

counterexample. In the same vein, I have the impression that it should be

possible to prove the uniqueness of a putative good reduction of V by imposing

ingenious conditions on the cohomology groups H i
`(V ): these groups should

not be too trivial! (But I do not have anything precise to propose yet.)

Let me now try to answer your questions — in so far as it is possible, since

the situation is far from clear, as you will see:

1) I have no “transcendental” proof of the conjecture on page 5 when V

comes from a projective map X → Y with smooth generic fiber, and base a

smooth curve over C. It would be necessary to prove that, denoting by s the

automorphism of the cohomology of the generic fiber induced by the operation

“go once around the hole”, there is a power sn of s which is unipotent (i.e.

the eigenvalues of s are roots of unity). Of course, the rest of the conjecture

(integrality of the traces and independence of `) is obvious in that case, since
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the cohomology over Z exists. But I really do not see how to prove that sn is

unipotent; this is really a very pretty property of algebraic bundles! There may

be a Kähler trick that I have missed. (I have no doubt that the result is true.)

2) Don’t worry too much about the “specially created Grothendieck group”

at the bottom of page 5. I had simply yielded to the instinct “trace of a

representation → Grothendieck group,” but I would be hard put to tell you

what Grothendieck group I meant!

3) On page 7, the operation “taking the average” does not have any intrinsic

meaning for the Frobenius (and I did not actually assert that it did), but it

does mean something for their characteristic polynomials, which allows me to

define my Pi(V, t). If you want an explicit formula, here is one:

− d

dt
logPi(t) =

∞∑
n=1

mnt
n−1,

where mn is Tr(Fn), i.e. the average (over G/U) of the traces of the elements

of G whose image under G→ Ẑ is the integer n.

Moreover, this is a general procedure for defining L-functions: see for example

Weil’s paper on class field theory, in which he gives a general definition of L-

functions (subsuming Artin’s definitions and the Grössencharakter definitions).

My feelings about these “missing factors of zeta” given by the Pi are actually

rather mixed. On the one hand, I am happy to finally have a general definition

which is a little less stupid than the one consisting of simply counting points

(and which above all depends only on the generic fiber); I have checked, for

example, that for elliptic curves with complex multiplication (cf. Deuring), one

does indeed recover exactly Deuring’s conventions, i.e. one puts “1” at every

place with bad reduction (I left this question hanging in my letter of August

2-3). On the other hand, there is the rather disagreeable example of an elliptic

curve considered by Shimura-Eichler-Igusa, for which I do not obtain exactly

what I should. It is very vexing.

(By the way, you say that in the context of “vanishing cycles”, you can

prove the conjecture given on page 5 by proving that “going around” gives

a transvection — I believe this is actually one of Lefschetz’s formulas? Can

you also prove the conjecture on page 7 when the “hole” is over a finite field?

I know this works for elliptic curves; in that case, Frobenius actually has

two eigenvalues, 1 and q, and I would be curious to see what happens in

general.)J.-P. Serre : Yet again my problems of local factors, cf. notes 96.1 and

104.2.
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4) Yes, I do intend to lecture on 5, 6 and 7 in my course next year, maybe

together with parts of 3 and 4. There is a rather large number of disparate

things which all converge (towards elliptic curves, or more generally abelian

varieties); for the moment I really do not see how this should be organised.

5) At the bottom of p.8, the consequence of the Tate conjectures which I

quote does not need X to be proper over Spec Z; this is one of its charms.

One of these days, you will have to explain to me what Néron’s local

symbols. I understood nothing of what Lang said about them — and neither

did I understand Néron’s paper, which I once had a look at. What an animal

Néron is! Underneath the clumsy airs, everything he proves is fundamental! It

is a shame he doesn’t know how to present his work better.

On the subject of Néron’s theory, I would very much like to understand

what happens to his “minimal models” when the local field is enlarged. I

would like (cf. my letter to Ogg) the situation to be as follows: the reduced

group has a connected component which is stable (starting from some finite

extension), which is the extension of an abelian variety by a torus T ; the group

of connected components itself, on the other hand, should increase with the

extension, and finally give something like (Q/Z)r, where r = dimT . At least,

that is what happens in the elliptic case, and I am trying to extrapolate.

Yours,

J-P. Serre

P.S. I have just realized that I forgot to answer one of your questions,

namely the one about the canonical group structure on the formal moduli

variety considered on page 16: it is — if I may say so — the group structure

on Ext(A∗et, A
∗
m), with the notation from the bottom of page 15. When this

Ext is made explicit using Einseinheiten, this simply gives the product of those

Einseinheiten.
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August 16, 1964 Alexandre Grothendieck

My dear Serre,

Thank you for the copy of your letter to Ogg, and your letter of the 13th,

to whose questions I will now return.

1) “My” proof of the Shimura-Koizumi theorem (which is actually inspired

by theirs). Let B be an abelian variety over K (the fraction field of a discrete

valuation ring V ), which has good reduction, i.e. comes from an abelian

scheme B over V , and let A be an abelian variety over K which is isomorphic

to a quotient (or to an abelian subvariety, which boils down to the same

thing) of B, that is A = B/N ; then A has good reduction. Indeed, let N

be the scheme-theoretic closure of N in B, namely the unique closed flat

sub-prescheme of B whose general fiber is N (this is where dim 1 is used); then,

since B is projective over V (another Japanese theorem, using Weil’s ampleness

criterion, and valid over a regular base), it follows by the theory of passage to

the quotient (written up by Gabriel in the SGAD seminar, for example)J.-P.

Serre : SGAD = SGA 3. that A = B/N is representable by a projective scheme

over V , and it is trivial that this is an abelian scheme extending A, qed. Of

course, N is not in general smooth over K, i.e. it can have nilpotent elements;

moreover, the Japanese did not have a good theory of passage to the quotient,

and that is why they are forced to twist and turn every which way (I believe

they construct an A by generalizing Weil’s theorem on the definition of a group

by birational data, rather like Mike’s SGAD talk). J.-P. Serre : “Mike’s SGAD

talk”: SGA 3, exposé XVIII. For more details on this delicate proof, see chapter

5 of Néron Models, by Bosch-Lütkebohmert-Raynaud, Springer-Verlag, 1990.

2) My allusions to “vanishing cycles” were indeed a little vague. To begin

with, the only result which appears in the literature (which is probably proved in

Igusa’s secret papers) is in Igusa’s note J.-P. Serre : “Igusa’s note”: J. Igusa, Ab-

stract vanishing cycle theory, Proc. Japan Acad. Sci. 34 (1958), 589–593. in the

Proceedings (if I remember rightly) which starts with a regular scheme X and a

projective morphism

f : X → Y = Spec(V ) whose generic fiber is smooth and geometrically

connected of dimension 1, and whose special fiber is geometrically integral

and has only one singular point which is an ordinary double point. In this

case, the Galois action is given by the Poincaré formula. I think it should

be possible to analyse what happens for several double points (and perhaps

for more complicated points?) and in higher dimensions, but I have not

written up anything on this (it is in my short-term program, but has not
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yet been done). Hopefully, the information obtained this way will be precise

enough to make it possible to prove your conjecture with Tate, in the case

of the Jacobian of a curve whose reduction is “not too bad”. (10) To pass

to arbitrary Jacobians, one would need to construct a “not too bad” model

for an arbitrary non-singular projective curve over K, after finite extension

of K if necessary. In a letter a few weeks ago, Mumford more or less said that

given C, it is possible to find a model X whose special fiber has only ordinary

singularities (if the genus is ≥ 2); in any case, he has apparently proved this for

a residue field of characteristic 0. Once Jacobians are in the bag, the passage

to arbitrary abelian varieties raises a question which I have actually already

come across elsewhere, and which looks very interesting to me: does every

abelian variety (over an algebraically closed field, say, that will suffice) have a

“finite resolution” by Jacobians, at least up to isogeny?J.-P. Serre : “Does every

abelian variety have a finite resolution by Jacobians, at least up to isogeny?”.

This is unlikely, but it does not seem easy to construct a counterexample.

Alternatively, on forming a “K group” from abelian varieties up to isogeny (a

free group generated by simple abelian varieties up to isogeny), is the subgroup

generated by the Jacobians the whole group? It would actually suffice if this

were true up to torsion, to be able to pass from the result for Jacobians to

the case of general abelian varieties, if in your conjecture with Tate we settle

for rational and not integral traces. In any case, the case of Jacobians would

imply that for an arbitrary abelian variety, the traces you have in mind are

algebraic integers — but I do not see how to get any further without using an

auxiliary result of the kind mentioned above.

3) Moreover, this question is related to the following one, which is probably

far out of reach.J.-P. Serre : “Moreover, this question is related. . . ”: As far as

I know, this text is the first one in which the notion of a motive appears. I

reproduced it in [Se91] along with extracts from Récoltes et Semailles. Let k

be a field, which for the sake of argument is algebraically closed, and let L(k)

be the “K group” defined by schemes of finite type over k with relations

coming from decomposition into pieces (the initial L is of course suggested by

the link with L-functions). Let M(k) be the “K group” defined by “motives”

over k. I will say that something is a “motive” over k if it looks like the `-adic

cohomology group of an algebraic scheme over k, but is considered as being

independent of `, with its “integral structure”, or let us say for the moment its

“Q” structure, coming from the theory of algebraic cycles. The sad truth is that

(10)rather illegible note in the margin “N.B. I have not thought about the case where the

residue field is finite.”
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for the moment I do not know how to define the abelian category of motives,

even though I am beginning to have a rather precise yoga for this category, let

us call it M(k). For example, for any prime ` 6= p, there is an exact functor T`
from M(k) into the category of finite-dimensional vector spaces over Q` on

which the pro-group (Gal(ki/ki))i acts, where ki runs over subextensions of

finite type of k and ki is the algebraic closure of ki in k; this functor is faithful

but not, of course, fully faithful. If k is of characteristic 0, there is also a

functor T∞ from M(k) into the category of finite-dimensional vector spaces

over k (this is the “de Rham-Hodge functor”, whereas T` is the “Tate functor”).

In any case, taking for granted the two ingredients (Hodge and Künneth) of the

Riemann-Weil hypothesis that you know about, I can explicitly construct (and

indeed I can do this over more or less any base prescheme, not only over a field)

the subcategory of semi-simple objects of M(k) (essentially as direct factors

defined by classes of algebraic correspondences of some H i(X,Z`), where X

is a non-singular projective variety). This is all that is needed to construct

the group M(k) (and I think it would be possible to give a description of it

that would be independent of the conjectures mentioned above, if one wanted

to). Hence, for any `, there is a homomorphism from M(k) to the “K group”,

namely M`(k), defined by the Q`-G-modules of finite type over Q`, where G

is the pro-group defined above, or, if you prefer, the associated pro-Lie algebra

(which has the advantage over the group of being a strict pro-object, i.e. with

surjective transition morphisms). This being said, on taking alternating sums

of cohomology with compact support, one obtains a natural homomorphism

L(k)→M(k),

which is actually a ring homomorphism (with the Cartesian product on the

left and the tensor product on the right). The general question which then

arises is what can be said about this homomorphism; is it very far from being

bijective? Note that the two sides of this homomophism are equipped with

natural filtrations, via dimensions of preschemes, and the homomorphism is

compatible with these filtrations. The above question on Jacobians can then

be formulated as follows: is L(1) →M (1) surjective? (Indeed, up to a trivial

factor of Z which comes from dimension 0, M (1) is nothing other than the K

group defined by the abelian varieties defined over k).

I will not venture to make any general conjecture on the above homomor-

phism; I simply hope to arrive at an actual construction of the category of

motives via this kind of heuristic considerations, and this seems to me to be

an essential part of my “long run program”. On the other hand, I have not
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refrained from making a mass of other conjectures in order to help the yoga take

shape; for example, that M(k)→M`(k) is injective, or more precisely that two

simple non-isomorphic (perhaps I should rather say non-isogenous) motives give

rise to simple `-adic components which are pairwise distinct. Tate’s conjecture

can be generalized by saying that for non-singular projective X, the “arithmetic”

filtration on the H i(X) (via the dimension filtration on X) is determined by

the filtration on M(k) mentioned above, or alternatively that the filtration on

H i(X,Z`) is determined by the Galois (or rather pro-Galois) module structure

via the corresponding filtration on M`(k). For example, in odd dimension, the

maximal filtered part of H2i−1(X,Z`(i)) is also the largest “abelian part”, and

corresponds to the Tate module of the intermediate Jacobian J i(X) (defined

by the cycles of codimension i on X which are algebraically equivalent to 0).

I should also mention that I do indeed have a construction of such in-

termediate Jacobians (whose dimension is bounded by b2i−1/2 as it should

be). Unfortunately, I do not yet even conjecturally understand the link be-

tween Hodge-style positivity and the Néron-Tate formula on self-duality of J i

for dimX = 2i− 1, and I would like to discuss this with you some day before

you leave. For surfaces, one does indeed get a proof of the Hodge index theorem

using the Néron and Tate stuff, essentially by reducing the problem to the

positivity of the self-duality of the Jacobian of a curve, and I continue to

suspect that this principle of proof by reduction to dimension 1 is actually

applicable to more general situations.

4) At the bottom of page 8, I think OX should read Z`; it is because of this

slip that I had the impression that you had forgotten a properness condition!

5) I have no feeling for your question on the variation of the Néron model

under unbounded extensions of the base field. You should ask Néron if he

knows anything.

6) The editors of the Bulletin are F. Browder, W. Rudin, E.H. Spanier,

190 Hope Street, Providence (Rhode Island).

Regards,

A. Grothendieck
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August, 1964 Jean-Pierre Serre

Dear Grothendieck,

I will be coming back to Paris on Monday, August 31. I would like to

come and chat to you one of these days. I propose the following: Wednesday

September 2, after lunch (i.e. around 14h), at IHES. If you do not agree, send

me a note at avenue Montespan (or call me: KLE 35 63 — I will be there at

meal times in any case, and maybe also during the day).

I have received your long letter. Unfortunately I have few (or no) comments

to make on the idea of a “motive” and the underlying metaphysics; roughly

speaking, I think as you do that zeta functions (or cohomology with Galois

action) reflect the scheme one is studying very faithfully. From there to precise

conjectures. . .

At the bottom of page 8 of my infinite letter, OX should read O∗X (the

sheaf of invertible elements of OX , i.e. Gm underlined as you alone know) and

not Z`. This misunderstanding has been hanging around since my first letter!

(Note the non-triviality of the rank of H1: the rational points of a Picard plus

Néron-Severi!)

I have written to Néron J.-P. Serre : Néron replied as follows on 28/08/64:

“. . . I think, as you do, that the additive groups should disappear on extending

the base field K — although I do not know how to prove it. . . ”. to ask him if

he had any feeling about what happens to his models under extension of the

base field. No answer yet.

On the subject of “nice degeneration” of curves, abelian varieties etc.: it

seems to me that this is a question for experts on moduli schemes and how

to compactify them (such as Igusa or Mumford). There is something rather

suggestive about the fact that in order to have moduli schemes in your sense,

one needs to rigidify by the m-torsion points (m ≥ 3), and this is probably also

what is needed for the Galois action to be well-behaved. Let me explain myself;

it seems reasonable to make the following conjecture: J.-P. Serre : “make the

following conjecture”. This conjecture is easy to prove, once the semi-stable

reduction theorem is known, cf. SGA 7 I, p. 366.

Let k be a local field with algebraically closed residue field, and let A be

an abelian variety defined over k. Let m be an integer which is relatively

prime to the residue characteristic of k, and assume that the points of A of

order m are k-rational (with m ≥ 3). Then the action of G(k/k) on T`(A) is
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“unipotent” for any ` (i.e. the eigenvalues are all equal to 1). J.-P. Serre : “for

any `”: “for any ` different from the characteristic of the residue field”.

This statement holds in any case when A has good reduction over a finite

extension of k (since G(k/k) then acts via a group of automorphisms of

a reduced abelian variety Ã, and one can apply my brilliant theorem J.-P.

Serre : “my brilliant theorem”: an easy consequence of a theorem of Minkow-

ski’s (Ges. Abh. I, p.203 and p.213), which says that if an element x of finite

order in GLn(Z) is such that x ≡ 1 (mod N), where N ≥ 3, then x = 1. See

for example SGA 7 I, p. 367, lemme 4.7.11. on the automorphisms of such

abelian varieties). You should be able to transform it into a statement on the

fundamental group of the moduli variety of A (rigidified at order m) acting

on the T` of the generic fiber, and this statement should be provable in the

classical case by people such as Igusa or Borel, who will tell us that “at infinity,

everything is parabolic”. . . Wishful thinking!

I have no idea about the fact that every abelian variety should be a product

of Jacobians up to isogeny (excuse me: a difference of products of Jacobians). I

am somewhat skeptical, but I doubt that anyone is presently capable of settling

the question.

A correction to my infinite letter, no3, Conjecture. I think “integer ≥ 0”

should be replaced by “integer ≤ 0”. The fact is that one needs to be careful

with the definition of “Frobenius” acting on cohomology; there are various

possible conventions, which differ by an exponent ±1; for me, Frobenius is

an element of the automorphism group of k/k, but one needs to know how

it acts on the scheme V ⊗k k (by transport de structure or by the natural

contravariant functor?), and thence on its cohomology (to which the same

remarks apply). In short, there are disagreeable conventions to be specified,

and it seems to me, alas, that the most natural ones lead to a − sign. But you

surely couldn’t care less.

See you soon, then. Yours,

J-P. Serre
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September 5, 1964 Alexandre Grothendieck

My dear Serre,

I wanted to let you know that my conjecture on the nature of your beloved

`-adic Lie algebras is more or less a consequence of the Tate conjectures. Indeed,

let M be a motive, identified if you like with the `-adic cohomology space

of a smooth projective scheme over the base field K. The Galois group G

acts on the `-adic vector space M , hence also on the dual space M ′ (note

also that if M is of weight p, then M ′(p) is isomorphic to M as a motive and

thus a fortiori as a G-module), and hence on Sym(E) [E = M ′ ⊗M ]. Thanks

to Tate, the G-invariants in Sym(E) are the vector space generated by the

classes of algebraic cycles. Since E and the Symn(E) are of weight 0, every

semi-invariant under G is in fact invariant (at least up to sign;J.-P. Serre : “up

to sign”. Things are not so simple. It would be better to say “up to a finite

group”, i.e. after finite extension of the base field. A classical case is that of

cubic surfaces in P3, where the finite group which appears can be equal to

the Weyl group of E6, whose order is 51,840. it may be necessary to pass to

a quadratic extension of K), by the Weil conjectures. This being said, since

every algebraic subgroup H of GLQ`(M) is defined by the fact of giving certain

semi-invariants, or more precisely can be described by some φi ∈ Symni(M ′)

as the set of g ∈ GLQ` leaving the lines generated by the φi invariant, it follows

that the algebraic envelope H J.-P. Serre : “algebraic envelope H”. This is the

first appearance of motivic Galois groups. of the image G0 of G in GLQ` , can

be defined in this manner, and by the remark I just made above, it is defined as

consisting of all g which leave the φi themselves invariant. Equivalently, there

is a finite set Φ of integers such that H consists of all the g ∈ GLQ` such that g

leaves all the elements of Symn(M ′)G fixed for n ∈ Φ. Since Symn(M ′)G is

generated by the algebraic cycles it contains, it follows that in the above, the φi
can be taken to be classes of algebraic cycles. But then, it follows that H

is described by “motivic” equations, i.e. with coefficients in algebraic cycles

which are independent of `. I think that starting from H, it should be possible

to recover at the very least the semi-simple part of G0 (if this has a precise

meaning), by taking something like the commutator of H0 (the connected

component containing e); it is likely that a description of the center of G0

would escape this method. Nevertheless, one can say that the center of H is

nothing but the part of H invariant under G, or alternatively H ∩GLQ`(M)G,

i.e. the intersection of H with the Q`-algebraic part of EndQ`(M) = M ′ ⊗M ,

and as a subset of the latter space it can be described as an algebraic group by

equations whose coefficients are rational and independent of `. It remains to
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be seen what the trace of G0 = center of G0 looks like, and in particular its

Lie algebra.

Of course, these developments can be translated directly into Lie algebra

terms by replacing group representations by algebra representations and K-

rational algebraic cycles by K-rational algebraic cycles in the above. One thus

finds that the algebraic envelope h0 of your Lie algebra g0 does indeed come

from a motive which is independent of `, so the same holds for its derived

algebra, which is nothing but the derived algebra, i.e. the semi-simple part,

of g0. As for the center of g0, it is contained in the center of h0, which is

itself defined by an abelian Q-Lie subalgebra of the Q-algebraic subspace

of M ′ ⊗M = gl(M), this space being independent of `. The point which still

has to be cleared up is whether the center of g0 itself is defined by a Q-vector

subspace of this type. In any case, from this point of view, the case of elliptic

curves is extremely suggestive (and for me, convincing): one then finds, as

luck has it, the arithmetic invariant controlling the situation, namely the

quadratic field of complex multiplication (and not simply an insipid tensor

product with Q`). Moreover, I have the impression that your grasp of the Tate

conjectures should be good enough to investigate what happens for a product

of elliptic curves.

The above considerations show fairly clearly how one can give a complete

construction (or at least a construction of the part acting faithfully on the

set of semi-simple motives) of the Lie proalgebra associated to K (or at least

of its “algebraic envelope”, and in particular its semi-simple part), in terms

of the category of motives over K (equipped with the structures ⊗ and Hom,

which moreover determine each other, and its functors T` to the category of

finite dimensional vector spaces over Q`). Note that the “right” Lie proalgebra

associated to an arbitrary field K (which is not necessarily of finite type over

the prime field nor even necessarily a field . . . ) can be obtained by considering

K as the inductive limit of its subrings of finite type over Z, of which one

takes the projective system of π1, followed by the projective system of their

Lie proalgebras. Even if K is algebraically closed, one obtains a “Galois” Lie

proalgebra which is not at all trivial: it is, for example, the one that appears

naturally in the statement of the Lie algebra version of the Tate conjectures.

Yours,

A. Grothendieck
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September 8 1964 Jean-Pierre Serre

Dear Grothendieck,

I am a little “confusé”, as Lang would say. I do see that Tate’s conjecture

gives the algebraic envelope of the Galois groups (and the corresponding Lie

algebra), but I do not see why the Lie algebras g` in question would form a

motive. In fact, I have the impression I have a counterexample. You will tell

me if I am talking rubbish:

Let E be an elliptic curve (of course!) defined over a finite field k. I assume

we are in the “general” case (non-zero Hasse), i.e. its Frobenius π is such that

none of its powers is a homothety. The ring of endomorphisms of E is then

an imaginary quadratic field K, and π can be identified with an element of K.

Passing to `-adics, K defines a Lie algebra K` (acting on H1, say); it is clear (!)

that this is a motivated Lie algebra (i.e. coming from a motive), and that it is

described by its invariants. The unfortunate thing is that the Lie algebra g`
which interests us is nothing but a wretched 1-dimensional subalgebra of K`

generated by log` π
N , where N is such that πN ∈ the domain of definition of

the series log`. It should be noted that log must be taken in the `-adic sense,

i.e. is awfully transcendent. I am sure the g` do not form a motivated Lie

algebra (they would have to be defined by a line in K, which is certainly not

true) — and are not algebraic either.

The odd thing is that I haven’t been up to constructing an analogous

example over a number field. I would not be surprised if in this case the Galois

groups were always algebraic and the g` always motivated — but this may be

somewhat optimistic. I will have to investigate the Shimura-Taniyama case

more carefully.

Note also that from this beautiful hypothesis plus your Sym(E) stuff, one

can deduce the following conjecture (still over a number field):

the Lie-algebra g` always contains the homotheties. J.-P. Serre : The

conjecture “g` contains the homotheties” was proved in 1980 by Bogomolov

(C.R.A.S. 290, 701–703).

I had asked this question in my Russian paper.

Yours,

J-P. Serre
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September 9, 1964 Alexandre Grothendieck

My dear Serre,

Since my last letter I have also been giving some thought to the finite ground

field case, which does seem to give rise to algebras which do not come from

motives. You should look into this thoroughly. If this screws up, I do not see

any other plausible yogic reason why the rank of the center of your g` should be

independent of `, in the general case. I believe only that it probably follows from

Tate’s conjectures that the center of the group G0 of my letter is topologically

generated by a family (independent of `) of “algebraic” automorphisms of M ,

essentially the central components of the various Frobenius automorphisms.

(Perhaps one only gets the center of G0 up to a finite group, i.e. an open

subgroup of this group.) But in general, given a family of automorphisms,

is there any reason why the dimension of the group that it generates `-adic-

topologically should be independent of `? As for your suggestion that maybe

over a number field the g` do come from a motive, I have no feeling for it

(except of course that it would be nice!). I am actually very annoyed not to

have managed to produce any kind of yoga for number fields, i.e. essentially for

unequal characteristics, notably in order to get hold of some geometric meaning

for the various conjectures involving L-functions and such. To do this, it will

probably be necessary to introduce the connected part of the “right” Galois

group (which, by the principle of conservation of nuisance, seems to be the

counterpart of the equally unexplored “infinitesimal part” of the fundamental

group in characteristic p > 0).

I thought a little yesterday about Tate’s conjectures on his functions ϕi,

wanting to understand their link with his grand geometric conjecture. It is

true that his conjectures 2 and 3 (from Woods Hole), for characteristic p > 0,

are contained in his conjecture 1 (of course, I am freely interpreting his

conjecture 3 by assuming that the system of representations of the fundamental

group he starts with comes from a motive). To see this link, it is enough to

re-interpret the function ΦM defined by a motive M over the prescheme X

of finite type over Fp as being the alternating product of the characteristic

polynomials of Frobenius on the cohomology groups with compact support

H i
! (X,M), where X denotes the passage to the algebraic closure of Fp; when X

is smooth (which can be assumed for Tate’s conjectures 2 and 3), one can use

the duality theorem; one finds directly (and therefore essentially without using

Tate but only Weil) that the order of the pole of ΦM at the point n = dim(X)

(the weight of M being 0) is nothing but the rank of the invariant module MG.
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Moreover, I think the “finite” expression in terms of cohomology with compact

support given above can already be proved, using neither Tate nor Weil nor

even resolution of singularities. In the case where X is not assumed to be

of characteristic p > 0, one even finds similarly that ΦM is the alternating

product of the ΦMi relative to motives Mi over Spec(Z), namely the Ri!f(M),

where f : X → Spec(Z) is the canonical projection. In this way, Tate’s

conjectures 2 and 3 can be reduced to the case X = Spec(Z), and are equivalent

to saying that if MG = 0, then ΦM is still holomorphic and invertible at the

point s = 1 (M being assumed of weight 0). — I have also looked at how to

interpret the Birch–Swinnerton-Dyer conjecture for X of characteristic p > 0;

it so happens that (modulo Tate) it is exactly equivalent to the conjecture I

mentioned to you on abelian schemes over a scheme of finite type X, namely

that H1(X,A)(`) is finite; moreover, this fact itself should follow from the Tate

conjectures.

Regards,

A. Grothendieck
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September 24, 1964 Alexandre Grothendieck

My dear Serre,

I have just noticed that part of your conjectures with Tate can be proved

almost trivially, namely, exactly the part that has no obvious “transcendental”

explanation:J.-P. Serre : “your conjectures with Tate”: those stated in S§2 and

3 of my letter of August 2-3, 1964.

Theorem: Let V be a discrete valuation ring with fraction field K, let `

be a prime number other than the residue characteristic, let E be a finite-

dimensional vector space over Q` on which G = Gal(K/K) acts, let I be “the”

inertia subgroup of G, and assume that: a) I acts on E via a pro-`-group

quotient of I, and b) There exists a subring A of K of finite type over Z, such

that the action of G on E comes from the action of G0 = π1(Spec(A)) on E

via the natural homomorphism G→ G0.

Then the action of I on E is unipotent (i.e. the actions of the g ∈ I on E

are unipotent).

Corollary 1: Suppose that instead of a) and b), one has the condition :

b′) E comes from a free module of finite type E0 over Z`, on which a G0 as

above acts.

Then there exists an open subgroup U of I whose action on E is unipotent.

Indeed, after taking a finite extension of K if necessary, the problem is

reduced to the situation of the theorem.

Instead of proving the theorem as stated, I will restrict myself to proving

a variant (the proof of the theorem is essentially identical, modulo the usual

little technical exercises):

Corollary 2:Assume that instead of b) we have the condition:

b′′) The residue field of V is finite (assume also a)).

Then the action of I on E is unipotent.

Indeed, V can obviously be assumed complete, and in this case the structure

of the quotient of G by the smallest closed subgroup of I containing the

Sylow p-subgroups of G is known: it is a semi-direct product Ẑ · Z`, where the

first factor (generated by the “Frobenius” f ) acts on the second (generated

by g) via the equation:

fgf−1 = gq,

where q is the number of elements in k. (Of course, the second factor Z`
could be intrinsically written as Z`(1) = T`(Gm); the choice of g is awfully
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non-canonical.) Hence, the action of G on E is given by two automorphisms f, g

of E satisfying the above relation. This implies that g and gq are equivalent

automorphisms, so the set of eigenvalues of g is stable under the operation s 7→
sq, and as it is finite, it follows that it consists of qN -th roots of unity for

a suitable N . Furthermore, it follows immediately from the continuity of

Z` → Aut(E) that these eigenvalues must be congruent to 1 modulo the

maximal ideal of the ring of integers of the finite extension of Q` containing

the eigenvalues. Consequently, all these eigenvalues are equal to 1.

Of course, there is no hope of giving such a trivial proof of your integrality

conjectures, which are fundamentally linked to the concept of motive; I have

the feeling they should follow (like the “global” integrality theorems) from the

conjectural “Künneth” formula for algebraic cycles.

These arguments by reduction to schemes of finite type in the absolute sense

(of which the first example known to me is Lazard’s) J.-P. Serre : “Lazard’s”:

This is a reference to:

M. Lazard, Sur la nilpotence de certains groupes algébriques, C.R.A.S. 241

(1955), 1687–1689.

Lazard proves that an algebraic group whose underlying variety is isomorphic

to an affine space Affn is nilpotent: he reduces the problem to the case where

the base field is finite and of characteristic p, and notes that the group of

rational points is nilpotent since it is a p-group. are very amusing. Here is

another sample, which I am going to include in EGA IV 10 along with Jacobson

preschemes (warn me if it is already known, so I can give credit where it is due):

let X be finitely presented over a prescheme S, and let g be an endomorphism

of X which is purely inseparable (resp. a monomorphism); g is then surjective

(resp. an isomorphism). J.-P. Serre : Grothendieck included this result ( “every

injective endomorphism is bijective”) in EGA IV 10.4.11.

I am stuck on the question we talked about on the telephone, of which

here is a typical example: take an algebraic curve X over a finite field Fq,

and an abelian scheme A over X of relative dimension 1 (“a pencil of elliptic

curves”); let E be T`(A). The question is to study an = χ(E⊗n) ∈ K(Q`[Z])J.-

P. Serre : Here K(Q`[Z]) denotes the Grothendieck group of the category of

finite dimensional Q`-vector spaces equipped with an automorphism, cf. h) of

the letter of October 3-5, 1964. (also given by the Z-functions with coefficients

in E⊗n) for various n, and show in particular that
∑
ans

n ∈ K[[s]] is a rational

function. If you like, replace the E⊗n by symmetric powers, or by the virtual

sheaves deduced from E via the Adams operations, all of which should be
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more or less the same. It seems very plausible to me that results of this type

should hold for all motives over an X of finite type over Fp, but on the other

hand I have not yet managed to clarify whether all this really has anything

to do with motives. One might think of trying to construct counterexamples

using “very transcendental” representations of the fundamental group of X,

but for the moment I have not managed to construct any which do not

essentially arise from sheaves on Fp and for which there is no hitch; this is

partly a consequence of the fact that (if X is absolutely irreducible over Fp)

the abelianization of the fundamental group of X has an `-adic component

isomorphic to the one corresponding to Fp under the canonical projection. In

order to construct examples destined to be pathological, one is therefore forced

to consider genuinely non-abelian representations, and to construct those, one

would need some idea of the way Frobenius acts on the (non-abelianized!)

fundamental group of X. Do you have the slightest conjecture to propose in

this direction? I don’t.

I should also point out that there is an obvious dictionary which lets us

interpret the various results on Z-functions in all genera (rationality, the

Riemann hypothesis in the cases where one has it or wants to assume it) in terms

of fundamental groups G of schemes of finite type, the system of “Frobenius

elements” of G (classes of privileged elements of G modulo inner automorphisms

which are in one-to-one correspondence with closed points of the prescheme

used to define G) and the canonical homomorphism G → π1(Fp) = Ẑ, as

properties of more or less arbitrary `-adic representations of such G. When X

is a curve, one can even interpret the cohomology of X which arises in the

expression of the Z-functions (defined at first as infinite products over Frobenius

automorphisms) as the cohomology of the group G; the case where X is a Mike-

style “elementary scheme” is much the same. Given this, I wonder whether

group theory experts, such as Tate or yourself, might not be up to the effort

of extracting more complete information from the theorems resp. conjectures

which are already known, in order to get information on the Z-functions

associated to tensor powers etc. of a fixed G-module, for example.

Returning to the Lefschetz formula for schemes of finite type: as I had pointed

out to you, this can be considered as an identity in a group K(Z), identifying

a finite sum with an infinite sum, and because of this, it remains valid when

taking into account the existence of a finite group of automorphisms of (X,F ),

and furthermore an arbitrary ring acting on F as endomorphisms. The question

which then arises is whether the formula continues to hold when taking into

account arbitrary endomorphisms of (X,F ), or at least endomorphisms g which
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act as proper endomorphisms on X. This is practically equivalent (at least for

a coefficient field of characteristic 0, such as Q`) to the question [of knowing]

whether the Lefschetz formula in terms of cohomology with compact support

is true not only for f and its powers, but also for the products of the latter

with g and its powers. This is certainly true if X is a curve, by the result of

Verdier’s we assumed. In the general case, the initial proof does not work as it

stands, since it will not be possible to find successive g-invariant fibrations in

order to reduce the problem to the case of a curve. My impression is rather

that we should look for a purely geometric theorem of the following type: let X

be of finite type over algebraically closed k, let F be a constructible Q`-sheaf

on X, g a proper endomorphism of X, and F → f∗(F ) a homomorphism,

so that f acts on the H i
! (X,F ). Assume that the Zariski tangent map to f

vanishes at every rational point of X (which is a condition which is practically

meaningless except in characteristic p > 0), which implies in particular that

the fixed points of f , and thus also of its powers (which satisfy the same

conditions as f), are isolated. This being given, one wants the naive Lefschetz

formula to hold J.-P. Serre : For the Lefschetz formula, see SGA 5, exposés

III and III.B. (in terms of traces; for coefficients of non-zero characteristic

one also needs a Lefschetz formula in terms of characteristic polynomials).

It is possible that in order to prove a theorem of this type and be able to

reduce for example to the case of curves, it will be necessary to reformulate

the general Lefschetz theorems in terms not of endomorphisms of a single X

(which are then compared with the identity endomorphism), but in terms of

the coincidence of two morphisms X // // Y (in the case of non-singular

varieties with constant coefficients, a variant of this type is probably more or

less classical; in any case, I wrote one up in the old days).

Please do not forget to ask Verdier if he has received my letters, and to urge

him to send me the end of the notes, and his comments on my remarks. I would

also like to know if Mike has not dropped the (re-)writing of his talks at our

seminar. Finally, you can tell Mumford that I have decided to include a certain

number of supplements in EGA IV in a paragraph 20 onJ.-P. Serre : “paragraph

20”: this is found in §21. invertible sheaves, divisors, linear systems J.-P.

Serre : “linear systems”. This classical notion is not easy to translate into the

language of schemes; as far as I can see, it does not appear in the published

chapters of the EGA’s. of divisors, starting with the determination of the

invertible sheaves on a projective bundle P on S (Pic(P ) ∼= Pic(S)× Z) and

(as a corollary) the determination of the automorphisms of a projective bundle;

we will probably also include the Auslander-Buchsbaum theorem: regular ⇒
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factorial. I had originally intended to include these kinds of sorites in Chap.

III, but as the end of Chap. III does not seem very close to publication, unlike

Chap. IV, I have changed my mind.

Regards,

A. Grothendieck
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September 30, 1964 Jean-Pierre Serre

Dear Grothendieck,

Your theorem on the action of the inertia group is terrific — if you really

have proved it. In fact, I cannot see how you generalized the argument which

proves corollary 2; in the general case, you need Frobenius automorphisms

which normalize the group I, and I really do not see how you go about it.

Note also that the theorem (and even corollary 2) are false(11) as stated;

all that you prove (but it is quite sufficient to enchant me) is that there is

an open subgroup (as in Corollary 1) where everything works; indeed, look at

your proof of Corollary 2, you will see that the so-called qN -th roots of unity

you obtain are in fact (qN − 1)-th roots of unity, and qN − 1 can very well be

divisible by `.

I do not understand your question on the series
∑
ans

n (page 3 of your

letter) because I do not understand what the ring K(Q`[Z]) you mention is:

could you be more explicit?

I have no idea how Frobenius acts on the fundamental group of a curve; J.-P.

Serre : “in his Stockholm talk”: see I.R. Shafarevich, Collected Math. Papers,

Springer-Verlag, 1989, top of page 284. Šafarevič also mentioned this question

in his Stockholm talk.

Nor do I have any ideas on the distribution of the Frobenius automorphisms

or on Lefschetz formulas, except that the latter himself considered his fixed

point theorem as a special case of the coincidence between two maps.

Local news: Atiyah-Bott are continuing in the direction of the Woods-Hole

fixed point formula, from the “elliptic systems” side. I don’t understand any

of it, but it looks beautiful, and rather unrelated to fixed points; they think it

should give a direct and elementary proof of Riemann-Roch, for example. In a

word, they are creating a new “yoga” for this kind of question.

Mumford-Tate are looking at algebraic cycles on abelian varieties. They

would like to finish off the Hodge conjecture (and the fact that every algebraic

cycle is a linear combination of products of divisors) for abelian varieties; unless

I am mistaken, they have managed to deal with a product of elliptic curves,

and it does not look at all trivial. Just now, they told me about a (conjectural)

(11)easy counterexamples
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construction of the algebraic group over Q which in `-adics should give the

Galois group G` that I like. More precisely:

Let A be an abelian variety over C; let V be its H1 (with coefficients in Q);

the desired group will be an algebraic subgroup of GL(V ) defined over Q. More

precisely, decompose V ⊗C into type (1, 0) + type (0, 1), and let T be the

torus of dimension 2 consisting of homotheties λ on the first factor and µ on

the second. This is an algebraic subgroup of GL(V ⊗C). The desired group G

is by definition the smallest algebraic subgroup of GL(V ) whose extension

to C contains T J.-P. Serre : One recognizes the Mumford-Tate group. (our

forefathers would say: the algebraic group generated by T and its conjugates

over Q).

Of course, for the moment they cannot see how to prove this, but it is

nevertheless satisfying; it will also be necessary to check that this gives the

right result in the few cases for which the question is settled. J.-P. Serre : “the

few cases in which the question is settled”. There were not many of them

in 1964. I was starting to attack elliptic curves, but I did not have complete

results except, of course, for the case of complex multiplication.

I have run all the errands you set me, with mixed results:

Tate says that he does not have much to say about heights (but Mumford

has some original ideas on Weil “distributions” which he is supposed to explain

to us in the seminar, one of these days). I do not know whether Tate will end

up writing to you; if I understand correctly, it is as difficult for him as writing

a paper!

Mumford is sending a copy of his lecture notes on surfaces to Gabriel, and

is sending you 3 copies for your “stable”.

Verdier has received your letters; I assume he will reply directly to you. I

have not yet been able to explain to him in detail what you wanted from him

(a Lefschetz formula for curves); I will see him again one of these days.

Mike Artin does not seem to be writing up at the moment. He says he needs

Verdier’s lectures to be written before he goes back to his own; my impression

is that it will be some time before you get a draft from him.

I have not yet seen Schlessinger or Lichtenbaum.
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Phew! I think that is all.

Yours,

J-P. Serre

P.S. It is my turn to set you a task: will you remember to write up a

summary of the chapter on dimension for Bourbaki?

P-S.2. Samuel has written up categories: J.-P. Serre : “Samuel has written

up categories”. This is a reference to a Bourbaki report. 70 pages! But it is

only a first draft, do not despair. . .
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September 30, 1964 Alexandre Grothendieck

My dear Serre,

I have been thinking about functional equations of Z-functions in the geo-

metric case (base field Fp), and things seem simpler to me than you appeared

to believe.J.-P. Serre : This letter, like the next one, contains hand-written cor-

rections which are hard to decipher. The reader wishing to check the exactness

of the formulas is invited to either redo the computations himself or refer to

[Gr64], which is less detailed but clearer.

Let X be a scheme of finite type over F, E a constructible sheaf of vector

spaces over Q or a finite extension of Q. Associate to E a sheaf, or rather

a complex of sheaves (considered as an object of a derived category) D(E)

(which for the moment is defined at least for smooth or quasi-projective X).

In the “good cases”, E 7−→ D(E) is a perfect self-duality in the triangulated

category constructed from constructible sheaves, and in particular, D(E) is

also constructible (i.e. the sheaves H i(D(E)) are constructible, and all but

a finite number of them vanish). For the moment, by “good cases” I mean

those for which resolution of singularities is available for finite schemes over X

equipped with divisors (this is trivial in dim ≤ 1, for example, and follows from

Abhyankar in dim ≤ 2), or else restricting to smooth X with “twisted constant”

sheaves on X, i.e. defined by continuous representations of the fundamental

group of X. In any case, the global duality thoerem (when D(E) is defined)

gives a canonical isomorphism (g : X → Spec(F) is projection)

(1) D(R!g(E)) ' Rg∗(D(E))

where the D on the left-hand side is the straightforward duality of Q-vector

spaces equipped with an automorphism f (Frobenius). When X is proper

over F, one can also write R!g on the right-hand side, to obtain

(1 bis) D(R!g(E)) = R!g(D(E));

but in general there are good reasons for writing (1) as a formula on virtual

sheaves

(2) D(R!g(E)) = R!g(D(E)) +R∞g(D(E))

where from the virtual sheaves point of view one sets

(2 bis) R∞g(F ) = Rg∗(F )−R!g(F )

which makes (2) tautological, but R∞g can also be defined as a cohomological

functor, or a functor of triangulated categories, by using a compactification X
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of X in the following way: set Y = X −X, let i : X → X and j : Y −→ X be

the canonical immersions, and set

(3) R∞g(F ) = Rg∗(j
∗(Ri∗(F )). J.-P. Serre : Here g denotes the projection X →

Spec(Fp).

The cohomological functor thus obtained does not depend on the choice of

compactification, and plays the role of local cohomology at infinity; of course,

the virtual formula (2) actually comes from an exact triangle linking the

three complexes appearing in (2), which itself comes from the exact triangle

linking Rg∗, R!g and R∞g in general. Translating formulas (1 bis) and (2) in

terms of characteristic polynomials, i.e. into Z-functions, yields functional

equations:

(A) LD(E)(t) = (−t)−χ(E)δ(E)LE(t−1) (g proper)

(B) LD(E)(t) = (−t)−χ(E)δ(E)LE(t−1)AE(t) (g arbitrary)

where

(4) χ(E) = rank∗R!g(E) =
∑
i

(−1)i rankH i
! (X,E),

(5) δ(E) = det∗R!g(E) =
∏
i

det(f |H i
! (X,E))(−1)i ,

and finally, the AE(t) in (B) is a “correction term” which can be explicitly

written as an “L-function at infinity”

(6) AE(t) = L∞D(E)(t)
−1,

where for all F on X,

(6 bis) L∞F (t) = LR∞g(F )(t) =
∏
i

det(1− tf |H i
∞(X,E))(−1)

This correction term J.-P. Serre : The exponent (−1) in the right-hand side of

(6 bis) should probably be replaced by (−1)i. is equal to 1 when X is proper.

These formulas are valid in the case where D(E) can be defined and is known

to be constructible. Using (1), χ(E) and δ(E) can also be expressed by means

of cohomology with arbitrary support on D(E) via

(4 bis) χ(E) = rank∗Rg∗(D(E)) =
∑
i

(−1)i rankH i(X,D(E)),

(5 bis) δ(E) = det∗Rg∗(D(E))−1 =
∏
i

det(f |H i(X,E))(−1)i+1
.
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Note also the difference in nature between χ(E) and δ(E), the first being a

geometric invariant, and the second being arithmetic.

Assuming the Weil conjectures and resolution of singularities, the role of (B)

as an “approximate” functional equation becomes more precise upon noting

that if E comes from an effective motive of weight ≤ ρ, then R∞g(D(E)) also

comes from a motive over F, not generally pure of weight ρ even if E is, nor

even of weight ≤ ρ, but of “level” ≤ ρ− 1, which implies that the zeros and

poles of the correcting L-function A(t) have inverses which are multiples of

integer powers of p by algebraic integers whose absolute value is of the form

pi/2, where i is integral and ≤ ρ− 1.

The functional equations (A) and (B) link the L-functions associated to two

different sheaves, E and D(E). In certain cases, D(E) can be expressed simply

in terms of E, yielding a functional equation of LE alone. Assume for example

that X is smooth and everywhere of dimension n, and that E is “twisted

constant”; then (by definition)

(7) D(E) = E(n)[2n],

where (n) means tensoring by the Tate sheaf Q(n), [m] means translation of

degrees by m, and finally, ˇ denotes the dual sheaf in the naive sense. It follows

that

(7 bis) LD(E)(t) = LE(p−nt),

which makes it possible to write the functional equations (A) and (B) as

expressing LE in terms of LE . One can go farther by making the additional

assumption that there is an isomorphism

(8) E ' E(ρ), whence D(E) = E(ρ+ n)[2n]

where ρ is an integer (which in the motivic case is morally the “weight” of E).

Then one can also write

(7 ter) LD(E)(t) = LE(q−1t), where q = pρ+n.

The functional equations (A) and (B) are then of the form

(B′) LE(1/qt) = AE(t)(−t)χ(E)δ(E)LE(t),

where the three extra factors on the right-hand side are as given in (4), (5),

(6), and the correction factor AE(t) is 1 if X is proper (i.e. one then has a

simple equation (A′) which I will not copy down). Moreover, bearing (8) in
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mind, AE(t) can also be written explicitly in terms of L∞E (t) instead of L∞D(E)(t),

(6 ter) AE(t) = L∞E (1/qt)−1,

and similarly, (4 bis) and (5 bis) can be simplified to give

(4 ter) χ(E) =
∑
i

(−1)i rankH i(X,E),

(5 ter) δ(E) = qχ(E)δ(Rg∗(E))−1 = qχ(E)
∏
i

det(f |H i(X,E))(−1)i+1
.

When X is moreover proper, a comparison of (5) and (5 ter) actually shows

that

(9) δ(E)2 = qχ(E) i.e. δ(E) = ±qχ(E)/2.

(N.B. this equality comes out without using any conjecture such as Weil); thus,

in this case, knowing χ(E) determines δ(E) up to sign. One can specify the

sign ± in (9) a little by proceeding as in your courseJ.-P. Serre : “as in your

course”. This is a reference to the course of 1960/61, in which I had given the

formal properties of L-functions, cf. [Se61b].; also, when X is not necessarily

proper, but if one assumes the Weil conjectures and resolution of singularities,

so as to be able to give a virtual decomposition of R!g(E) as a sum of pure

components, one can give χ(E) and δ(E) explicitly in terms of these virtual

components.

Now assume that X is a projective smooth curve, which for the sake of

argument is connected, i.e. irreducible (but not necessarily geometrically

irreducible), with fraction field K = k(η). Assume that

(10) E = iη∗(M),

where M is a constructible sheaf over η = Spec(K) (the generic point of X)

and iη : η → X is the canonical injection. (Beware of the fact that the right-

hand side of (10) really does say iη∗ and not Riη∗ .) It comes to the same

to say that if U is an non-empty open subset of X over which E is “twisted

constant”, or, as we will say, unramified, then E is nothing else than i∗(E|U ),

where i : U → X is the canonical injection. Note that one then has

(10 bis) E = iη∗(M̌),

which is trivial, and moreover

(11) D(E) = E(1),
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which is essentially the local duality theorem on X, already contained in Ogg’s

thesis. Thus, even though E is not twisted constant, one still obtains a simple

functional equation linking LE and LE directly, namely:

(C) LE(1/pt) = (−t)χ(E)δ(E)LE(t).

When M satisfies

(12) M̌ = M(ρ), whence D(E) = E(ρ+ 1),

(morally M is a motive of weight ρ), (C) takes the form

(C ′) LE(1/qt) = (−t)χ(E)δ(E)LE(t), with q = p1+ρ.

In these formulas, χ(E) and δ(E) are again as given by (4) and (5) and their

variants bis and ter; in particular, one has formula (9), which determines δ(E)

in terms of χ(E) up to sign.

Let us write down the global form of LE explicitly:

(13) LE(t) =
P 1
E(t)

P 0
E(t)P 2

E(t)

where

P iE(t) = det(1− tf |H i(X,E));

condition (12) actually implies the following partial functional equations which

make (C′) more precise:

(C ′′)

{
P 2
E(t)(1/qt) = (−t)−b0(E)δ0(E)−1P 0

E(t),

P 1
E(t)(1/qt) = (−t)−b1(E)δ1(E)−1P 1

E(t).

Let us now work in the framework of motives, assuming resolution of singu-

larities and the Weil conjectures. Assume that E comes from a motive M

over K, purely of weight ρ (which implies (12) when M is a semi-simple mo-

tive; this condition can even be dropped when working with virtual sheaves).

One can then check that the inverses of the eigenvalues of the Frobenius ac-

tion on H0, H1, H2 are respectively of absolute value pρ/2, p(ρ+1)/2, p(ρ+2)/2,

and moreover those appearing in H0 and H2 come in pairs whose product is

q = pρ+1; finally, if M is an effective motive, so that ρ ≥ 0, H2 (while being

of weight ρ+ 2) is of level ≤ ρ, and unless I am mistaken there should even

be a Lefschetz-type isomorphism (which does not depend on the hypothetical

theory of motives) H2 = H0(−1), whence

(14) P 2
E(t) = P 0

E(pt).
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In particular, the zeros of LE are precisely the eigenvalues of Frobenius on H1

and have inverse absolute value p(ρ+1)/2 = q1/2, the poles are exactly the

eigenvalues of Frobenius on H0 (for those of inverse absolute value pρ/2))

and H2 (for those of inverse absolute value p · pρ/2). When M is an effective

motive of weight 0, i.e. essentially for classical L-functions associated to finite

groups, these results are valid without any conjectures thanks to the Riemann

hypothesis for curves. For an effective motive of weight 1, possibly twisted

by Q(1), i.e. associated to an abelian variety Aη over K, say

(15) M = T`(Aη)

(for this choice, therefore, ρ = −1), the validity of the above results for absolute

values is equivalent to the Weil conjectures for surfaces, given that resolution

exists for surfaces. (N.B. One may obviously always assume that A is a

Jacobian, which reduces the problem to surface theory.)

To finish up with the good properties of LE in this situation, let us specify

what the local factors

LxE(t) =
1

P xE(t)
=

1

det(1− td(x)fx|Ex)
,

look like, where fx is the Frobenius relative to x (morally, the d(x)-th power

of the absolute Frobenius f), and d(x) = the degree of k(x) over F. For x

“unramified” for M , the corresponding local factor is purely of weight ρ; for x

“ramified” for M , the corresponding local factor is of weight ≤ ρ, but is not

in general purely of weight ρ. In the case (15), the local factors can be given

especially nicely in terms of the Néron model A of Aη; ; indeed (by the very

definition of the Néron model via its axiomatic properties) one has

(16) E = T`(A)

whence

(16 bis) Ex = T`(Ax)

where Ax is the fiber of the Néron model A at x. (N.B. In formulas (15) and (16

bis), I forgot to tensor the right-hand side by Q. . . ). Thus, the local factor P xE(t)

splits into a product of two factors at x, respectively of weight ρ − 1 = −2

and ρ = −1, namely essentially the characteristic polynomials of fx on T`(A
mult
x )

and T`(A
abel
x ), where Amult

x and Aabel
x are respectively the multiplicative and

abelian parts of Ax (whose formal definition is obvious, given that k(x) is finite

and hence perfect).
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At first glance, it would seem from these considerations that if the aim is

to define an L-function for a sheaf M over η = Spec(K) coming from some E,

the right definition would be to take LM = LE . This gives results which are

perfect from the point of view of functional equations, distribution of zeros and

poles and relationship with the Néron model. In fact, I forgot to mention in

the above the attractive birational interpretation of the multiplicity of the pole

at 1 (or p) of LE when M is a (not necessarily effective) semi-simple motive of

weight 0; it is the dimension of H0(K,M) = Mπ (where M is considered as a

module over π = Gal(K/K)). I can only see one flaw in this definition of LM ,

namely that LM is not multiplicative with respect to exact sequences in M

(and probably, when finite groups G of automorphisms are also introduced

in order to define functions LM,φ with respect to class functions φ on G, the

variance of the functions LM,φ is given by formulas that are not as simple as

one would like; I have not looked into this question). If one insists on having

an L-function which depends multiplicatively on M , it seems to me beyond

doubt that the definition you recommend is the best one. From the point of

view adopted here, it consists in considering the L-function with coefficients

not in the E defined in (10), but with values in a slightly larger sheaf

(10 bis) E\ = E +
∑
x

ix∗(αx(M)),

where the sum is taken over an arbitrary set of closed points x ∈ X containing all

the ramification points of M ; for a closed point x ∈ X, αx(M) is a constructible

sheaf on k(x), of rank at most r−rangEx (where r is the rank of M), and hence

zero if x is unramified for E; its explicit definition is as follows: consider M as

a module over π = Gal(K/K), let Dx, Ix, be a decomposition (inertia) group

of x in π, with Ix ⊂ Dx; then there is a canonical isomorphism

Dx/Ix = Gal(k(x)/k(x)) = Ẑ.

Then one knows (cf. my last letter) that there exists an open subgroup U

in Ix, invariant in Dx, which has a unipotent action on M , and one can

filter M by the subspaces Mx,0 = MU ,Mx,1 = inverse image of (M/Mx,1)U

in M , etc. Then the grx,i(M), i ≥ 0 are modules over Dx/U , and hence the

grx,i(M)Ix/U are modules over Dx/Ix, so they can be considered as sheaves

on k(x). Actually, grx,0(M)Ix = M Ix = Ex is nothing but the fiber of E at x.

Given this, we set as you do

(17) αx(M) =
∑
i≥1

grx,i(M)Ix
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and
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(18) L\E(t) = LE\(t) = LE(t)
∏
x

Lαx(M) = LE(t)/
∏
x

Pαx(M)(t
d(x)),

where Pαx(M)(t) = det(1− tfx|αx(M)) is the characteristic polynomial of fx
in αx(M).

In the framework of motives, one can specify, at least conjecturally, the

structure of the supplementary factors 1
Pαx(M)(t)

that you want to add to LE , and

which a priori might add some poles (or destroy some zeros). Still assuming

that M comes from a pure motive of weight ρ, it should be true that all

the grx,i(M)Ix are in fact motives over k(x), which are effective if M is effective:

this is more or less the motivic interpretation of your conjectures with Tate (up

to the fact that one should say, more precisely, that the grx,i(M) are themselves

motives defined over the finite extension of k(x) with group Ix/U ...). If your

extra factors are not to screw up the zeros and poles of the L-function too

badly (precisely, if it is not to acquire extra poles of weight 6= ρ+ 1), then it

must be assumed resp. admitted that the αx(M) piece is pure of weight ρ+ 1

(which implies that Ex = grx,0(M)Ix is exactly the part of E\x weight ≤ ρ).

When M is defined by an abelian variety Aη by (15), this is exactly equivalent

to saying that over a sufficiently large finite extension K ′ of K, the Néron

model of AK′ does not have any additive component at the points over x, i.e. to

your beloved personal conjecture (to which I will soon return)(12). [But this can

be false when M is an effective motive of rank 2, for instance when M is the

tensor product R1(Aη)⊗R1(Aη), Aη some elliptic curve over K! Then αx(M)

has parts of weight ρ and ρ + 2.] In this case (and only then!), the extra

factors essentially satisfy the same functional equation as LE , up to numerical

coefficients, and there is a nice functional equation for L\M ,

(D) L\M (1/qt) = (−t)χ(E)+
∑
x χx(M)(δ(E)

∏
x

δx(M))L\M (t),

with

(19) χx(M) = d(x) · rankαx(M)

(20) δx(M) = (det(fx|αx(M)))d(x) = ±qχx(M)/2, where q = pρ+1.

(12)What follows was hand-written at the bottom of the page and was partially erased.
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If in addition one wants L\M (t) not to have poles of weights other than ρ

and ρ + 2 (which according to you seems to be one of the criteria which

should distinguish nice L-functions) then the zeros of the local factors defined

by the αx(M) must be cancelled out by those of the P 1
E(t), which is almost

the same thing as saying that H1(X,E), as a space with automorphism f ,

“contains” the sum of the gx∗(αx(M)) (where gx : Spec(k(x)) → Spec(F) is

the canonical morphism, induced by g : X → Spec(F)). I have not given this

question any serious thought, but at first glance such a cancellation would

seem fairly miraculous!

To finish up these general considerations on L-functions, I can say ex-

actly what happens when M = T`(A) and your conjecture holds at x. J.-P.

Serre : “Your conjecture”: the existence of a semi-stable model after finite

extension of the base field, cf. note 108.2. Then the filtration of M by

the Mx,i has exactly two steps, and (taking a polarization of A which defines

a pairing M ×M → Q(1)), Mx,0 is the orthogonal complement in M of the

“multiplicative type” part, i.e. the weight ρ− 1 = −2 part, of Mx,0. Passing to

invariants, one then gets a canonical isomorphism

(21) αx(M) = (M/MU )Ix/U = T`(A
mult
x )∨(1) (' T`(Amult

x )(−1))

whence

(21 bis) χx(M) = dimAmult
x , δx(M) = ±1.

Precisely, Amult
x is determined by a discrete lattice

Rx = Homgr(Gm k(x), A
mult
x )

of rank χx(M) on which fx acts as an automorphism of finite order, and one

has

(22) Lαx(M)(t) = 1/det(1− td(x)fx|Rx), δx(M) = (det fx|Rx)d(x),

so the total local factor of L\M at x is

(23) L\M,x(t) = P 0
x (t)P 1

x (t)P 2
x (t)

with

(23 bis)


P 0
x (t) = det(1− (p−1t)d(x)fx|Rx)

P 2
x (t) = P 0

x (pt) = det(1− td(x)fx|Rx)← this is your extra stuff
coming from αx(M)

P 1
x (t) = det(1− td(x)fx|T`(Aabel

x ))
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Facsimile of Grothendieck’s letter of 9.30.1964, page 222
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As this letter has already become rather long, I will stop for the moment,

and will return in the near future to the “local” conjectures on abelian varieties,

which look provable to me (at least in characteristic 0), modulo the result of

Mumford’s which I have already mentioned to you in this context.

Yours,

A. Grothendieck

PS. An example. Take an elliptic curve A over K of Néron model A, and

assume that x ∈ X is such that A0
x is a group of multiplicative type, say Gm,x

itself, so that Mx,0 = M0 = M Ix = E is of rank 1 and weight ρ − 1 = 0,

and M/M0 = grx,1(M) = grx,1(M)Ix is of weight ρ + 1 = 2, where Ix acts

on M by transvection. (N.B. Here M = R1h∗(QA), an effective motive of

weight 1). The situation is completely under control, and it is possible to

analyse completely the filtration at x of a motive of the form Mρ = M⊗. . .⊗M
(ρ factors), which is effective of weight ρ. Unless I am mistaken, one finds

that αx(M) contains parts of weights exactly all the even numbers between ρ

and 2ρ (and in any case, the weight 2ρ appears as can be seen immediately).

Thus, the function L\Mρ has screwed-up poles as soon as ρ ≥ 2, such as the

pole p−ρ of weight 2ρ, and it also has a rather unappetizing functional equation.

Therefore, it seems to me that it is only for effective motives of weight 1

(possibly with Tate twists) that your function L\ is reasonable — and even

then, it is not certain that there will be no unwanted poles of weight ρ = 1.J.-P.

Serre : Replace “of weight ρ = 1” by “of weight ρ+ 1 = 2”, cf. the letter of

October 3-5, 1964. Of course, for effective motives of weight 0, which essentially

correspond to ordinary L-functions, relative to finite groups, the αx(M) vanish,

i.e. LE = L\M .
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October 3-5, 1964 Alexandre Grothendieck

My dear Serre,

Here is the promised sequel to my letter of September 30th, which I would

like to start with some comments on the latter.

a) Last page, ligne -3, you will have already corrected the slip, by reading “of

weight ρ+ 1 = 2” for “of weight ρ = 1”. On the subject of formula (14), which

is related to a “Lefschetz type” isomorphism, its validity means exactly (as

can be seen by duality) that the invariants of M and M̌ are dual to each other,

which obviously is not always the case, but holds if M is semi-simple under

the action of π, so (assuming the motivic yoga) if M comes from a semi-simple

motive, such as H i(Y,Q`) (for projective smooth Yη over K).

b) The formulas in the letter can be transposed in an obvious way to

the situation where a finite group G acts on (X,E), and one considers the

functions LE,G,φ associated to class functions φ on G (with values in the

coefficient field of E, a finite extension of Q`). Indeed, the fundamental duality

formula (1) obviously holds if the G-action is taken into account (i.e. as a

formula in the derived category of sheaves with group of operators G). In (8),

the only thing to assume is that the envisaged isomorphism is compatible with

the operations of G (where G acts on Ě by transport de structure, i.e. by

an action contragredient to the action on E); note actually that (accepting

the motivic yoga), taking averages of the transforms of a “positive definite”

form on a semi-simple motive M of weight ρ under the operations of G, an

isomorphism (8) compatible with G should indeed exist for such a motive M .

Under these conditions, the functional equation (B′) becomes 1/2

(B′) LE,G,φ̌(1/qt) = AE,G,φ(t)(−t)χ(E,G,φ)δ(E,G, φ)LE,G,φ(t),

with the obvious interpretation of the quantitiesAE,G,φ, χ(E,G, φ) and δ(E,G, φ),

and where φ̌ is the contragredient class function of φ:

φ̌(g) = φ(g−1),

and there are analogous variations of all the other formulas in my letter. An

analogous remark can be made if one also takes a fixed algebra over the

coefficient field, and restricts to sheaves E which are modules over this algebra,

taking L-functions relative to the characters of the latter. Things can also be

spiced up by having G act on the said algebra. . .

c) In the middle of writing, I have changed my mind about the point that

“if one insists on having an L-function which depends multiplicatively on M ,
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the definition you suggest is the best”. It now seems to me that the simplest

solution (which I had initially rejected) is best, namely: take a composition

sequence of M with simple quotients Mi (for the group action π = Gal(K/K))

and define LM to be the product of the LEi , where Ei is the direct image of Mi

over X. In this way, additivity holds by definition, without losing either the

functional equation or the nice distribution of zeros and poles (modulo the

Weil conjectures). What is more, in the most interesting cases, M is already

semi-simple, and LM is nothing but LE , whose theoretical description (via

local factors) is particularly simple. Actually, it is good to note that if M

comes from a semi-simple motive, then (assuming the general motivic yoga) M

is semi-simple as a π-module, hence LM is nothing but LE , and moreover

this function does not depend on the prime number ` chosen to “realize” the

given motive. This last remark can be immediately extended to the case of an

arbitrary motive which is not necessarily semi-simple, by linearity from the2/3

simple case. The argument that initially made me reject this simple definition

of LM was that with this definition, the local factors of LM appear not to be

purely local invariants, i.e. depending only on the sheaf deduced from E by

the base change K → Kx (where Kx is the completion of K at x), because

the virtual decomposition of E into simple components is no longer one after

the base change K → Kx; precisely, even if F is simple, F ×K Kx is not

necessarily semi-simple, and one does not obtain the desired local factor by

taking a composition sequence with simple factors of the latter. However, it

seems that the only use (if any) of L-functions is in the case of coefficient

sheaves coming from motives, (which makes conjectures such as Riemann and

Artin possible). Now, remaining in the category of motives, semi-simplicity

is preserved by base change, and consequently the local factor of LM at x

only depends on the motivic pullback of the motive in question over Spec(K)

under Spec(Kx) → Spec(K). Actually, contrary to my inital predictions

(influenced by your view of local factors), the LM (just like the LE themselves)

behave well under restriction and induction of characters when finite groups

come into play. Therefore, it seems to me that the functions LM have nothing

but virtues, and not a single true defect.

d) I have taken another look at Weil’s article “Sur la théorie du corps

de classes”, and it seems to me that in the last paragraph of this work,

Weil let himself get a little carried away by “the generality of analysis” J.-P.

Serre : Grothendieck had misunderstood Weil, see below. (of course, I take

it, as Weil does in saying that “there are good reasons for conjecturing, as
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Artin does for his non-abelian L-functions, that the L-functions introduced

here are entire functions”, that he restricts himself to an irreducible character 3/4

other than the trivial character). And this in two ways: 1o) By the geometric

case (the only one for which I have a precise yoga), I have the feeling that it is

crazy to hope for Riemann hypothesis —Artin conjecture type results (which

apparently are more or less the same thing) for sheaves, or if you prefer, for

characters, which are not associated to motives. Obviously, for the moment I

do not really know what this means in Weil’s context, where he has characters

with complex coefficients, but there must be Draconian geometric restrictions

on the nature of the characters in question in order to reasonably give rise

to conjectures of the envisaged type. 2o) Even assuming these Draconian

restrictions, the geometric case seems to indicate that Weil’s local factors are

not what is needed to get Riemann-Artin to work (cf. the P.S. in my previous

letter). — I will try to make this point precise in the next few days, by trying

to clarify the link between motives and Weil-type L-functions.

e) Here is a bunch of questions on classical L-functions. Do Artin’s L-

functions contain Hecke’s, i.e. are they associated to a “Grössencharactere” as

Weil’s are? Are there Riemann hypotheses or Artin conjectures available for

either of them? From this point of view, what is the status of the functions

introduced in Tate’s thesis; are they anything more than a trick for giving

a pretty proof of a functional equation for functions of a known type, or do

Tate’s generalized ζ functions turn up anywhere else? Are there any striking

geometric contexts in which Hecke-Artin-Tate or even Weil-type functions turn

up? I remember you mentioning Deuring in the context of curves with complex

multiplication; are there any other known examples? Finally, is it known 4/5

whether the Riemann ζ function has infinitely many zeros? J.-P. Serre : “is it

known whether the Riemann ζ function has infinitely many zeros?”. Despite

his work in Analysis (on Fredholm theory, for example), Grothendieck was

never interested in analytic number theory.
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Having just taken another look at Weil, I find there that Hecke’s L-functions

are not special cases of Artin’s; apparently, finding a common generalization

of them was one of Weil’s main motivations. Moreover, I have also found the

answer to my objections in d), since (contrary to what I thought I remembered),

Weil restricts himself to a finite Galois extension K of Q (let us say) and the

canonical extension GK/Q of Gal(K/Q) by the idele class group CK , without

passing to the projective limit over all K. Under Weil’s conditions, and

restricting for the sake of argument to a character which is trivial on the

connected component, one finds that the character in question is trivial on

an open subgroup, i.e. comes from a character of the Galois group of a finite

extension of Q, so that it corresponds to an effective motive of weight 0 of Q

(which counters both my objection 1o) and my objection 2o)).

f) I have just received your letters of 9.30 and 10.2. All right, I had

confused qN and qN − 1, and my conclusion thus has to be modified as you

say. Here is how one deals with the general case. Let J.-P. Serre : This proof is

developed in SGA 7, I, lecture IX. X0 = Spec(V ), U0 = Spec(K), Y0 = Spec(k);

there is then an exact sequence;

1→ I0 → π1(U0)→ π1(X0)→ 1,

where I0 is the inertia group (N.B. V is assumed complete, which is legiti-

mate). V is the inductive limit of its finitely generated subrings A, henceK is the

inductive limit of theA[t−1] (restricting toA containing t), and by assumption E

comes from a representation of a fundamental group of a Spec(A[t−1]). Up to5/6

localizing a little, one may assume that X = Spec(A) is regular, and Y = V (t)

(the subscheme defined by t) is regular and irreducible. Finally, replacing A by

its completion with respect to the tA-adic topology, one obtains a morphism

X0 → X = Spec(A), where A is a regular separated Noetherian ring which

is complete for the tA-adic topology; Y = V (t) is a regular irreducible sub-

scheme of X, Y0 is the inverse image of Y , and U0 is thus the inverse image

of U = X − Y ; E comes from a module over π1(U), and finally, Y is a scheme

of finite type and hence contains a point whose residue field is finite. As A is

regular and complete, and Y is regular, one finds an exact sequence

1→ I → π1(U)→ π1(X)→ 1,

where I is the image of the inertia group relative to the prime ideal tA, and

there is a homomorphism from the first exact sequence into this one, which

induces an isomorphism I0(`)→ I ′0(`) of the largest quotients of I0, I which

are pro-` groups. This reduces the problem to proving the desired statement,
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forgetting about the initial situation and starting with a module E over π1(U)

on which I acts via I(`). You can now complete the proof by noting that there

is a map from π1(y) ' Ẑ to π1(X) = π1(Y ) (A is complete!) where y is the

point of Y with finite residue field, and of course the action of π1(y) on I(`) is

once again the q-th power, where q is the number of elements in k(y). You can

also reduce the problem to cor 2. of my letter of September 24, by constructing

(this is easy) a homomorphism Spec(V )→ X, where V is a discrete valuation

ring whose residue field is k(y), such that the inverse image of y is precisely

the closed point of Spec(V ). — It is actually possible that I exaggerated a

little in the proof, in claiming that I is the inertia group of tA (to be honest, I 6/7

don’t know if the inertia group is really invariant), but in any case it will work

if π1(U) is replaced by the quotient π1(U)′ classifing Galois coverings tamely

ramified at tA (and gives rise to a kernel I ′ which really is isomorphic to the

largest pro-` quotient of the inertia group).

g) Note that the local theorem in my letter of September 24 gives (via

“arithmetic”) an analogous result for a projective morphism of analytic spaces f :

X → Y , when the base is non-singular of dimension 1; for an arbitrary locally

constant sheaf of Z-Modules F on X, the sheaves Rif∗(F ) are locally constant

outside a discrete set, and modulo passage to a finite-index subgroup nZ in the

local fundamental group Z on Y , the action of the latter on the cohomology

of the fiber is unipotent. I wonder whether an analogous result holds for an

arbitrary proper morphism of analytic spaces; in a way, it would be more

satisfying if the answer were no — i.e. the reason this holds for a projective

morphism really is arithmetic. Note that the local result is also true for a

module over the fundamental group of the complement of a divisor with normal

crossings at a regular point x of a scheme (or an analytic variety). But, as can

already be seen in the case of the projecting cone of an algebraic curve, there

is no generalization to much more general local fundamental groups.

h) The ring K
(
Q`[Z]

)
is the K-ring constructed from finite-dimensional

vector spaces over Q` equipped with an automorphism f . — It would surprise

me J.-P. Serre : “It would surprise me. . . ”. Indeed, Mumford constructed a

counterexample:

D. Mumford, A note on Shimura’s paper “Discontinuous groups and abelian

varieties”, Math. Ann. 181 (1969), 345–351. if Tate’s suggestion (that

algebraic cycles on an abelian variety are “decomposable”) were true; it had

seemed to me that this must be a particularity of products of elliptic curves.

— I have no comments to make on the Mumford-Tate algebraic group, as I
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haven’t been able to think about it. — In principle, I still intend to devote

a week this month to writing a summary on dimension for Bourbaki; I will

try to keep my word. Let me take advantage of this opportunity to confess

that I am a little bothered by the honour Bourbaki grants me in inviting me

so regularly to the meetings. I was quite bored at the last one, which is of

course not surprising, but in addition I had the impression of having almost

nothing to say for a fortnight, and had difficulty keeping myself from dozing

off most of the time. It might be better policy if Bourbaki were only to invite

me (like the retired members) when it seems to him that my insight could be

useful for such and such a subject on the program. Also, don’t forget that I

am already up to my neck in sorites with the writing of the Elements, which

perhaps diminishes my appetite for Bourbaki’s. Something like two weeks a

year out of the four weeks of Bourbaki meetings would seem like a reasonable

dose to me.

i) I have finally come to the point of this letter! Start with a discrete

valuation ring V , which you may assume complete with algebraically closed

residue field. It gives an inertia group I, thence a quotient I(`): assume we have

a finite-dimensional vector space M on which I(`) acts (so there is an `-adic

sheaf on U = Spec(K)). Then the following conditions (which are stronger

than the fact that the action of I is unipotent) are trivially equivalent (N.B. g

denotes a topological generator of I(`)):

a) M ′ = (1− g)M ⊂Mg.

a′) I acts trivially on M/M I = M/Mg.7/8

a′′) (1− g)2 = 0.

b) (M I)orth ⊂M I .

b′) (1− g)M ⊂
(
(1− g)M

)orth
.

c) rank M I ∩ (M I)orth = d (where d = rankM/M I = rankM ′).

(N.B. a priori, we have the inequality ≤).

d) The action of g on M is given by a transvection, or intrinsically, by a

homomorphism

I(`) = Z`(1) −→ Hom(M/M I ,M ′),

d′) or alternatively by an element

ξ ∈M ′ ⊗M ′(ρ− 1) where M ′ = (1− g)M.
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I forgot to mention that in b), b′), c), and d′) one assumes given a perfect

pairing

M ×M −→ Q`(ρ)

compatible with the action of I (where I acts trivially on the right-hand

side) and symmetric or alternating (it will practically be one or the other

according to whether ρ is even or odd). In practice, this means that M

comes from a semi-simple motive of weight ρ on U . Note that in d), the

homomorphism Q`(1) ⊗M/M I → M ′ obtained is necessarily bijective, and

therefore in d′) the “form” obtained is necessarily non-degenerate. — Assume

now that M comes from an effective semi-simple motive of weight ρ ≥ 0. Let

us assume that then M I also comes from an effective motive over Spec(k),

independent of ` (this follows from the general motivic yoga!) which will not

generally be pure of weight ρ. This is in any case what can be proved via

the Néron model when M comes from an abelian variety, i.e. is effective of

weight ρ = 1. In general, the motive that M I comes from is neither semi-simple

nor pure of weight ρ, but only of weight ≤ ρ; let M I
0 be the subspace which

corresponds to the largest submotive of weight ≤ ρ− 1. Then, for reasons of

weight (which are entirely justified for an abelian variety) one sees that M I
0 8/9

is orthogonal to M I , i.e. is contained in M ′ (this appears to be the essential

point in Igusa’s theory of “vanishing cycles”). Using this, one sees that the

conditions above are also equivalent to the following:

e) M I
0 = (M I)orth (= M ′).

e′) rank M I
0 = d (N.B. a priori, we have the inequality ≤).

f) M/M I , considered as a virtual motive over Spec(k), is of weight ≥ ρ+ 1.

To make f) explicit, I should also have mentioned that the successive factors

in the filtration on M obtained by taking the invariants under I, then the in-

variants modulo these etc., should also (by Serre-Tate) be motives over Spec(k),
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which makes f) meaningful if we assume (as we shall) that the action of I

on M is unipotent. If in addition we assume that the action of I on M/M I is

trivial (condition a′) above), then M/M I is also a motive over Spec(k), dual

modulo twist of M ′ which is a submotive of M I , and condition f) can be stated

as saying that M ′ is of weight ≤ ρ− 1, i.e. M ′ ⊂ M I
0 i.e. is equivalent to e),

which is itself trivially equivalent to e′). But in any case, f) should imply a′),

since for reasons of weight, the homomorphism M ′ →M/M I is zero given f).

It remains to prove that a) implies e), or alternatively that given a), the weight

of M ′ is ≤ ρ− 1, but this again follows from the existence of a non-degenerate

form, just as for d′), by weight considerations which also show that under the

above conditions, M ′ = M I
0 is purely of weight ρ − 1, and therefore M/M I

is purely of weight ρ + 1. At the same time, one sees that M I is purely of

weight ρ only if M ′ = 0, i.e. M = M I , i.e. in the unramified case.9/10

In the effective case of weight ρ = 1, i.e. starting with an abelian variety

over K, these arguments can be explained without reference to motivic meta-

physics (the weight considerations boil down to reduction to the case of a finite

residue field, whose Frobenius will act on the given sheaves on Spec(k). . . ).

Then M I
0 corresponds to the multiplicative part of the reduced Néron vari-

ety A0, M I being nothing but T`(A0). The validity of condition e′) then means

(assuming that the action of I on M is unipotent, which will be the case after

finite extension of K) that A0 has no additive part, i.e. it is nothing else than

your conjecture on the “limit” behavior of Néron models under arbitrarily large

extension of the base field K. (Note that once I is assumed unipotent, the

validity of the conditions above is invariant — and not simply stable — under

extension of K, and M I and M I
0 are not modified by extension of K). The

equivalence of this geometric condition with apparently weaker conditions such

as a′′) is interesting because the latter are clearly inherited under passage to a

submodule N of M . This makes it possible, in order to prove your conjecture

(along with the Serre-Tate conjectures), to assume that the abelian variety in

question is a Jacobian. In characteristic 0, it then follows from a theorem of

Mumford’s on degeneration of curves that this works — since for the Jacobian

of a curve whose reduction is a curve with only ordinary double points, the

proof of e′) is trivial via the Picard scheme. For the general case, it seems to me
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that the problem can be reduced to the case of the completion of a number

field, but a fat lot of good that does us; Mumford will have to try to prove his

theorem in arbitrary characteristic, possibly unequal. 10/11

For effective motives of weight ρ ≥ 2, the example in my last letter shows that

the conditions I have just proposed are rather exceptional, and in general one

should expect to find parts of all weights between 0 and ρ in M I . I would like to

call your attention to an interesting phenomenon which arises in the “favorable”

case, namely that the initial form on M gives rise to two non-degenerate forms

on motives over Spec(k), the first one, on M I/M I
0 , being induced by the one

on M , and the less obvious second one being described in d′). It follows from

the general yoga of motives that the first one is “motivic”, and I do not doubt

for a moment that the second one is as well (although I have not yet tried to

deduce this from the general yoga). This being said, there are good reasons for

conjecturing that if the initial form on M (which has of course been assumed

motivic in the above) is positive definite, then the two forms it gives rise to

are also definite — the sign which appears may possibly depend on ρ, and

should be fairly easy to determine from special cases (an elliptic curve and

tensor powers of its T`). This therefore means that for an abelian variety A, a

polarization of A induces a polarization of the abelian part of A0, and a positive

definite quadratic formJ.-P. Serre : See the letter of October 30, 1964, as well as

SGA 7, I, exposé IX. with coefficients in Q on the lattice corresponding to the

part of multiplicative type. More intrinsically, introducing the dual A′ of A, it

should be true that the canonical pairings between the T` of A abel
0 and A′0

abel

on the one hand, and A mult
0 and A′0

mult on the other, come from a Q-valued

pairing between the associated lattices, and every polarization isogeny A→ A′

induces a polarization isogeny A abel
0 → A′0

abel, and a positive definite form

on the lattice associated to A mult
0 — at least up to a sign which I have not

investigated. J.-P. Serre : “up to a sign which I have not investigated”. This 11/12

sign is +, cf. SGA 7, I, p. 144, th. 10.4.b). Already in the case of an elliptic

curve, the latter would yield an interesting invariant, namely (when there is

ramification, i.e. A0 is of multiplicative type) a positive rational number, which

will be multiplied by n (at least when n is relatively prime to the residue

characteristic) upon passage to a degree n extension of K. When the elliptic

curve has a proper model over Spec(V ) which is regular and whose special

fiber has only one ordinary double point, Igusa’s theory seems to show that

this invariant is 1. What happens in general? Experts on elliptic curves should

be able to say.

Regards,
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A. Grothendieck

PS In i), I forgot to mention that for an abelian variety, the envisaged

conditions, i.e. basically your conjecture on Néron models of abelian varieties,

immediately give the two Serre-Tate conjectures on abelian varieties in the

general case (you have probably already noticed this). Another remark: in my

letter of September 24th, I think that for unequal characteristics, the condition

“` different from char. k” can be replaced by “I acts on E via the quotient

corresponding to extraction of the `N -th roots, for various N , of a suitable

uniformizing parameter”; unless I am mistaken, the argument given in f) works

and shows here that if ` = char. k, the action of I is unipotent (without passage

to a finite-index subgroup). Using this fact, I have the impression that the

same reduction argument shows that the conclusion is valid (for any `) if the

residue characteristic is 0 — by reduction to the case of residue characteristic `:

this would imply that in the case char. k = 0, if I in fact acts on a finitely

generated module over Z`, and if this action becomes trivial after reduction

modulo ` (the “rigidity condition”), then the action of I is unipotent. Is this

compatible with your counterexamples?



CORRESPONDENCE 235

October, 1964 Jean-Pierre Serre

Dear Grothendieck,

Verdier tells me I should reply to your “naive questions” on L-functions.

On reading your letter (page 3-4, then page 5) I had thought that you had

answered the said questions yourself. So here are a few comments:

As you noticed (p. 5) Artin’s L-functions do not contain Hecke’s L functions;

Weil’s generalized L-functions (in his paper on class field theory) are probably

the smallest reasonable family containing them both. Unless I am mistaken, the

Riemann hypothesis and Artin’s conjectures are “valid” for these functions: the

zeros of L(s) lie on R(s) = 1
2 (for R(s) > 0, let us say, since there are “trivial”

zeros on the negative real axis) and if the original representation (the character)

does not contain the unit character, then L is everywhere holomorphic.

The L-functions in Tate’s thesis are essentially Hecke’s L-functions (i.e.

correspond to an abelian representation of Ck, if I may say so). By “essentially”

I mean first of all that they give Hecke’s L-functions, and that the functions they

give are probably linear combinations of Hecke’s L-functions (ask Godement

for more details). I refer you to Godement because this is obviously a question

of locally compact groups (in what sense can any function be approximated by

a combination of characters?).

There are indeed some geometric questions in which Hecke’s L-functions

(with Grössencharakter) turn up. Indeed, this is one of Weil’s most beauti-

ful results. He noticed it while studying the zeta function of Fermat-style

hypersurfaces
∑
xnii = 0 (cf. his paper in the Bulletin). J.-P. Serre : “his

paper in the Bulletin”: the one in which he states the “Weil conjectures”, Oe.

Sci. [1949b]. In this case, Frobenius can be determined explicitly for every p,

and the variation of Frobenius with p is a Grössencharakter. This is a rather

messy way of talking; it should first be specified that a character of Ck can

be identified with a function f(p) on the set of prime ideals p of the field not

contained in a suitable finite set S. Here is the method: if S is a finite set of

prime ideals, let IS be the subset of the idele group I consisting of (xv) such

that xv = 1 for v at infinity and v ∈ S; let US be the product of the units of the

local fields kv, v /∈ S (US is open in IS). The character χ : Ck → T defines a

character χ of I, and thence by restriction a character χS of IS . By continuity

of χS , one sees that (replacing S by a larger set if necessary) χS is equal to 1

on US , i.e. corresponds to a character χS of the discrete group IS/US = IdS
of ideals prime to S. Moreover, since k∗.IS is dense in I, knowledge of χS
(and thus also of χS) determines χ itself.J.-P. Serre : The passage from χ
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to χS is explained in more detail in Abelian `-adic Representations and Elliptic

Curves, Benjamin, New York, 1968. See also [ST68], §7, th. 10. What is

called the Grössencharakter is either the character χ of Ck or the character χS
of IdS . (Of course, the χS are very special characters of the group IdS ; their

characterization is an easy and boring exercise; see the result in Weil’s talk at

the Kyoto symposium, 1st lecture).

Here is an example (due to Deuring, but inspired by Weil) in which a

Grössencharakter turns up naturally:J.-P. Serre : Reference: M. Deuring, Die

Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, I,. . . , IV, Gött.

Nach., 1953–1957.

Let E be an elliptic curve defined over a number field k, which has complex

multiplication by an imaginary quadratic field L: I assume L ⊂ k (i.e. the

complex multiplication is defined over k). Let S be a sufficiently large finite

set of primes of k (unless I am mistaken, it is enough to take S to be the

set of points where the curve has bad reduction — but never mind). If p

is a prime ideal of k, p /∈ S, the Frobenius of the reduced curve πp is an

endomorphism of the said reduced curve Ep. However the field L can be

naturally embedded into End(Ep)⊗Q; it can (easily!) be shown that πp ∈ L.

Choosing an embedding of L into C, then gives a complex function p 7→ πp;

as πp is not of absolute value 1, one can force it to be so by dividing by Np1/2.

The theorem (which is not very difficult either, once the theory of reduction of

elliptic curves is well established) is that

χ : p 7→ πp/(Np1/2)

is a Grössencharakter of k (in fact, up to a character of finite order, this

character actually comes from a Grössencharakter of L).

Remarks 1) In fact, it is more convenient not to demand that the Grössencharaktere

take values which are complex numbers of absolute value 1; thus, one can say

in an obvious sense that p 7→ πp is a Grössencharakter of weight 1.

2) Of course, the result above can be translated in terms of zeta func-

tions: the zeta factor corresponding to H1 of the elliptic curve is equal to the

product L(s, χ) · L(s, χ), where χ denotes the imaginary conjugate of χ.

Deuring proved (and this is now very easy) that this identity holds without

any fudge factors: i.e. the right zeta (in your sense) coincides term-by-term

with the “right” Hecke L-function (the one that has a perfectly pretty functional

equation).
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As you know, this fact is what really got Weil excited (and rightly so!) He

(+Shimura-Taniyama) generalized all this to abelian varieties. I refer you to

Tokyo-Nikko for a presentation of their results. Weil explains there in particular

that by this method, one basically only gets holds of “half” of the possible

Grössencharaktere J.-P. Serre : “half of the possible Grössencharaktere”. I do

not understand what “half” means. This refers to characters “of A0 type” in

Weil’s sense of the word, i.e. “motivated” (their Hodge type is integral).; one

only gets those whose values are contained in a number field. No progress has

been made on the question since.

Do not think that this is the only case in which zeta functions of varieties

over number fields have been cleverly computed. Eichler, Shimura, Igusa

studied zeta functions of what we now know as moduli varieties (of polarized

abelian varieties, possibly equipped with a fixed ring of endomorphisms). By

ingenious methods (of which I know little), they manage to write down the

Frobenius automorphisms explicitly by using the natural correspondences of

these varieties, and from this they deduce a formula for zeta. In the case where

the moduli problem is that of elliptic curves with a certain rigidification, the

functions obtained are those that Hecke associated to Spitzenformen of the

modular group (for weight 1 — since there is then once again a theory of

weights, which very probably coincides with the geometric one). J.-P. Serre : “a

theory of weights, which very probably coincides with the geometric one”. Not

quite: modular weight k corresponds to geometric weight k − 1. The case

dealt with by Eichler, Shimura and Igusa is k = 2. This correspondence J.-P.

Serre : We are close to the Taniyama-Weil conjecture! gives information in

both directions: since these functions are (automorphic) Hecke functions, the

functional equation and analytic continuation work (which is not known in

general, not even for a curve over Q) — and since they are zeta functions of

curves, the absolute values of Frobenius are (Np)1/2 (which Hecke’s analytic

theory made it natural to conjecture, without being up to providing a proof).

That is why all this is interesting.

Your questions have led me a bit too far: moreover, I am sure I have already

told you all this many a time.

Regards,

J-P. Serre
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October 30, 1964 Alexandre Grothendieck

My dear Serre;

Thank you for your letter of October 24th. I am glad Tate and Mumford

have gotten rid of the screwed-up conjecture J.-P. Serre : “the screwed-up

conjecture”: the one that said that the Q-algebra of cycle classes is generated

by its degree 1 elements, i.e. by the divisor classes. on algebraic cycles on

abelian varieties; as for the Hodge conjectures, I now hold them to be an article

of faith on a par with the Tate conjectures; indeed, they are too intimately

linked for me to be able to believe that one could be wrong without the other:

in other words, they must both be true. I would be very interested to have

some detailed information about the seminar on heights and Weil distributions,

since I anticipate that I will be using them in the not-too-distant future. Could

you perhaps keep me informed? I was disappointed that you didn’t answer

most of my questions on L-functions (from e) — perhaps you would like to

answer me some day when you feel more chatty; the same goes for the last

question in my letter, at the end of the P.S.

I was also disappointed that you did not find an expert on surfaces to

solve your conjecture on abelian varieties, and tell you something about the

quadratic form I mentioned in j). And therefore, finding myself in a healthy

temper, I broke off my current reflections to find a proof myself, which I hand

you fresh out of the oven. Let f : X → S be a projective map, S being the

spectrum of a discrete valuation ring V , which may be assumed complete with

algebraically closed residue field. Assume that the generic fiber X1 is smooth

and geometrically connected of dimension 1 over the fraction field K of V ,

choose an ` prime to the residue characteristic, and assume that the action

of π = Gal(K/K) on H1(X1,Z`) is unipotent. The result to be proved is that π

acts trivially on H1/(H1)π. By resolution of singularities (Abhyankar), X

may be assumed regular, and furthermore C = X0,red may be assumed to

have normal crossings in X. Let Ci be the reduced irreducible components of

X0, and set X0 =
∑

imiCi. Assume first for the sake of simplicity that ` is

relatively prime to the mi. Let F be a finite `-group (we will take F = Z/`NZ

and pass to the limit over N). It follows from the conditions imposed on the

action of π on H1(X1,Z`) that

(∗) H1(X1) = lim−→
i

H1(X1(i)),



CORRESPONDENCE 239

in which it is implicitly understood that F is everywhere the coefficient sheaf,

and

X1(i) = X1 ×S S(i), S(i) = Spec
(
V [z]/(z`

i − t)
)
,

where t is a uniformizing parameter of V . Similarly, let X(i), X0(i) be deduced

from X,X0 by the same base change; there are then exact sequences

· · · → Hn
X0(i)(X(i)) → Hn(X(i)) → Hn(X1(i)) → Hn+1

X0(i)(X(i)) → · · ·
J.-P. Serre : The term Hq

X0(i)(X(i)) denotes the q-th cohomology group of X(i)

with support in X0(i).

whence, by passage to the limit over i, and taking into account the isomorphisms

(∗) and

Hn(X(i))
∼→ Hn(X0(i))

∼← Hn(X0),

one obtains an exact sequence

· · · → Φn → Hn(X0)→ Hn(X1)→ Φn+1 → · · · ,

with

Φn = lim−→
i

Hn
X0(i)(X(i)).

Hence the comparison of the Hn(X0) and the Hn(X1) is essentially reduced to

the computation of the Φn (actually a general fact having nothing to do with

relative curves. . . ). We are going to see that here, the Φn can be computed as

essentially local invariants on X. For this, consider the spectral sequence

Hn
X0(i)(X(i))⇐= Hp(X0(i), Hq

X0(i)(FX(i)))

whence by passage to the limit over i, and writing pi : X0(i) → X0 for the

projection isomorphism, one gets:

Φn ⇐= Ep,q2 = Hp(X0,Φ
q)

with Φn = lim−→
i

pi∗H
n
X0(i)(FX(i)).

Now, I claim that:

(∗∗)


Φn = 0 for n = 0, 1,

Φn is concentrated on T , the set of double points of X0

for all n,

whence the spectral sequence above degenerates and yields the values

Φn =
∑
x∈T

Φn
x
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which express Φn as a sum of local invariants associated to the double points

of X0. The proof of (∗∗) is easy, since the local situation is well under control.

The hypothesis that ` is relatively prime to the mi is used only to ensure that

the X(i) are geometrically unibranch, which implies that Φ0 = Φ1 = 0 (the

first relation is in any case trivial without this condition). If the hypothesis in

question is omitted, Φ1 can have 1-dimensional support, which prevents the

spectral sequence from degenerating, so that the Φn can no longer be computed

purely locally, but it remains true that the other Φn (n ≥ 2) are concentrated

on T . Recall the explicit formula

Φn
x = lim−→

i

Hn−1(Ux(i)) for n ≥ 2,

where Xx denotes a strict localization of X at x, Ux is the inverse image

of X −X0 = X1 in Ux, which can therefore be obtained (if x ∈ T ) by removing

from Xx two divisors corresponding to a regular system of parameters (u, v)

for Xx; Ux(i) means the usual thing, and is the inverse image of Ux in the

covering Xx(i) of X obtained by adjoining a zi such that

z`
i

i = t (= upvq,where p, q are two of the mi introduced above).

Knowing the “tame” fundamental group of Ux, one immediately finds

Φ2
x
∼= Hom(Nx, F )

where Nx is defined via the exact sequence

0 // Nx
// Z`(1)× Z`(1)

wx // Z`(1),

with

wx(a, b) = pa+ qb.

Here, the mi, and hence in particular q, are assumed relatively prime to `, so

that the equation pa+ qb = 0 defining Nx has the solution b = −(p/q)a, so Nx

appears to be more or less canonically isomorphic to Z`(1), and one finds

Φ2
x = Hom(Z`(1), F ) = F (−1).

In fact, one can check that this isomorphism is compatible with the natural

action of π, which therefore acts trivially on Φ2. Combining these pieces of

information yields an exact sequence
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0→ H1(X0)→ H1(X1)→ Φ2 → H2(X0)→ H2(X1)→ Φ3 → 0

(since H3(X0) = 0), in which Φ3 can actually be replaced by 0 when there is

an invertible sheaf of degree 1 on X1, as this implies that

H2(X0) = H2(X)→ H2(X1) ∼= F

is indeed surjective. Passing to the limit over the F = Z/`NZ, one gets the

same exact sequence with coefficients in Z`, but this time

(∗ ∗ ∗) Φ2 = Z`(−1)T ,

with trivial π-action; Φ3 is now a finite cyclic group (annihilated by the degree

of any invertible sheaf on X1).

In fact, I have just realized that since K is a Tsen field, J.-P. Serre : “a Tsen

field” is a field of dimension ≤ 1, in the sense of Galois Cohomology, Chap. II,

§3. there is always an invertible sheaf of degree 1 on X1, so in fact Φ3 = 0

in any case J.-P. Serre : Φ3 = 0 in any case: no, see the letter of November

1, 1964. (so Φn = 0 for n ≥ 3). As π acts trivially on the image of H1(X0)

in H1(X1), and also on Φ2, the assertion we want to prove follows from the

exact sequence, which in fact gives additional information such as:

(∗ ∗ ∗∗) rang(H1(X1)/H1(X0)) = d− c+ 1,

where d is the number of double points of X0,red, and c is the number of its

irreducible components.

If ` is no longer assumed relatively prime to the mi, some small details

must be changed. Obviously, the first idea is to simply change the prime

number `, since it is known for other reasons that the conclusion (expressed in

terms of the Néron model of the Jacobian) is in fact independent of `, but it

does not seem obvious to me a priori that the hypothesis that the action of π

on H1(X1) is unipotent will then remain valid. It might be quite easy, however,

to prove that up to taking a suitable finite extension over S, and keeping the

same `, the problem can be reduced to the favorable situation above. Here is

another solution, which consists of repeating the argument above with some

slight changes: consider the largest integer i0 such that `i0 divides one of

the mi, consider only the i ≥ i0, and replace X(i) by X ′(i) = X ′(i0)×Si0 Si,
where X ′(i0) is the normalization of X(i0). With this slight change, all the

arguments above should work, and in the finished product i.e. the final exact

sequence, H i(X0) should be replaced by H i(X ′0(i0))

0→ H1(X ′0(i0))→ H1(X1)→ Φ′
2 → H2(X ′0(i0))→ H2(X1)→ 0
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where Φ′2 is once again the sum of the Φ′2x, x ∈ T , and Φ′2x is given by the

general formula Hom(Nx,Z`)
ax where ax = card. cokerwx = largest power

of ` dividing p and q = number of “branches” of Xx(i0). . . (The fact that

one can again put zero on the right-hand side, i.e. Φ′3 = 0, can be seen

using the cohomology class on X defined by an invertible sheaf on X which

induces a sheaf of degree 1 on X1 on taking the inverse image of this class

on X(i0).) The conclusion is that if π(i0) denotes the subgroup of π corre-

sponding to S(i0), then π(i0) acts trivially on H1(X1)/H1(X1)π(i0) (since it

acts trivially on H1(X ′0(i0)) = H1(X(i0)) and on Φ′2).

What we have really shown is the following: assuming that X is regular, X0

has normal crossings, X1 is smooth and geometrically connected of dimen-

sion 1, ` is relatively prime to the residue characteristic and H1(X1,Z`) is

tamely ramified, i.e. the image of π in Aut(H1) is of supernatural cardinal N

which is relatively prime to p, let i0 be the lcm of the gcd(N,mi). Then the

subgroup π(i0) of index i0 in π acts by transvections on H1(X1), i.e. acts

trivially on H1(X1)/H1(X1)π(i0). The rank of this quotient is bounded above

by
∑

x∈T ax −
∑
bi + 1, where for every x ∈ T , we set ax = gcd(m′x,m

′′
x, N),

where m′x, m′′x are the multiplicities of the two components of X0 passing

through x, and for any component Ci of X0, we set bi = gcd(mi, N), where mi is

the multiplicity of Ci [N.B.
∑
ax is the rank of Φ′2,

∑
bi is that ofH2(X ′0(i0)) i.e.

the number of irreducible components of X ′0(i0), and 1 is the rank of H2(X1)];

it is possible this is always an equality, i.e. that H1(X1)π(i0) = ImH1(X ′0(i0))

modulo a finite group. In any case, this is what one can check when i0 = 1,

and more generally, one can check directly (without any hypotheses on i0) that

H1(X0) −→ H1(X1)π

is an isomorphism on a finite-index subgroup, the cokernel being isomorphic

to Z/d`Z(−1), where d` is the largest power of ` dividing the gcd of the mi.

(This comes from a comparison of the two Leray spectral sequences for X1 → S,

factored through S on the one hand and through X on the other.)

I confess that I have not checked the computations carefully in the general

case with ′, but I am convinced the method should work. In fact, returning

to the case where one assumes beforehand that the action of π on H1(X1)

is unipotent, and as Serre-Tate has now been proved J.-P. Serre : “. . . as

Serre-Tate has now been proved”: cf. SGA 7, I, exposé IX, §4. (for abelian

varieties), one sees that the unipotence condition is preserved on changing `.
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Using the exact sequence:

(X) 0→ H1(X0)→ H1(X1)→ Φ2 → H2(X0)→ H2(X1)→ 0

for every ` (the fact that one can put zeros at both ends can be seen directly

and independently of `; on the left this is a simple consequence of the normality

of X. . . ), the rank of Φ2 will then be independent of `, and therefore equal to

the value obtained for “general” `, namely d− c+ 1. A more detailed analysis

should give a canonical exact sequence:

0→ Z`/d`Z`(−1)→ Φ2 → Z`(−1)(T ),

in which the cokernel of the last homomorphism is finite (and obviously triv-

ial if ` is relatively prime to the mi). — Note that the duality between

H1(X1)/H1(X1)π and the part “of weight zero = of multiplicative type”

of H1(X0) appears in a particularly striking way in (X); indeed (possibly mod-

ulo finite groups) the first group is none other than the kernel of Φ2 → H2(X0)

which can be identified (again modulo finite groups) with Z(T )
` (−1)→ Z(I)

` (−1),

where I is the set of irreducible components of X0, and the second group can

be computed by a well-known method using the normalization of X0,red = C,

as the cokernel of a homomorphism Z(I)
` → Z(T )

` which can hardly be anything

other than the transpose of the previous one (in any case, the choices which

have to be made on each side in order to identify some group with Z(T )
` are

exactly the same, namely the choice, for every x ∈ T , of one of the two compo-

nents of X0 passing through x). In fact, it is useful to write (X) as a slightly

longer self-dual sequence

0→ H0(C)→ H0(C̃)→ Ψ2 → H1(X1)→ Φ2 → H2(X0)→ H2(X1)→ 0,

which is exact everywhere except in the middle, where the failure to be

exact is H1(C̃) (where C̃ is the normalization of C), i.e. the weight 1 part

of H1(X0) = H1(C). What remains to be done is mostly to determine the

(probably definite) non-degenerate quadratic form on Ker(Φ2 → H2(X0)) =

Ker(Z(T )
` → Z(I)

` ) which I mentioned in my last letter and which contains the

same information as the action of π on H1(X1); I have not had the time to

search seriously for a good candidate.
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Here is a few other thoughts on abelian varieties. Let X be a scheme of

finite type over an algebraically closed field k, X normal and irreducible, let A

be an abelian scheme over X, and assume that π1(X) acts on T`(A) (` being a

given prime number 6= char. k) via a commutative group: this is the case, for

example, if there is “a lot” of complex multiplication on A defined over X (the

(CM) case), or if π1(X) is commutative (X an abelian variety, for instance),

or if X = P1 minus two points and if T`(A) is tamely ramified. . . Then A

comes from an abelian scheme defined over k, at least after passage to a finite

etale covering of X: indeed, this can be deduced from the Tate conjectures

(more precisely, from the semi-simplicity of the action of the [absolute] Galois

group of a finitely generated field extension of Fp). The arithmetic analog of

the geometric statement above is the following: let A be an abelian variety

defined over a field K which is finitely generated over the prime field Q, and

assume that Gal(K/K) acts commutatively on T`(A); AK then comes from

an abelian scheme over the ring of integers of a number field; this is another

consequence of Tate. In fact, modulo Tate, these claims are also valid for

arbitrary motives. Still on the subject of commutative Galois actions, assume

that A is defined over a number field K, with commutative Galois action; I

have the impression that A then has good reduction everywhere J.-P. Serre : “I

have the impression A then has good reduction everywhere”: no, see the letter

of November 8, 1964. (without passing to a finite extension of K); do you have

examples or counterexamples relating to this? Here, finally, is a statement that

can be proved J.-P. Serre : “Here, finally, is a statement that can be proved

. . . ” This is true when the residue characteristic is 0, but it may otherwise be

false; see:

A.J. de Jong and F. Oort, On extending families of curves, J. Alg. Geom. 6

(1997), 545–562.

(This remark, and the reference, are due to A. Chambert-Loir.) without using

any conjectures, but using Mumford’s moduli scheme for polarized abelian

varieties: let X be the spectrum of a local normal Noetherian ring, and let A

be an abelian scheme over X − a (a = closed point) such that T`(A) is trivial,

where ` is a prime number 6= residue char.; A can then be extended to an

abelian scheme over X. Corollary: if X is a regular scheme, and Y is a closed

subset of X of codimension ≥ 2, then every abelian scheme over X − Y can be

extended to X.
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Let me point out a result which shows that the Frobenius action on the π1 is

enormous, and at first glance appears very strange: let X be normal and geomet-

rically connected over the finite field Fq, then for every ` 6= p, π1(X)→ π1(Fq)

induces an isomorphism modulo finite groups on the `-primary components

of the abelianized groups, and for almost all `, it induces an isomorphism

on the maximal pro-` quotient groups (in particular, for almost all `, the

maximal pro-` quotient of π1(X) is commutative, and in fact isomorphic to Z`).
The proof is by reduction to curves; the second statement follows on comput-

ing H1(X,Z/`Z). — To have a clearer idea of what the Frobenius action on

maximal `-quotients of π1(X) looks like, I would like to know if one knows

how to determine the outer automorphism group of a free group: is it simply

the group of automorphisms of the abelianization of this group? The question

arises both for discrete groups and for pro-`-groups. Is the answer known at

least for the analogous question on Lie algebras?

For the last three weeks I have been getting very excited about the interpreta-

tion of Galois and fundamental groups of all kinds in terms of algebraic groups

J.-P. Serre : This refers to motivic Galois groups, cf. e.g. [Se94]. over number

fields, especially over Q, and even in terms of group schemes over the integers.

I have convinced myself that these groups, together with the general motivic

yoga, are the key to a good understanding of a transcendence conjecture J.-P.

Serre : “of a transcendence conjecture”. I do not believe Grothendieck ever

published a precise version of this conjecture. He settled for alluding to it in

[Gr66a], footnote at the bottom of page no10. See also S. Lang, Introduction

to Transcendental Numbers, Addison-Wesley 1966, p. 43. linked to various

cohomology lattices (integral cohomology, Hodge-de Rham cohomology), the

relations between the latter and the Hodge and Tate conjectures, and a better

understanding of “non-commutative” class field theory, which would real-

ize Kronecker’s “Jugendtraum”, and of a functional equation for L-functions

over Q. I will probably send you another infinite letter J.-P. Serre : “I will

probably send you another infinite letter . . . ”. He never did. one of these days,

but I will need some time to arrive at a coherent set of conjectures.

Regards,

A. Grothendieck
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November 1, 1964 Alexandre Grothendieck

Dear Serre,

This is just a note to tell you that my claim, in my last letter, that Φ3 = 0,

allegedly because K is a Tsen field, was obviously idiotic; I was mixed up.

In fact, it is easy to check that the homomorphism H2(X0) → H2(X1) is

given by (λi) 7→
∑
miλi, where the mi are the multiplicities of the irreducible

components of X0. Hence Φ3 = Z/d`Z(−1) in the notation of my last letter. As

for determining Φ2 in general, this should more or less follow from the spectral

sequence, taking into account the fact that the structure of the sheaf Φ1 is

known. I still do not have any ideas on the quadratic form, and I don’t actually

think I will give it any thought now. Maybe Kleiman, who is interested in

numerical questions and seems very clever, might be interested in this question,

if you want to discuss it with him.

My seminar will be called “`-adic cohomology and L-functions”. There will

be a lot of duality and the passage to projective limit sorite, which runs the

risk of being long (and rather unexciting).

Who is in charge of selecting the Russian texts translated by AMS? Someone

should suggest they translate a certain number of things by Manin and Šafarevič,

such as Manin’s article on formal groups, which is a systematic exposition that

should be made available to users who do not read Russian. Regards,

A. Grothendieck
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November 8, 1964 Jean-Pierre Serre

Dear Grothendieck,

It is difficult to reply to your infinite letters: they would require infinite

answers, which presupposes I have understood what you are talking about. As

this is not the case, I will restrict myself to answering the trivial questions:

1) You can always write to AMS to suggest they translate any paper which

you feel should be translated. I am sure they will be delighted. Furthermore,

unless I am mistaken, Manin’s article on formal groups appeared in Uspekhi Ak.

Nauk, which is regularly translated (by an English journal, entitled “Russian

Math. Surveys Translations”, or something like that). When I left Paris, the

nocontaining Manin had not yet appeared; it should have done so by now (but

Harvard does not subscribe). So go and look in the IHP library, or even better,

get IHES to take out a subscription to this journal. (On the other hand, no

journal systematically translates the Izvestia Akad. Nauk, in which Manin and

Šafarevič publish regularly — you could mention this to AMS.)

2) In your correction-letter of November 1st, you ask me to discuss your

quadratic form with a certain “Kleiman”; the name is hard to decipher. Who

is it?

3) Here is a suggestion of Tate’s: when an abelian variety has purely

multiplicative reduction (the extreme case), your quadratic form should be the

one used to write down the (Morikawa-Tate) theta functions. In the elliptic

case it should be −v(j)n2, or something similar.

4) I feel too lazy, at least for today, to talk to you about heights. Besides,

there is nothing very new to tell you. While I am on the subject, Mumford

presented most of the Grauert-Manin proof to us (Grauert-style). Unfortunately,

he got rather mixed up toward the end. He is to finish it next week; I hope

things will become a little clearer.

5) Your results on the Frobenius action on the `-adic π1 are really amusing;

for once, I had no problem reconstructing them! As for automorphisms of

free pro-` groups, and their use, the cleanest method consists of filtering them

by the descending central sequence; the graded Lie algebra gr(F ) is a free

Lie algebra (cf. a recent Bourbaki draft), and since you know how Frobenius

acts on the abelianization of the group (i.e. gr1), you know how it acts on

the whole of gr(F ). This gives a little information (I am actually assuming

that you know that grnF is motivic of weight −n for all n — I am sure this

is meaningful, and that it is obvious in your system). Of course, knowing the
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Frobenius action on gr(F ) is not at all equivalent to knowing it on F itself, and

there I can no longer help you. In any case, it is false that the automorphisms

of F which induce the identity on F/(F, F ) = gr1F are inner: divide F by

the n-th term Fn of the descending central sequence, so that F/Fn is a Lie

group, and count the dimensions of the group of inner automorphisms and the

group of automorphisms. It does not add up at all. (Note that finding the

automorphisms of F or F/Fn is trivial: map the generators to anything at all

that gives an automorphism in F/(F, F )).

The analogous question (on automorphisms) for a discrete free group is

much more subtle. Nielsen has shown that the group of automorphisms of a

free group is generated by “obvious” elements of the type (x, y) 7→ (x, x−1y)

and transpositions. I think (an old memory!) that someone has proved that

J.-P. Serre : “that someone has proved that for two generators the answer

is yes”. This someone is none other than Nielsen himself: Math. Ann. 78

(1918), 385–397 and 91 (1924), 169–209. for two generators, the answer to

your question is yes (any automorphism acting trivially on F/(F, F ) is inner)

and for 3 or more it is no. I absolutely cannot guarantee this, however. Lazard

and Cerf should know, or at least know a reference.

6) Your results on abelian varieties for which the Galois action on T` is

commutative are interesting. Can you explain to me how you use Tate for the

“descent” which shows that there are no parameters? For a number field with

the (CM) hypothesis, I knew it was possible to find an abelian scheme over a

finite extension (cf. page 3 of the letter to Ogg of August 8, of which you have

a copy). Nevertheless, it is false that A has good reduction everywhere, i.e.

that one can manage without enlarging the field. Here is a way to construct

an example: take an elliptic curve E with complex multiplication whose only

automorphisms are ±1 (which is the general case!), defined over k. Assume

it has good reduction at the place v. Now choose a quadratic extension k′/k

of k, ramified at v; thus there is a homomorphism Gal(k/k)→ Aut(E). Use

this homomorphism to twist E. You get an elliptic curve E′/k with the same

modular invariant j as E, and just as much complex multiplication, and you

can check that E′ has bad reduction at v.

There is, however, an attractive positive statement in this special case:

For any given v, you can find an elliptic curve E1/k with the same j as E

such that E1 has good reduction at v. This was proved by Deuring J.-P.

Serre : “proved by Deuring”: not quite, cf. the letter of November 9, 1964.

and is now very easy, using the criterion for good reduction which you know
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(the action of Gal(k/k) on T` is unramified when ` does not divide the residue

characteristic). It is probable that this also holds for abelian varieties with

Shimura-Taniyama complex multiplication (i.e. conjecturally when the action

of Gal(k/k) is abelian), but I have not checked this, lacking the necessary

courage to plunge once and for all into Shimura-Taniyama.

Another positive special case: if A has enough complex multiplication, and

its points of order 3 (say . . . ) are k-rational (or unramified), then A has good

reduction everywhere. This is immediate by the same methods.

7) How do you prove the result on extensions of abelian schemes over X − a
when T`(A) is trivial?

Regards,

J-P. Serre
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November 9, 1964 Jean-Pierre Serre

Dear Grothendieck,

Let me return to the question of good reduction of elliptic curves with

complex multiplication. In my letter of the day before yesterday, I wrote the

following: “(If E is such a curve) you can find an elliptic curve E1/k with the

same j as E such that E1 has good reduction at v (for a given v). This was

proved by Deuring and is now very easy . . . etc.”

After sending the letter, I began to have doubts about the proof I had in

mind, and these doubts have crystallized into a counterexample: Deuring’s

claim (Tokyo-Nikko, p.49, th.3) is therefore false.

Here is the situation:

Let L = End(E) and let L be the integral closure of L; set L0 = L⊗Q. It is

known that L0 is a quadratic imaginary field; L is its ring of integers and L is a

subring of L of rank 2 over Z. (Incidentally, it is easy to classify all such rings:

take an integer f ≥ 1, and form Lf = Z + fL; every L is equal to one and only

one Lf ; the corresponding f is called the conductor for obvious reasons.) Let

me write U (resp. U) for the group of invertible elements of L (resp. L). We

will see that Deuring’s theorem is true when U = U . This is “a lot” of cases.

Indeed, let R2 = Q(i) and R3 = Q(ρ) be the fields of the fourth and sixth

roots of unity. If U 6= U , then U 6= {±1}, so L0 contains more roots of unity

than is usual, and thus necessarily L0 = Q(i) or L0 = Q(ρ) (exercise!). Thus

Deuring’s theorem is true whenever L0 is not one of these two fields, which is

quite a few cases!

Assume thus that U = U ; here is the method for proving Deuring: consider

the action of Gal(k/k) on T` (for (`, v) = 1, where v is the given place); this

action is commutative, and works via the group of units of the local (in fact,

“semi-local”!) field L⊗Q`. Let Iv be the corresponding inertia group; as you

know, it acts via a finite group, independent of `, which can be interpreted as

a group of automorphisms of a reduction Ew of the curve E (over a suitable

extension of k). It easily follows that Iv acts via a homomorphism ϕ : Iv → L∗,

or equivalently,

ϕ : Iv −→ U.

(I am sure that this is just as obvious from your point of view, since the action

of Iv must be “motivic”. Anyway, it is easy to prove.)

But I assumed that U = U . Let us thus choose a homomorphism

ψ : Gal(k/k) −→ U

whose restriction to Iv coincides with ϕ (this is possible, as can be seen using

Kummer theory — beware of the fact that there is no general theorem saying
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that the character of a local field is always induced by a character of the group of

idele classes). J.-P. Serre : “beware of the fact that there is no general theorem

saying that the character of a local field is always induced by a character of the

group of idele classes”. Indeed, it is sometimes necessary to slightly enlarge

the group of values of the character, cf. Artin-Tate, Class Field Theory, Chap.

10, th. 5. If you now twist the curve E using ψ (or ψ−1 depending on the sign

conventions), the action of Iv on the resulting curve becomes trivial, which

means that the curve in question has good reduction at v.

Conversely, this shows how to get a counterexample when U 6= U : namely,

construct a curve E for which the homomorphism ϕ : Iv −→ U does not have

values in U . But this is not very difficult: I have both a general method for

constructing such examples, and numerical examples. (Note that Deuring’s

theorem can be true when U 6= U , for instance if the place v does not divide the

conductor f — I have not yet entirely worked out the details of the situation,

but it does not present any difficulties.)

Abelian varieties of (CM) type can be dealt with in the same way: in any

case, Deuring’s theorem is true when U = U (with the corresponding notation),

so it is true in particular if End(A) is the full ring of integers of the field in

question.

For a general abelian variety of (CM) type whose endomorphisms are a

subring of the ring of integers, note that in any case there exists an abelian

variety A′ isogenous to A (over the given field) whose endomorphisms are the

integral closure of End(A). From this one can easily deduce the following weak

form of Deuring’s theorem:

For any A of (CM) type defined over k and any place v there exists B defined

over k with good reduction at v which is k-isogenous to A.

One could even consider a finite number of places if one wanted to.

There is something amusing about this situation: the elements of U are

“motivic” automorphisms of the set-up, and are not necessarily actual automor-

phisms. This is the source of the hitch.

Yours,

J-P. Serre

P-S. Deuring’s paper containing his proof is no 3 of his series in the Göttingen

Nach. The theorem is stated on page 48. Deuring gives a 4 page argument

(48-51) to prove that End(E) can be assumed integrally closed — which is

false. I have not had the courage to unravel his notation enough to find out

exactly where the error is.
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November 14, 1964 Jean-Pierre Serre

Dear Grothendieck,

Let me come back to Deuring’s wrong theorem. J.-P. Serre : Cf. [ST68], §6.

Here is exactly the case where it is wrong:

Notation: L = End(E), L = integral closure of L, f = conductor, k = field

over which E is defined, (along with its complex multiplication), v = place

of k. The aim is to determine whether there exists a curve E′ over k, with the

same j as E, which has good reduction at v. Answer; yes unless all possible

bad luck occurs at the same time, i.e.:

a) the fraction field L0 of L is the field of fourth or sixth roots of unity,

b) the conductor f is a power of a prime number pe (with e ≥ 1),

c) the place v divides p (i.e. has residue characteristic p).

Conversely, if these unfavorable conditions are all satisfied, then it is possible

to choose the field k so that the answer is no. (Note that actually, for a given L,

there is a minimal field k over which such a curve exists — it is an abelian

extension of L0 whose Galois group can be described by class field theory.)

One of these days, I will have to write to Deuring — or write a note for the

CR(13) — or both, on this kind of thing and the extension to abelian varieties

of (CM) type.

Yours,

J-P. Serre

(13)The Comptes Rendus (de l’Académie des Sciences de Paris.)
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Wednesday afternoon Jean-Pierre Serre

Dear Grothendieck,

I looked at your problem on obstructions linked to the projective group J.-P.

Serre : This is a reference to the topological analog of the Brauer group. On

this subject, see Grothendieck’s talk in the Bourbaki seminar, 1964/65, no290,

th. 1.6. and have come to the — rather surprising — conclusion that there is

no counterexample: If X is, let us say, a finite polyhedron, and x ∈ H3(X,Z)

is a torsion class, there is a projective bundle over X whose invariant is equal

to x.

The question comes down to studying the topology of the classifying space

of PGLn, as n→∞. It is however necessary to pay careful attention to the

way in which the PGLn (or the GLn) are mapped to each other: take the

filtered system of the integers (for divisibility), and map GLn into GLnm via

A→ 1m ⊗A = (A, . . . , A);

passing to the quotient by Gm gives the desired embedding PGLn → PGLnm.

It follows that the limit of the GLn’s (for example) is not at all the one

which arises in Bott. However, the πi of GL∞ can be computed using Bott.

One gets πi = Q for odd i and πi = 0 for even i (I really do mean “Q” — it

is quite rare for a homotopy group!). Those of PGL∞ can be deduced from

this: π1 = Q/Z and πi = Q or 0 for i ≥ 2 as above. This gives the homotopy

groups of the classifying space B of PGL∞:

π2 = Q/Z, π4 = Q, π6 = Q, etc.

Furthermore, the technique of k-invariants (i.e. the study of well-known

successive fibrations) shows that such a space is homotopically equivalent to

the product K(Q/Z, 2) × K(Q, 4) × · · · Thereafter it is in the bag: if x ∈
H3(X,Z) is torsion, x is of the form dy where y ∈ H2(X,Q/Z), which defines

a map X → K(Q/Z, 2), and thence a map X → B. Since B can be considered

as the inductive limit of the BPGLn , we are done.

It is a bit strange — in particular, the inductive limit argument is a bit

scary. However, I really have the impression that it works. Taking Milnor’s

construction for BG (or adopting the semi-simplicial point of view), the in-

clusions PGLn → PGLnm → · · · give inclusions of the B, and the inductive

limit is very harmless. I must admit that I would still be happy to find a more

down-to-earth proof of this bizarre result.

Regards,

J-P. Serre
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May 2, 1965 Jean-Pierre Serre

Dear Grothendieck,

I am returning to the subject of our last telephone conversation: the Brauer

group.

1/ The “descent” argument I told you about goes as follows: let L be a (not

necessarily commutative) field, G a group of automorphisms of L, and K the

subfield of fixed points. Let V0 be a vector space over K, and let V0 ⊗K L = V

be its extension by L (let us say these are right vector spaces). Let W be an

L-vector subspace of V . For W to be of the form W0 ⊗ L, it is necessary and

sufficient for it to be stable under G acting in the obvious way on V .

This result is contained in Bourbaki J.-P. Serre : “This result is contained in

Bourbaki”. It is not in the new edition, but can be easily deduced from th. 1

of A II, §8. (Algebra II, 3ème éd., p.188 — the theorem stated there is actually

more general) and is very easy to prove. Note that even for commutative fields,

the statement is much more general than those which limit themselves to simply

translating faithfully flat descent: for instance, L and K can have different

transcendence degrees. [In terms dear to your heart, there is a functor V0 7→ V

from K-vector spaces to L-vector spaces equipped with G actions; the theorem,

if rewritten in these terms, says that this functor is fully faithful. But it is not

generally an equivalence of categories.]

Application: take L to be a skew field, K its center, and G the group of inner

automorphisms. The result I told you about on the telephone then follows

easily: if A0 is a K-algebra, then the two-sided ideals of A0 ⊗ L are those

coming from A0. Note that I have not assumed [L : K] to be finite, so that

this result cannot be deduced by descent from the case of matrix algebras.

This trick of thinking of a skew field as being “Galois” over its center is

really very nice. As far as I can see, it is due to Emmy Noether (Math. Zeit.,

1933). Deuring and van der Waerden copied it piously into their books.

2/ I feel like telling you a bit of the history of the Brauer group and factor

systems. J.-P. Serre : This little “historical note” on Brauer cohomology and

groups should be corrected and completed.

a/ Factor systems — due to Schur (Crelle, 1904). Schur is interested in

the following problem: projective representations of a group. He sees at once

that there is an obstruction to lifting to the linear group; he interprets it as

a system ast of complex numbers of absolute value 1 (if so desired) modulo

the equivalence relation we know. He makes this into a group, shows that it is

finite, killed by the order of G (assumed to be finite) and that every element
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of this group appears as an obstruction; he observes that this group plays a

universal role in classifying the central extensions of G. He computes it in some

trivial cases and in some not at all trivial cases (alternating groups, symmetric

groups, the group SL(2,Z/pnZ) — see Crelle, 1907, 1911). Bibliography: van

der Waerden, Gruppen von linearen Transformationen, §21. Note however that

in these factor systems the group only acts trivially on the coefficients.

The case of a non-trivial action — and its interpretation by extensions — is,

I believe, due to Schreier (Abh. Hamburg, 1926). There may, however, have

been some interaction between him, E. Noether and R. Brauer.

b/ Using factor systems for simple algebras. This is due to Brauer; its

history is amusing:

Brauer was interested in the following problem: write a given irreducible

representation over a given number field K, which of course contains the

values of the character. This problem had been considered by Schur and

Frobenius, who had obtained very non-trivial results on it. In particular, Schur

had recognized that the obstruction comes from the occurrence of skew fields

(whose degrees give what are known as the Schur indices). Brauer takes the

point of view of Galois descent which is familiar to us: writes the representation

over a larger field L/K, and if M is this representation, then Mσ ∼= M τ etc.

Actually, theorem 90 was really necessary at this point; it so happens that (in

its factor systems form) it had been proved by Speiser in 1919 — it thus seems

(contrary to what I said above) that factor systems with non-trivial actions

must have been known in 1919; unfortunately, I do not have enough documents

at hand to see if they are due to Speiser or to Schur himself (which is what I

would tend to think). In any case, it was definitely Brauer (Sitz. Berlin, 1926)

who was the first to see Galois factor systems cropping up as obstructions to a

typical Galois descent.

In this memoir from 1926, only representations of finite groups are considered,

and not simple algebras. But Brauer is perfectly well aware that the obstruction

described by his factor systems is also described by a skew field. Comparing

the two points of view, he realizes that factor systems allows him to write down

the skew field in question (or rather the matrix algebra over it which occurs

in the problem), and he finally notices that this has nothing at all to do with

finite groups (Crelle, 1932).

Brauer’s factor systems are “homogeneous” in three variables and are defined

for any separable extension; the passage to the non-homogeneous case in the
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Galois situation is due to Emmy Noether — or at least so Deuring says, but I

do not know whether she published anything.

Yours,

J-P. Serre
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August 27, 1965 Alexandre Grothendieck

My dear Serre,

I am still turning algebraic cycles classes every which way in my head; from a

technical point of view, I now see things more clearly, but the final breakthrough

is still missing. As I know you are allergic to cohomologyJ.-P. Serre : “As I

know you are allergic to cohomology. . . ”. Allergy, certainly not. Indigestion,

perhaps?, I would like to show you the two key conjectures J.-P. Serre : This

is a reference to the “standard conjectures”., which should be proved purely

geometrically, i.e. without reference to cohomology. Let X denote a smooth

connected projective n-dimensional variety over an algebraically closed field k,

and Y a smooth hyperplane section. Let me denote by Ci(X) the group of

cycle classes of codimension i modulo algebraic equivalence, tensored with Q,

and by ξ ∈ C1(X) the class of Y .

Conjecture A: For every integer i such that 2i ≤ n, the product with ξn−2i

induces an isomorphism Ci(X) ∼= Cn−i(X).

Modulo a verification which I have not written down in detail, to prove this

conjecture it would be enough to prove surjectivity, and in fact to do it for

n = 2i+ 1. For the moment, the first case that eludes me is i = 1, n = 3. This

conjecture would imply the analog, for the Ci, of the well-known Lefschetz

theorems comparing the cohomologies of X and Y under the direct image and

inverse image homomorphisms (to get the correct formulation all you need to

remember is that Ci becomes H2i), and it would simultaneously imply the

cohomological Lefschetz theorems themselves, whose formally strongest form

consists of asserting that ξn−i induces an isomorphism between H i and H2n−i

for the cohomology with coefficients in Q`; let me point out that even this

purely cohomological theorem is not yet proved! J.-P. Serre : “is not yet

proved!”. It was proved 15 years later by Deligne: La conjecture de Weil II,

Publ. Math. IHES 52 (1980), 313–428, th. 4.1.1. The only thing that has been

proved is the “weak” Lefschetz theorem, which says that the cohomological

dimension of an affine variety of dimension n is bounded by n, which, for the

affine variety U = X − Y takes the form that H i(X) → H i(Y ) is bijective

for i ≤ n− 2, and injective for i = n− 1, or alternatively H i(Y )→ H i+2(X) is

bijective for i ≥ n and surjective for i = n− 1. In fact, unless I am mistaken,

I can deduce conjecture A from its following weaker form (which looks like a

“weak” Lefschetz theorem):
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Conjecture A′: For every integer i such that 2i ≥ n − 1, the direct image

map Ci(Y )→ Ci+1(X) is surjective, i.e. any algebraic cycle of dimension j <

n/2 on X is τ -equivalent J.-P. Serre : “τ -equivalent” = equivalent up to torsion,

i.e. after tensor product with Q. to the image of an algebraic cycle with rational

coefficients on Y .

Once again, unless I am mistaken, it is enough to work with n = 2i + 1.

Moreover, in the argument used to reduce A to A′, it seems necessary to prove

A′ over a not necessarily algebraically closed base field and for cycle classes

which are rational over it, or restrict to stating A for cohomological equivalence

alone (but A then loses the “purely geometric” nature I promised you!)

As I told you, A implies “the Künneth formula for cycles” (actually, I

exaggerated a bit when I claimed that the two statements were equivalent).

This then implies all the integrality theorems one could wish for (on coefficients

of characteristic polynomials, for example), except that it seems possible to

have powers of p= char. k in the denominator. This therefore implies the

Weil conjectures, except for the question of the absolute values of eigenvalues,

which will be covered by B. Note also that conjecture A appears to be the

“minimum minimorum” to be able to give a usable rigorous definition of the

concept of a motive over a field.

Conjecture B: Assume that n = 2m, and let Pm(X) be the kernel of

the multiplication by ξ homomorphism from Cm(X) to Cm+1(X). Then the

form (−1)mε(xx′) on Pm(X) is positive definite.

For the Weil conjectures, it would actually be enough to show that this form

is positive. But this stronger formulation also implies other attractive results,

such as the fact that τ -equivalence = numerical equivalence ( = homological

equivalence with Q` coefficients, since this one is sandwiched in between the

other two), and the fact that the Cm(X) are finite-dimensional, — and in fact,

that the groups of τ -equivalence classes of cycles are finitely generated. (From

this, one can formally deduce that that Cm(X)⊗Q` → H2m(X)(m) is injective,

and thus the rank of Cm(X) is bounded by b2m(X).) Furthermore, B also

implies that the category of motives constructed from non-singular projective

varieties is semi-simple, and in more down-to-earth terms, that the ring of

classes of algebraic correspondences on X (modulo τ -equivalence and tensored

with Q) is a finite semi-simple algebra over Q which can in fact be equipped

with an involution and a trace satisfying the usual conditions. One also gets

the following result, which may be viewed in some sense as a generalization
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of A (assuming that the cohomological version of A is already proved): Let

H2i(X)(i)→ H2i+2r(X ′)(i+ r) be a homomorphism defined by an algebraic

correspondence class, and let Ci(X) → Ci+r(X ′) be the homomorphism it

defines on cycles. Then an element of Ci+r(X ′) lies in the image of Ci(X) if

and only if its image in H2i+2r lies in that of H2i. Note also that the semi-

simplicity result mentioned above would imply the analogous semi-simplicity

result for the Galois group actions in the Tate conjectures. Finally, I have

more or less convinced myself that A and B also imply a reasonable theory of

the abelian varieties which appear as parameter varieties of continuous families

of algebraic cycles, and in particular allow us to obtain the necessary relations

between these “intermediate Jacobians” (which can be viewed as “algebraic

pieces” in Weil’s Jacobians) and the cohomology in odd degree. It is however

quite possible that the proof of B will itself be linked to the introduction of

these abelian varieties.

In any case, A and A′ seem to me to be in some sense preliminary to B, and

it seems reasonable to start with them. Let me point out a rather suggestive

statement which is equivalent to A′:

Conjecture A′′: Let U be the n-dimensional affine open set X − Y ,

then Ci(U) = 0 for every i such that 2i > n.

In fact, it is possible that this holds for any smooth affine variety, and even

that for any smooth variety (affine or not), every cycle which is cohomologically

equivalent to 0 is τ -equivalent to 0 (as I said, this would follow for projective

varieties from theorems A and B).

For the moment, what is needed is to invent a process for deforming a cycle

whose dimension is not too large, in order to push it to infinity. Perhaps you

would like to think about this yourself? I have only just started on it today,

and am writing to you because I have no ideas.

Yours,

A. Grothendieck
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December 7, 1966 Jean-Pierre Serre

Dear Grothendieck,

You asked me some time ago if the K of representations of GLn over Z is

“what one expects”, i.e. the same as over Q. It seems to me that this is true, and

follows easily from J.-P. Serre : I published this result in [Se68]. Chevalley’s

theory, the key point being that representations of GLn in characteristic p can

“almost” be lifted to representations over Z.

More precisely, let G be a split connected reductive group scheme over a

principal ring (shame on me!) A with fraction field E (I have to restrain myself

from calling this field K. . . ). Consider two representations L1 and L2 of G

over A (given by free modules of finite type over A), corresponding to the same

representation of G over E. I have to prove that [L1] = [L2] in the K-group of

representations of G over A. This will prove that this K is the same as over E

(and the latter has essentially been determined by Chevalley).

By dévissage, I may assume there is an extremal element p in A such

that L1 ⊃ L2 ⊃ pL1, and that in addition, the representation of G on L1/L2

is irreducible. Let k be the field A/p. I can view L1/L2 as a representation of

the group G/k.

Let us say that a representation of G/k “lifts to A” if it can be written in the

form L/pL, where L is a representation of G over A. The non-formal property

of G that I need is the following:

Lemma: Let M be an irreducible representation of G/k. Then M can be written

as a quotient M = M1/M2, where M1 lifts to A and the only irreducible modules

appearing in the Jordan-Hölder sequence of M2 are of highest weight (strictly)

less than that of M .

(I say that a highest weight is less than another one if their difference is a

combination of roots with coefficients ≥ 0. Of course, all this presupposes a

preliminary pinning of the group G.)

This lemma must follow from Chevalley’s theory, but I must confess I would

be a little embarrassed if you were to ask me for a precise reference. The

idea is obviously to take the highest weight ω of M , and use it to construct

a linear representation of G over A (by taking the invertible sheaf associated

to ω over G/B); if M ′1 denotes this representation, then define M1 to be the

reduction modulo p of M ′1. There is one problem: is it really true that M ′1 is

free over A? I am afraid we may find ourselves facing the unresolved problem

of the vanishing of the H1 of G/B. In short, I do not totally guarantee this

lemma, but either you or Chevalley will certainly be able to do so.

Admitting this, let me return to my original problem. Here is another lemma,

which is now really trivial:
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Obvious lemma: Let L1 ⊃ L2 and L′1 ⊃ L′2 be representations of G over A.

If L1/L2 ' L′1/L′2, then [L1]− [L2] = [L′1]− [L′2] in the K-group of representa-

tions of G over A.

Let M be the sub-object of L1 × L′1 consisting of elements which have the

same image in L1/L2 and in L′1/L
′
2. One may view M as an extension of L1

by L′2 and also of L′1 by L2. Whence etc.

Let me now go back to the original situation, with

L1 ⊃ L2 ⊃ pL1,

and L1/L2 irreducible. The aim is to show that [L1] = [L2]. One may assume

this is already known for all analogous situations with irreducible G/k-modules

with highest weight strictly less than that of L1/L2 = M . Applying the non-

obvious lemma, one sees that there are L3 ⊃ L4 ⊃ pL3 such that L3/L4 = M ,

and L4/pL3 is a successive extension of irreducible G/k-modules of highest

weight strictly less than that of M . Given my induction hypothesis, I then

have [L4] = [pL3] = [L3]. On the other hand, the obvious lemma says that [L1]−
[L2] = [L3]− [L4]. The result is in the bag!

(Note that “A principal” has been used to assert that [pL3] = [L3]. For

Dedekind rings, the ideal class group of A would have appeared.)

Of course, one sees in particular that the K of representations of GLn over Z

is a special λ-ring (since it is the same as over Q); whence, as you pointed out

to me, it follows that all λ-rings in nature are special (I am exaggerating a

little!)

As this down-to-earth method of considering K has probably disgusted you,

let me try and sell you something prettier. I will keep the notation above, but

will weaken my hypotheses by assuming only that:

a) A is Dedekind;

b) G is a flat group scheme(14) of finite type over A (but is not necessarily

reductive, nor split).

Let KA(G) and KE(G) denote the K-groups that you guess (for A, I take

those representations which are finitely generated projective A-modules); if p

is a maximal ideal of A, I write Kp(G) for the K-group corresponding to the

group G ⊗ A/p. I would like to define, just as in Brauer theory, an exact

sequence:

(14)Note in the margin: Perhaps one should strengthen these hypotheses to “locally free

over A”?
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∐
Kp(G)→ KA(G)→ KE(G)→ 0.

The homomorphism KA(G) → KE(G) is defined in an obvious way. It is

certainly surjective (even though I do not see why!).

The homomorphisms Kp(G)→ KA(G) are much less obvious. Starting with

a G/A/p-module M , one has to show that it can be written as a quotient L1/L2,

where Li is a representation of G over A (i.e. a finitely generated projective

module over A on which G acts) such that L1 ⊃ L2 ⊃ pL1. (In other words,

every representation of G over A/p is a quotient of a liftable representation.

This seems to me to be a good general result to know. Proof: reduce to the

case of representations contained in the Ind-representation given by the algebra

of coordinates of G/A/p, for which it is obvious. Note also that by duality,

you can replace “quotient” by “sub-object”.) This being so, map M to the

difference [L1]− [L2], which by the obvious lemma above does not depend on

the choice of the Li. It is immediate that one thus obtains a homomorphism

from Kp(G) to KA(G). The exactness of the sequence written above is now

clear.

Continuing to imitate Brauer: for every p, there is a reduction homomorphism

rp : KE(G)→ Kp(G)

characterized by the fact that the composition KA(G)→ KE → Kp(G) is the

obvious homomorphism (coming from A→ A/p).

My initial proof can now be reformulated as follows:

Theorem: Assume A is principal and all the rp are surjective. Then KA(G)→
KE(G) is an isomorphism.

Indeed, it is enough to prove that Kp(G) → KA(G) vanishes. However,

by assumption, Kp(G) is generated by classes of elements of the form L/pL,

where L is a representation of G over A; since A is principal, one can choose a

generator p of p; then [pL] = [L], whence etc.

One would very much like to know when the rp are surjective. Chevalley’s

theory says they are isomorphisms when G is reductive and split (unless I

am wrong — it is a shame this was not clarified in SGAD). This is therefore

“geometrically true” when G is reductive non-split. For finite groups, the

situation is similar: rp is geometrically surjective, i.e. becomes surjective after

finite extension of the field E (this is one of Brauer’s prettiest results; I gave a

talk on it in Bures last year).J.-P. Serre : This talk in Bures became the third

part of Représentations Linéaires des Groupes Finis, Hermann, Paris, 1968.
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Some brave soul should investigate non-connected reductive groups, and prove

that rp is again geometrically surjective; that would be quite satisfactory.

Take the above with a grain of salt: it is quite possible, given my lack of

familiarity with group schemes, that I have screwed up somewhere.

Yours,

J-P. Serre
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January 15, 1969 Alexandre Grothendieck

My dear Serre,

I have been thinking about what you told me about Steinberg’s theoremJ.-P.

Serre : “Steinberg’s theorem”. This theorem says that H1(k,G) = 0 if k is a

perfect field of cohomological dimension 1 and G is a connected linear k-group.

See:

R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math.

IHES 25 (1965), 49–80 (= R. Steinberg, C.P. no20)., and I have some questions

and comments.

1) A priori, what the argument you gave me shows is that (for semi-simple

connected G over k) every element of H1(k,G) comes fromJ.-P. Serre : “every

element of H1(k,G) comes from some H1(k, T )”: Here it is assumed that G

is quasi-split, i.e. that there exists a k-subgroup of G which is a Borel group,

cf. Steinberg, loc. cit., th. 1.8. some H1(k, T ), where T is the centralizer of a

regular element of G(k). I doubt that this centralizer is necessarily a maximal

torus in general (in any case this is false for a non-simply connected group

such as J.-P. Serre : It seems that here GP (1) denotes PGL2, even though

Grothendieck usually denotes the group PGLn by GP (n). GP (1)), but in fact

it is true for a “sufficiently general” regular element, which is sufficient for the

argument you use. Precisely, if g is a semi-simple regular element of G(k), G

smooth and connected (not necessarily semi-simple) over k, then what I have

already done in the seminar (the regularity criterion via the Killing polynomial)

implies that its centralizer Z(G) is a smooth subgroup of G, and of course Z(g)0

is the unique Cartan subgroup C containing g; furthermore Z(g) ⊂ N(C).

Thus, for a given maximal torus T , the elements of T (k) whose centralizer is

exactly C = Centr(T ) are the elements of T (k) which are regular in G and

which are not fixed points of geometric elements 6= 1 in W (T ) = N(T )/T . In

fact, in the case where G is semi-simple, one immediately sees that the fact of

not being a fixed point of W already implies regularity (as I said above, the

converse is not true in general). One could use the term “strictly regular” to

describe the semi-simple points of G(k) whose centralizer is a Cartan subgroup;

they form an open subset of the variety of regular semi-simple points, hence

an open subset of G when the unipotent rank of G is zero (T = C).

Thus, to correct the argument you indicated to me, it seems that “regular”

must be replaced by “strictly regular”. Apart from this, it is of course not

necessary for k to be perfect, provided Steinberg’s result has been proved over k

(for a quasi-split group).
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2) “A priori”, the method in question — taking two rational points g and g′

in G and in the group G′ obtained by twisting G, which are strictly regular and

“conjugate” — gives every possible way of restricting the structural group of the

homogeneous principal G bundle P to a maximal torus. (This remark remains

valid whenever G is smooth and connected over k, provided “maximal torus”

is replaced by “Cartan subgroup”). Moreover, Steinberg’s theorem (every

“sufficiently general” rational orbit has a rational point) only holds for G′ if G′

comes from a class H1(k,G) which is zero, i.e. if G′ is itself quasi-split. Indeed,

applying Steinberg’s argument backwards, one concludes that the structural

group of P can be reduced to any given torus, but there exists such a T (the

one contained in the Borel) whose cohomology is trivial, as you brilliantly

observed.

3) Is Steinberg’s theorem (in the form that says that rational points exist on

rational orbits, say) only true for simply connected groups, and is this also true

of the corollary which states that the structural group can always be reduced

to a maximal torus? What happens for GP (1), for instance? Is there a rational

section of G over I(G) (“invariants”) in this case? J.-P. Serre : Steinberg’s

paper quoted in note 183.1 certainly makes it possible to answer the questions

asked here by Grothendieck.

4) I have been amusing myself by looking at the construction of a quo-

tient G/ad(G) for smooth connected G over k. Maybe it always exists: in

any case, I have checked it for affine G of trivial unipotent rank; then for any

maximal torus T with Weyl group W , one has

T/W
∼→ G/ad(G).

Setting I(G) = G/ad(G), this gives a canonical morphism

I : G→ I(G),

and one is very tempted to study this (geometrically) Kostant-style (in the

semi-simple case), for instance: if U is the open set of points where I is smooth

(“quasi-regular points”), then for every s ∈ I(G), Us is the unique open orbit

of G in Os = I−1(s); the orbits of ad(G) in G are of even dimension, which

would already imply that the Os are normal varieties, whose set of singularities

would be Os − Us, and the quasi-regular points of G will be those whose

centralizer is of dimension r = rank. The open set Gstr reg in G is probably the

inverse image of an open set I(G)str reg = T str reg/W in such a way that Gstr reg

becomes a homogeneous space over I(G)str reg of group GI(G)str reg . Does the
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analogous statement with “strictly regular” replaced by “regular” hold? Are

regular (or strictly regular) points characterized by the fact that their orbits

under ad(G) are closed? Can the set O0 be identified with the set of unipotents

of G? When G is an adjoint group, is it possible to generate the affine ring

of I(G) with coefficients of the Killing polynomial? In the general case, is

it enough to take the coefficients of analogous polynomials for certain linear

representations (perhaps arbitrary faithful representations)? Etc.

5) Is it true that I(G) is a rational variety when G is semi-simple over k? It

is obviously enough to assume that G is quasi-split; in the split case, one even

gets a space Spec k[t1, . . . tr]!

I would like to ask Steinberg to come to lunch on Tuesday in Bures. Will

you be at Borel’s on Monday morning, and will he be there, so that you can

introduce us to each other?

I have had a letter from Remmert with a message from Grauert, who (he

says) is seriously ill, so that he hasn’t been able to put the finishing touches to

a manuscript which he promised me for the Publications, containing a proof

of geometric Mordell in arbitrary characteristic. I had raised the question of

lecturing on his proof in the Bourbaki seminar, and he suggests putting his

(“mathematically complete”) manuscript at our disposal. As I believe that

you wanted to talk about Manin, and Grauert seems to go farther by a purely

algebraic method, it might interest you to give this talk. Another possibility

would be for Artin to give it J.-P. Serre : It was Samuel who gave this talk,

cf. note 87.2. (he was with me when Grauert explained his proof to us, but

we didn’t think about it enough to understand the key point), but actually he

already has a lot of work, and masses of talks to prepare. . .

Yours,

A. Grothendieck
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September 2, 1984 Alexandre Grothendieck

J.-P. Serre : My correspondence with Grothendieck was interrupted when

he retired from the mathematical community in 1971. This letter was the first

one I received from him after that.

Dear Serre, Thank you for sending me the information on the Peccot course

and the invitation. J.-P. Serre : “the invitation”. The Collège de France

organized a Colloque Peccot in 1985, to which all the previous Peccot lecturers

were invited; this gave me a good opportunity to write to Grothendieck. As

you probably know, I no longer leave my home for any mathematical meeting,

whatever it may be.

I am going to take advantage of the opportunity to ask you for two pieces of

information, if you can give them to me. 1) Where can I write to Leray? (Is

he still at the Collège?) 2) Do you know Delsarte’s first name?

I have just written a retrospective reflectionJ.-P. Serre : “retrospective

reflection”: Récoltes et Semailles. “on my past life as a mathematician”, which

is currently being typed, and this is where I would like to inculde Delsarte’s

first name?. When it is printed, I intend to send a copy to various people, old

friends and students, and in particular to the members of Bourbaki I knew (so

you are on the list), and also to Leray. As it happens, you are mentioned at

several points in the reflection, and you are one of the “elders” to whom it

is dedicated (along with my former students), which makes a total of three

reasons for sending it to you. . .

Hoping to hear from you soon, cordially yours,

A. Grothendieck

? So, if you know it, it would be good if you could give it to me quickly. Please

note my telephone no: (16/90) 61 88 30. Address : Les Aumettes, 84570

Mormoiron.
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July 23, 1985 Jean-Pierre Serre

Dear Grothendieck,

Thank you very much for the first chapters of “Récoltes et Semailles” which

you sent me. They arrived just before I went to Luminy (for a meeting on

numerical methods in number theory — a subject certainly far removed from

your concerns) and I took advantage of the trip and my stay there to look at

them, in some detail. (I say nevertheless that I “looked” at them, since I could

not compel myself to read them in order, and line-by-line. The text is really

too repetitive to be readable that way. You wrote it as a kind of “diary”, and

one can hardly do otherwise than dip into it locally).

There would be much to say about the content. As I told you on the phone

(which damaged me in your eyes, cf L. 26), I am sad that you should be so

bitter about Deligne, who is one of the most honest mathematicians I know

— and one of those who cares most about you. I will not try to change your

mind on this subject (nor indeed on any other subject): I know too well the

strength and rigidity of your convictions. This is probably what I find most

painful in your text. That, and the general tone of recrimination towards both

yourself and your former students. Moreover, you must have unconsciously

recognized this recriminatory tone, since you tried to exorcise it (L.23):

“. . . which has prevented my testimony (I believe) from ever veering into

sterile recrimination. . . ”

This page is actually remarkable for the next sentence, which is so contra-

dictory that one wonders how you could have typed it without laughing: “This

absence of complacency with respect to myself. . . ”

How can you?

Among the questions you bring up, there are:

—Mebkhout and perverse sheaves. There must be about a hundred pages

on this subject, containing the curious expression “the Good Lord’s theorem”

which I had great difficulty understanding (I finally realized that “Good Lord’s”

meant it was a beautiful theorem). As I have never tried to understand what

a “perverse sheaf” is (I find the term “perverse” just as unpleasant as you do:

this is one point we agree on), I am not competent to comment.

— The publication of SGA 5 and SGA 4 1/2. This publication seemed

very useful to me. The existing notes of SGA 5 were both incomplete and

unconvincing: I remember a talk by Illusie on the trace formula where he

confessed to having been unable to prove compatibility of all the necessary
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diagrams. It is not enough to claim that the diagrams one writes “should”

commute — especially when things as important (for me. . . ) as Weil’s or

Ramanujan’s conjectures depend on them! (If the natural diagram “algebraic

duality= analytic duality” commuted, it would follow that π is algebraic, as

you know – and even that 2πi = 1.)

As for the fact that no one wrote up your conjectures lecture, it is per-

fectly natural: only the author can write such a text. I imagine with horror

someone trying to write up a talk in which I had made conjectures (on `-adic

representations, for example); I am sure that half of them would be false!

— The fact that your work was not continued by your former students. You

are right: they did not continue. This is hardly surprising: it was you who

had a global vision of the project, not they (except Deligne, of course). They

preferred to do other things. I do not see why you should reproach them with

this.

As for Deligne, he moved little by little towards questions that go beyond

the framework of algebraic geometry: modular forms, representations, the

Langlands program. And he applied his deep understanding of algebraic

geometry (including “motives”) to various questions — for example the

construction with Lusztig of many (not all. . . ) representations of the groups

G(Fq) for reductive G. Why should he not have used the yoga of “motives”?

You introduced it, everyone knows that, and everyone has the right to use it

— provided one carefully distinguishes what is conjectural (and perhaps even

false, until proof of the contrary) from what can be proved. For example, I

found very beautiful what Deligne does in LN 900 (the text you reject with

horror. . . ) to get around the problem of Hodge cycles and obtain highly useful

results nevertheless (on `-adic representations, for example). I know that the

very idea of “getting around a problem” is foreign to you — and maybe that

is what shocks you the most in Deligne’s work. (Another example: in his proof

of the Weil conjectures, he “gets around” the “standard conjectures” — this

shocks you, but delights me).

(As a matter of fact, despite what you said in L28, my way of thinking is

not very different — depth excepted — from Deligne’s. And it is also quite

distant from yours — which, moreover, explains why we complemented each

other so well for 10 or 15 years, as you say very nicely in your first chapter.)

On the topic of nice things, I very much liked what you say about the

Bourbaki of your beginnings, about Cartan, Weil and myself, and particularly
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about Dieudonné. Perhaps you would like some recent news of these people?

Here is some:

Cartan is 81, and has not changed. He is as lively as ever, it is a pleasure to

see him. He is not doing any real math, but takes care of what I call “good

works” (mathematicians in prison or mental institutions, URSS-style). He has

a programmable SHARP calculator with which he plays a great deal; recently

he asked me some non-trivial questions on units in real quadratic fields.

Weil is somewhat tired physically (he is literally dragging his feet) but not at

all intellectually. He has stopped doing math, but continues to be interested in

its history. You may have seen his very beautiful book “Number Theory — An

approach through history from Hammurapi to Legendre” which was published

in 1983 by Birkhäuser. I was hoping he would write a sequel (on Gauss, Jacobi

and the others), but I do not think he will. According to what he tells me,

he is presently taking care of editing the collected works (or correspondence?)

of one of the Bernoullis. J.-P. Serre : Reference: Der Briefwechsel von Jacob

Bernoulli, A. Weil. réd., Birkhäuser Basel, 1993.

Dieudonné, as you surely know, underwent several operations some years

ago. They tired him a lot, and he has lost that “force of nature” quality he

used to have. He finished writing his grand treatise on Analysis (9 volumes,

culminating with Lie groups and elementary differential topology), and he is

now working on a history of Topology. J.-P. Serre : Reference : J.Dieudonné, A

History of Algebraic and Differential Topology 1900–1960, Birkhäuser Boston,

1989.

A lot more could be said about your text. I will restrict myself to typo-

graphical questions:

— I like the characters of your typewriter (or the secretary’s typewriter?)

very much. They are really very pretty, and very legible.

— For the parts that you want to emphasize, you use an interval between

the letters:

“P u r s u i n g S t a c k s”, for example. This is not very legible.

Have you tried half-intervals:

“P u r s u i n g S t a c k s”?

This is a little better (but harder to produce on a typewriter).

—“cru” only takes a circumflex when it is the past participle of the verb

crôıtre “j’ai crû en sagesse”, but “j’ai cru en la conjecture de Hodge” (and,
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oddly enough, one says “Le cru et le cuit” without a circumflex: it is illogical,

but that is how it is.)(15)

— For the word “ça”, I find disagreeable your habit of omitting the cedilla

underneath a “Ça” with a capital C: why don’t you type a comma underneath

the “C”, as I just did?

— ambiguë and not ambigüe.

— Ramanujan and not Ramanuyam (p.192, 195, 225).

— (p.263) 355/113 and not 344/133 (which would be < 3, contradicting

what you just explained!).

Regards,

J-P. Serre

PS — In your letter, you express surprise at the difference in tone between

my two letters. Here is the explanation:

In my first letter, I told you about my own results from the last 15 years or

so, and I spoke without excessive enthusiasm — which corresponds to what I

think of them.

In the second, I talked about what has been done in mathematics recently,

and thus I had every right to be extremely enthusiastic: we are living in a

remarkably rich period, at least as rich as the one you knew.

Whence the difference in tone.

(15)The terms in French mean, respectively, to grow, “I grew in wisdom”, “I believed in the

Hodge conjecture” and “the raw and the cooked”
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July 25, 1985 Alexandre Grothendieck

Dear Serre,

I was glad to get your letter this afternoon, in which you gave me your first

impressions on reading Récoltes et Semailles. As I might have expected, you

rejected everything in the testimony which could be unpleasant for you, but

that did not prevent you from reading it (partially, at least) or from “taking”

the parts you find pleasant (those that are “nice”, as you write!). I was not at

all convinced that you would read past the Introductory Letter giving the tone

of it. One thing that had already struck me about you in the sixties (or maybe

even earlier) was that the very idea of examining oneself gave you the creeps —

I still remember how flabbergasted I was to hear you say one day, I no longer

remember in what context, that in the very fact of saying something negative

about oneself you sensed a “cynicism” (this was the expression you used) on

top of the negative thing in question (assumed to be true). I do not believe I

discussed the matter with you then — I must have sensed for once (which was

not usual for me then) that it was a lost cause. I remained with an impression

of surprise, as if faced with a mystery. . . . And yet, at the time, and up until

these last (nine) years, it was not usual for me either, to risk taking a close

look at myself (or at anyone else, to be frank). But the idea that it is possible

to do so, going beyond a “nice” façade, did not inspire any visceral rejection in

me like the one I observed in you. This did not, perhaps, change much, since

I was fundamentally convinced (without even having ever had to ask myself

the question) that in my own case, at least, there was no façade — that my

ideas (or rather, my intimate convictions, since that was how I perceived them)

about myself were nothing other than the faithful reflection of the real truth

of what I actually was. In this, as of course in many other things, I was not at

all different from you or anyone else.

The fact remains that I know that even if you were not personally (and by

name) implicated in my reflection, it could not do otherwise than inspire very

strong reactions of defense and rejection in you, by its very nature. My aim is

not to be “nice” or “not nice” any more than it was in math, but to discover

a truth, which I “express” as I continue my probings, as a means of discovery.

You call my text (or my method?) “complacent”, and this is probably another

of your intimate convictions, which presents itself to you as “obvious” to such

an extent that it would not have occurred to you to specify where, exactly, you

perceived complacency. And yet it would interest me a great deal if you would

take the trouble to specify it (if in taking this trouble, or in the question I have
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just asked, you do not yet again perceive some “complacency”!) Is it in the fact

that I express myself without reserve on the beauty of a work (which happens

to be mine) and which I feel very deeply, with the “guts” of my mind, if I may

say? Such things, however intensely they may be felt, almost always remain

unsaid. It took all the impact on my being (last year) of the desecration and

derision which struck this work, for this deep feeling linking me to it to find the

path of language to express itself clearly, “before those who pretend to disdain

it and before indifferent witnesses”. It is true that this “act of respect” must

call out to you strongly — all the more so since something deep inside you

concurs, and finds in it an echo. For you too, while often denying it to yourself,

have also sensed this living beauty, this power, in this work of another person,

a work which you were closer to, for a long time, then anyone else (apart from

myself). It is probably because of all this that it would not be at all surprising

if you were to reject this call as a “complacency” of mine — for by general

consensus (which comes to the rescue just in time), one is only supposed to feel

and express beauty in others and in the work of others (something, therefore,

which remains exterior to us), and never that which fills our very selves, or the

products of our own loves.

It is actually not impossible that there are passages in R.S. where com-

placency might have slipped in — the contrary would be surprising! This

is not what I mean when I talk about “absence of complacency” — but the

fundamental tone, the intention that drives the whole reflection. But it is

likely that this expression “complacency” (like many others, no doubt) means

something very different to you than it does to me — and it could not be

otherwise, given that the very aim of the quest pursued in RS inspires a visceral

rejection in you! And I imagine it is this very rejection which leads you to

make no reference to my rather personal letter before last, in which I told you

I was sending you the introductory part of RS. . .

Thank you for the typographical and orthographical comments etc. — the

latter will be taken into account in the printed version (“if I find an editor

mad enough . . . ”). I deserve no praise for the typewriter, which belongs to

the university! As for my own, I imagine you are beginning to know it well. . .

I was glad to read your news of Cartan, Weil and Dieudonné. If you tell me

about them, it probably means that you still meet them from time to time?

At the Bourbaki seminars, I suppose?

Your letter crossed mine, in which I told you I was impatient to have your

reactions to RS III and IV, which I told you I had sent you, and which you

will perhaps receive at the same time as this letter. But I am afraid that in all
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this (and you will not be the only one) the blow will hurt in the same place —

because all this is a bit personal!

Very cordially yours,

A. Grothendieck



CORRESPONDENCE 275

February 8, 1986 Jean-Pierre Serre

Dear Grothendieck,

I have received the volume of R. and S. which you had sent to me. Thank

you very much. I still do not have the second-to-last volume (pages 500 to 800,

more or less), of which I have only a few isolated pages which I would like to

put back into their context. Could you have it sent to me as well, so that I

have the complete set? Thank you in advance.

One thing strikes me in the texts that I have seen: you are surprised and

indignant that your former students did not continue the work which you

had undertaken and largely completed. But you do not ask the most obvious

question, the one every reader expects you to answer:

why did you yourself abandon the work in question?
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For example, you talk about Jouanolou and his lack of interest in his own

thesis (projective limits arising in `-adic cohomology). This lack of interest is

not surprising: these are technical results which are only meaningful in the

context of a program which you alone mastered. But you, who had created

this program, why did you abandon it? The answer to this question would

have deserved at least half of the 1200 or so pages which you devote to Verdier,

Deligne, myself, etc. As far as I remember, your interest in your own program

declined around 1968-1970. It is true that chapter V of the EGA’s (the one

you never wrote: hyperplane sections of all kinds) was not very inspiring. Of

course it would have been useful (I was pleased to learn recently that P. Blass

intended to resurrect itJ.-P. Serre : “P. Blass intended to resurrect it” : see note

24.2 to the letter of October 31, 1959. with your authorization but without

your collaboration), but it would not have contained anything as original as

chapters I and III, for instance. I understand very well that you may have

shrunk from the necessary fine-tuning — but if this is the case, you can hardly

reproach other, much less motivated people (motives again, you will say. . . ),

for shrinking from it also.

I have the impression that, despite your well-known energy, you were quite

simply tired of the enormous job you had taken on. Especially since the SGA’s

were also getting increasingly behind schedule with the years. I particularly

remember the rather disastrous state of SGA 5, where the authors got lost

in masses of diagrams whose commutativity they were reduced to asserting

without proof (up to sign, with a little optimism. . . ); and these commutations

were essential for the sequel. My comment to the Bourbaki seminar: “. . . the

definitive version of SGA 5, which should be more convincing than the existing

photocopies” referred to this state of affairs, which was disastrous (and not

idyllic, as one is led to believe on reading R. and S.).

One would like to know what you think of all this, even modified by 15 years

of “burial”, to use your term. One is left unsatisfied.

One might ask oneself, for example, if there is not a deeper explanation

than simply being tired of having to bear the burden of so many thousands

of pages. Somewhere, you describe your approach to mathematics, in which

one does not attack a problem head-on, but one envelopes and dissolves it in

a rising tide of general theories. Very good: this is your way of working, and

what you have done proves that it does indeed work. For topological vector

spaces or algebraic geometry, at least. . . It is not so clear for number theory

(in which the structures involved are far from obvious — or rather, in which

all possible structures are involved); I have the same reservation for the theory

of modular forms, which is visibly richer than its simple “Lie groups” aspect
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or its “algebraic geometry — moduli schemes” aspect. Whence this question:

did you not come, in fact, around 1968-1970, to realize that the “rising tide”

method was powerless against this type of question, and that a different style

would be necessary — which you did not like?

This is the kind of question one asks oneself.

Regards,

J-P. Serre
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December 31, 1986 Jean-Pierre Serre

Dear Grothendieck,

One of these days, you should be receiving a copy of “Sur les représentations

modulaires de degré 2 de Gal(Q/Q)”, J.-P. Serre : “Sur les représentations. . . ”:

[Se87]. a piece of work which I have written up over the last few months, but

which has in fact been in progress for a dozen years.

I would like to give you some explanation of what it is about, since you

might be put off by the technical aspect of S§1, 2 and 3, and I am not sure

you will really like the numerical examples in §5.

You probably remember the conjecture made by Weil in 1966: every elliptic

curve over Q is “modular”. We called it the “Weil conjecture”; it is now

called the “Taniyama-Weil conjecture” or the “ Shimura-Taniyama conjecture”,

depending on the authors, but never mind. The importance of this conjecture

comes from the fact that it describes how to get the simplest possible motives:

those of dimension 2, height 1 J.-P. Serre : “height 1” should read “of motivic

weight 1” (I probably wanted to avoid the confusion with modular “weight”).

and base field Q. In particular, if the conjecture is true (and it has been

checked numerically in very many cases), then the zeta function of a motive

has the analytic properties (continuation and functional equation) one expects.

More generally, all zeta functions attached to motives should (conjecturally)

come from suitable “modular representations”; Langlands and Deligne have

made fairly precise conjectures on this subject.

What I tried to do in the text I am sending you is an analog (modulo p) of

this Weil conjecture. One would like to describe certain Galois representations

in terms of modular forms (modulo p). These representations appear to be

very special; they are representations

Gal(Q/Q)→ GL2(Fp)

which are irreducible (otherwise it is not very interesting) with odd determinant

(complex conjugation must have determinant −1). The conjecture I make is

that all such representations are “modular”, i.e. come from modular forms

modulo p whose weight and level I actually predict (the recipe predicting the

level is very natural — the one for the weight is not). Of course, I am not

at all sure this conjecture is true! But it is supported by a large number of

half-theoretical, half-numerical examples, and I have finally decided to publish

it, all the more because it has many applications:

a) it implies the Weil conjecture cited above, along with analogous conjectures

on motives of height > 1 J.-P. Serre : Here, once again, “height” should be

replaced with “motivic weight”. (cf. §4 in my text); this may appear surprising

at first: how can a result in characteristic 0 be deduced from a result in
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characteristic p? This is much less surprising when one realizes that there is

an infinite number of p.

b) it implies Fermat’s (big) theorem, along with some rather surprising

variations: the non-existence of non-trivial solutions of xp+yp+`zp = 0, p ≥ 11,

for primes ` equal to 3,5,7,11,17,19,. . . (the method does not apply to ` = 31).J.-

P. Serre : The list of possible ` is 3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59, cf. [Se87],

§4, th. 2.

c) it implies that any finite flat group scheme over Z of type (p, p) is a direct

sum of copies of Z/pZ and µp (for p ≥ 3). (Beware: this refers only to schemes

of rank 2. I don’t know how to do anything for higher rank.)

Of course, it would be slightly reassuring to be able to formulate a general

conjecture (over an arbitrary global field, for representations of arbitrary

dimension). I have thought about this often, but I do not see what to do (and

yet I am convinced it is possible, at least in certain cases). We’ll see. . .

Regards — and best wishes for 1987

J-P. Serre
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January 25, 1987 Alexandre Grothendieck

Dear Serre,

Thank you for your reprint, and the trouble you took to try to explain the

ins and outs of it to me. I realize from your letter that beautiful work is being

done in math, but also and especially that such letters and the work they

discuss deserve readers and commentators who are more available than I am.

My research is taking me farther and farther from what is generally considered

as “scientific” work (not that I have the impression of any real “break” in the

ardor and the spirit I put into my work) — and anyway, it would be entirely

useless for me to tell you about it, even briefly. I will talk about it, however, for

those who might be interested (if any. . . ). I have taken the decision to retire

next year (I will then be sixty), in order to feel freer to pursue my research in

a direction which does not fit into any “discipline” of recognized usefulness to

society and fundable as such, and in which I will be the only one to go. My

interest in mathematics is not dead, but I doubt I will have the spare time to

write up the few grand sketches I had still intended to write.

I would like to take advantage of this opportunity to wish you a happy 1987

and all the success you hope for in your work.

Yours,

A. Grothendieck
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1964/65, exposé 279.
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212, 221, 232, 236 du séminaire Bourbaki (with commentaries), Secr.
math. I.H.P., Paris, 1962.

[SGA 1] Revêtements Étales et Groupe Fondamental, Lect.Notes in Math.
224, Springer-Verlag, 1971.

[SGA 2] Cohomologie locale des faisceaux cohérents et Théorèmes de Lef-
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