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Preface

During 1969 I was a guest lecturer in Japan, teaching a course in
zeta functions and p~adic analysis at Kyoto University. These notes
are essentially the lecture notes for that course,

The first term, I presented several '"classical" results on zeta
functions in characteristic p : Weil's calculation of the zeta
function of’a diagonal hypersurface, Grothendieck's proof of the
"Riemann hypothesis’ for curves via the Riemann-Roch thecrem for surfaces,
and Dwork's proof of rationality. The second term was increasing p-adic.
After sketching Serre's spectral theory for compact operators I gave
a version of Dwork's first paper on the zeta function of a non-singular
hypersurface, stressing the ""Lefschetz fixed point theorem' character
of the proof. Finally some indications of the connections between
Dwork's differential operator theory and various cohomology theories,
classical and otherwise were given, closely following Katz's thesis.
So there is little new here ; still T hope to have assembled some pretty
results.

I'd like to thank Mr. Sumihiro and Mr. Maruyama for their companionship,
and for their writing up of these notes and Professors Nagata and

Suzuki among many others for making my year in Japan a delight.
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Chapter O - Introduction to Weil's Conjectures

Let k be GF(q) and k_ be GF(q°). Suppose Fioo B ek[X,. X ). Let N

be the number of solutioms in ks of the equations:
Fo(xpoaeo® ) = Folx,0..0% ) = =F (¥,,...,% ) =0

How does NS depend on s?
Examples
(1) The empty set of equations, N, = qns
(2) The single equation XX, - X2X3 =1,

Then N, = (q2 = i)_(cllg -9) . qB -q, and N_ = QSS --qs°

L

The equations Fi = 0 define an affine algebraic set in n-space and NS is
the number of ksurational points of this set, This suggests the more general
question of studying the number of Ks rational points, Ns, of an arbitrary algebraic

variety defined over k,

~1-



Examples

n+l
(1) V = projective n space = P*, Then N, = g—q—:—']-:l = qn+qn'l+”.+ 1, and
ns
= +
N =g +..+1

(2) V = Grassmannian variety of lines in P3, a W-dimensional variety., Then
3 2 3 2
+q+ +q° +
Nl= Ch +qq(3+l])_§q- g‘v q) =q_h+q3+2q2+q+l,a.nd
hs = 3s 2s s
Ns=q +q” +2q  +q +1,

(3) V is a complete non-singular curve of genus g Weil proved that

2g
NS = qs -z Ot?_ + 1 where the oci are algebraic integers of absolute value \/q,
1

(We'll give Grothendieck's proof of this in Chapter 2),

The above examples suggest that NS always has the form £ Oti -z Bi for

certain algebraic integers Oti and Bi' The classical Lefschetz fixed point theorem

suggests why this might be true, at least when V is complete and non-singular,

Fixed point theorem - Let M be a compact smooth manifold and ¢: M —=> M be a

smooth map, Suppose that ¢ has isolated fixed points and that at each fixed point P,
det (I - dcpp) > 0. Then the number of fixed points of ¢ is equal to the alternating

*
sum of the traces of the map ¢ on the (rational, say) cohomology groups of M, So



*
if we let 0, be the eigenvalues of @ on HK(M;Q) for k even and B, be the

eigenvalues for k odd, then the number of fixed points of ¢ is equal to T Q - z Bi.

Now we have the following intuitive analogies:

compact manifold < > complete non-singular variety

smooth map ¢@: M—> M <——> morphism ¢: V —>V,

When V is defined over GF(q) we have the Frobenius morphism ¢: V —>V

given in local coordinates by (al,,, ,,an) —_— (alq,° . ,,anq)_ The number of fixed

points of ¢ is clearly Nl’ and the differential of ¢ is 0, Similarly the number
. . S . .
of fixed points of ¢ is Ns“ So if we could set up a cohomology theory for

varieties in arbitrary characteristic, and prove a Lefschetz fixed point theorem,

*
we would have Ns =% Oéis -z Bis where the Oti and Bi are the eigenvalues of ¢ on

even and odd-dimensional cohomology, When we re-examine the examples given above
we see that they fit very nicely into the proposed plan, Namely, projective n-space
over the complexes has Betti numbers 1 in even dimensions up to 2n., Similarly the

variety of lines in P3(¢:) has Betti numbers By=1, B, =1, By =2, By =1 and Bg=1

So it looks as if the same sort of thing is happening in characteristic p; and as
if the eigenvalues of cp* on the conjectured Hei(v) are qi for these varieties,
Finally a curve of genus g over the complexes is a Riemann surface and has Betti
=1, agreeing beautifully with example (3).

numbers B, =1, Bl=2g and B

0 2

Considerations such as the above led Welil to certain conjectures which have

had an important influence on algebraic geometry:



(a) For any V, NS(V) =z ais -z Bis with o, and B, algebraic integers,

(b) If V is complete and non-singular of dimension n, then  —> qn induces
Y Y

a permutation of the ai and a permutation of the Bi s

(e) If V is complete and non-singular, then each @, has absolute value an even

power of \/q and each Bi has absolute value an odd power of \/q_

(d) More generally, there is a cohomology theory for varieties defined over
arbitrary fields, Over the complexes this agrees with classical cohomology,
furthermore it behaves well under reduction, For complete non-singular
varieties, V, one may prove such results as Poincaré duality and a Lefschetz
fixed point theorem, If furthermore V is defined over GF(q) and ¢ is the
Frobenius, the eigenvalues of (p* on Hi are algebraic integers of absolute

/2

value ql .

(a) is now known to be true, We shall reproduce the first proof of (a), given
by Dwork (c.f.[2]) in Chapter 5. (b) has been proved by Grothendieck; special
cases of it were treated by Dwork and Lubkin, Once a good cohomology theory is
set up, it proves to be a formal consequence of Poincaré duality, (c) is still

largely & mystery, It is known for curves, abelian varieties, Grassmannians, the

diagonal hypersurfaces Z a‘ixin = 0, and in a few additional cases,

One difficulty in (d) is the choice of a coefficient field, Easy considerations
with super-singular elliptic curves show that there can be no good cohomology
theory over Q, For each prime £ Grothendieck has comstructed an'p-adic" cohomology

theory; when V is a variety defined over a field of characteristic ;é £, this theory



has excellent properties, In particular, Grothendieck, Artin and Verdier have
proved all the assertions of (d) except for the last; (c) remains impervious

to attack so far, This has enabled them to give proofs of (a) and (b). p-adic

(or rather Witt vector) cohomology theories for varieties defined over fields of
characteristic p have also been studied; these tend to be analogues of classical
DeRham cohomology, Of interest here are the work of Dwork, of Lubkin, of Washnitzer

and myself, and the theory of "crystals" of Grothendieck,

It is perhaps interesting to note that a Kahler variety analogue of (c) can
be proved but that the proof uses integral cohomology, a tool not available in

characteristic p,



Chapter 1 - Diagonal Hypersurfaces

Let V be the projective hypersurface in P! over k =GF(q) defined by the

n
equation I Xid = 0, Under the assumption ¢ 1 (d) we shall compute NS(V)
6]

and verify the Weil conjectures (a), (b) and (c). The technique is easily modified

n
d
to handle the hypersurface ¥ aixi = O where a.i ek and (d,q) = 1; for fuller
0

details see [13],

We fix some notation, Let G* be the multiplicative group of non-zero
complexes, Let ©@: k —> C* be a fixed non-trivial character of the additive
group of k, x will denote a multiplicative character: k* —_— QJ*, each such
character will be extended to a function k —> € Dby setting x(O) = 0, The

trivial multiplicative character a —> 1 (a ;é 0) will be denoted by €.

Definition The Gaussian sum gx associated to the character y 1is the complex

number £ x(a)o(a).

ack
Lemma 1,1 L Qa) =0, Ifxfte, T x(a)=o0,
ack ack
Proof : Choose b so that O(b) #1, Then, T ©(a) = £ ©(a+b)=0(b). = 0f(a).

2€k ack aek

The proof for x is similar,



Lemma 1,2 Suppose x # €. Then, for all bek, 5 x(a)o(ab) = x(bi-gx
aek

Proof': If =0, use Lemma 1,1, Suppose b % 0. Then

£ x()o(ab) = £ x(ab o(a) = x(b_1)~gx = W'gx .

ack ack
Lemma 1.3 If x /e, then |g | = ya .
2 —
Proof': Ig ! =g g =g . &5 xibi o(b). By lemma 1,2 we may rewrite this as

X XX X pex

£ x(a)e(ab) 6(b) = £ x(a)o(b(a-1)) = = x(1)+ T x(a) £ o(b(a-1)) = g
a,bek a,b bek afl bek

by Lemma 1,1,

Definition Let LS ERREER (822) be multiplicative characters of k and H be

S

s
the hyperplane EX; =0 in kx®. The Jacobi sum j<x1“ ..3%.) 1is the complex
l 3 =]

number z
(al"' . .;as) e H

Theorem 1,1
S
(a) If If X; # €5 then j(x5...o%,) = O

s s
(b) If Iy =c¢ and no x; = €, then j(xlyg,ﬂ,x)= g1 g
1 .

s 1 %



s
Proof: To prove (a), chocse b £ 0 so that 0 xl(b) # 1, Since
1

s
(a.l,_,,,as) —_— (bal,_,,,bas) maps H 1-1 onto itself, j = 1II xi(b)-j, and j =0,
1

To prove (b) note that j.g_ ... g = T fe. %)} ... (g, x.(a_)}.
X1 Xg (al,.,,,as)eH X 1L Xg 8 8

By Lemma 1,2 this is Just

z z X (01) ... (b )0(agby + .. +ad).

(a ,_,,,as)eH (bl:...)bs)EKS

1

Now consider the contribution made to the above 2s-fold sum for fixed b b

1

l}-- 2 s
(1) bl=b2 el = bs =0, The contribution is O,
(IT) by=b, ... =b_=b, b #0, The contribution is T 0(0) = card H=q"°~
(als..-ias)eH

As there are g-1 possible values for b, these terms give (q—l)-qs_l,

(ITI) The b, are not all equal, Let c  be the number of solutions (al,,,,,as) of

i 3 H + = + + =
the linear equations: al ve. t as 0, blal . bsa.S r., Then
= 6{a.b.+ ,,, +ab )= T c O(:;)_ Since each ¢ =qS—2, this sum
11 s s T r
(8)5...,a ) eH rek

is O, and we get no contribution to the 2s-fold sum,



Combining I, IT and TII we find that j(xl""’xs)' I gxl = qs_l(q—l), S0
1%
q-1 5 -1 S
3(Xyse.o%) = == 1 afg, =%=.ng, by Lemma 1.3,
L s 4 5 T S )

We next study the relation between Gaussian sums in k and in an extension

*
k, = GF(q'c) of X, Let ©': k, —> ¢ be the map ©°Trace ; ©' 1is evidently

b
Y’ k,e/k
a non-trivial additive character of kz. If X # € 1is a multiplicative character
of k, let x' be the multiplicative character x°1\Tormk of k,, Set
£
L/%
g, = I x'(a)e'(a).
aekz
Theorem 1,2 (Davenport-Hasse)
£-1 &
v = "l) ° ) °
gy = (e,
Proof: Suppose F =x" - chn"l L.t (-l)ncn is a monic element of k [X].

Set A(F) = Q(cl)-x(cn), Then we obviously have (taking A(1)=1):

(1) MFG) = MF)-2(G).

(2) Suppose uek, and F is the monic irreducible equation satisfied by u over k,

£

L/d

Then \(F) = x'(u)0'(u) where d =deg F.



= 2 deg F-)\(F)Z/degF , where the sum extends over all monic irreducible

3)
(3) e,
elements of k[X] of degree dividing 4. (Every such F has degF roots in kz and

every element of k is a root of such an F; now use (2)),
£

In the formal power series ring C[[t]] we have:

-1
tdeg F deg F)

(*) T AF) =1 (1-2(F)t
where the sum extends over all monic F in k[X] and the product over all monic

irreducible F; this is a formal consequence of (1) and unique factorization, The
sum in (*) is easily evaluated., The constant term is 1 and the coefficient of t

is £ A(X-c) =% 0(c)x(c) = g_. The coefficient of td(d>l) is qd_E- £ o(e)x{c") =0,

c c X c,c

So altogether we get l+gx-t., Taking formal logarithmic derivatives in (*) and

multiplying by t:

8" - ME). (deg F) 138 T
l+g t deg F

1-2MP) -t

where the sum extends over all monic irreducible F, Comparing coefficients of tz

on both sides, and using (3) gives the theorem,

We can now compute NS for a diagonal hypersurface, Let V C P be defined by

~10-



n
the equation T Xid =0, and assume q = 1(d). Let Ml be the number of solutions
0
n
of £X,
o *

% _ 0 in affine n+l space, Clearly N (V) = (M -1)/q-1,

*
1 (&) there is a character x of ¥ onto the

*
Since k is cyclic and q
d'th roots of unity, Then a # O is a d'th power in k if and only if x(a) = 1,

From this we conclude that if ae€k the number of solutions in k of zd =a is

d

- * *
1+yx(a)+ ... + x(a)d l, (Consider the cases a=0, ace (k )d and a ¢ (k ) separately).

Now each solution (ao,,,,,an) of ¥ Xid = 0 gives rise to a solution

da dy

(ao s...08 ) of X, =0, and the number of (aoge.a,an) mapping on a given
(u u ) is evidently (1 +x(u.)+ + d“l(u )) (1+y(u )+ + d_l(u ))
07, Y % 0 o X 0 soe % ' ceoT X /e
So Ml may be explicitly written as:
d-1 d-1
z (Tax(ug)t oot (ug)) s (@ex(u) + o+ x0T (w)).
uo+ ,,+un=O

Let us expand the above product into monomials and sum each monomial over

the hyperplane uo+ R u, =0, The termsl-l.,,, 1 give a contribution of qnq

Any other term involving a 1 is easily seen to give O, Recalling the definition

of the Jacobi sums we find:

¢ C

M, = <+ > Jx O,.\,.,x ™). ILet S be the set of n +1l-tuples of integers
1<c . <d-~-1
e
n
(co,___,c ) with 1 <c, <d-1 and T c, 0 (d). By Theorem 1,1,
n - i - o 1

~11-



M, =q + =— z g . 8 . So
1 c
4 (CO" ;Cn) €3 X 0] ch
M. -1 n
S | = 2-1 L -
N, ) i Y3 (. z o )es g S g o I8 c —(co,,,,,cn) €S,
O}--.’n X x
12 n-1 n-1
let @ = =N (-g ). Then N. = (q + ....+ 1)+ (-1) T «a . Now replace
[ q c. 1 c
0 1 cesS
X
k by k, , by q° and x by x' = x°Norm ks/k . By Theorem 1,2,
-g o= (-8 c)s_ It follows that I\TS:(q(n_l)S + oL L) + (-l)n_l b3 (O%)S,
(x") X cesS
n-1
2
Furthermore, by Lemma 1,3, each ac has absolute value equal to q . Thus
we have verified the Weil conjectures (a) and (c) for V. If
-1 c c
(-1)* ., 0 n

c :(CO"""Cn) €8, let c' = (d—co,...,d-cn), Now o, = o1 30X Tsaux )

n-1 c c n-1
Consequently, o, = ill%ji— -5 (x O,__.,X n) = QE = q(x . So conjecture

c

(b) holds too, Finally it may be shown that if V is the complex projective

n
hypersurface I X? = 0, then the j'th Betti number Bj(V) is equal to Bj(Pn-l)
i=0

if j # n-1 and that Bn_l(V) = Bn_l(Pp_l) + card S, This accords perfectly with

conjecture (d), since NS(Pn-l) = (q(n-l)s + ... 1) and each o, has absolute value

n-1
2

equal to q

-12-



Chapter 2 - Complete Non-singular Curves

Let V be a variety defined over k = GF(q). To study the integers NS(V) it

is convenient to build a certain formal power series Cv(t) out of them; Weil's
conjecture (a) +turns out to be equivalent to the assertion that Cv(t) is a
quotient of 2 polynomials, Using this "zeta-function" and the Riemann-Roch theorem

2g S

for curves we shall show that NS(V) has the form qS+J_ -z ai for V a complete
1

non-singular curve of genus g, Finally, with the aid of some intersection theory

on the surface VxV we show that each o& has absolute value MAi » & celebrated

result of Weil, The proof we give is due to Grothendieck [5].

Suppose that V is a variety defined over a perfect field k and that X is
the algebraic closure of k, Identify V with its set of k-rational points, A

O-cycle D on V is a formal Z-linear combination, & niPi’ of points of V, D is
called "k-rational' if it is invariant under the action of the Galois group
G(k/k). Let P be a point of V and [Pi] be the orbit of P under G(k/k). = P,

will be called a prime k-rational O-cycle, It is easy to see that the k-rational
O-cycles form a free abelian group on the prime k-rational O-cycles., By the degree

of a O-cycle T niPi we mean the integer T n, s = niPi is "positive" if each

Assume now that k = GF(q),. Let k = GF(q®) and define integers A M and N by:

~13-



A_ = number of positive k-rational O-cycles of degree s on V,

=
il

number of prime k-rational O-cycles of degree s on V,

N = number of ks—rational points of V,

Theorem 2,1

The following 3 formal power series are equal:

8

(b) 1 (1-t%)
1

(¢) exp ( ; £ 8y,
1

Proof: Since the k-rational O-cycles are a free abelian group on the prime

ones, (a) = (b), By the Galois theory of finite fields, N, = T aM;. The
a/s

Mt® e e
= S=t - E T sMt
-t s=1 &'=1

1

1
formal logarithmic derivative of (b) is t - S8

il 3¢ R
=

o0
But the formal logarithmic derivative of (c¢) is just t-l- z Nsts; comparing
s=1

coefficients we find that (b) = (c).

~1h4-



Definition The above formal power series is the zeta function of V (over k);

(t).

it is denoted by CV
Note that Cv(t) has non-negative integer coefficients and constant term 1,

s S

.

Suppose now that there are complex numbers ai and 51 such that N‘s =% O!i -Z B,

1

Using definition (c) of Cv(t) we see easily that Cv(t) = H(l—Bit)/H(l-o&t), a
i i

quotient of two polynomials over ¢, Conversely suppose that Cv(t) = P/Q with
P and Q in @[t]. We can assume that the constant terms of P and Q@ are 1, Let

P:U(l—ﬁit) and Q :H(l-ait) with o, ,B, € €. Taking logarithmic derivatives of

Q. t B.t
. B . s i ~ i . .
the equation , = P/Q we find that I Nt =% T, ® b)) 6t ° equating

coefficients of ts, NS =Z ais - Z Bis

We next turn to the study of a non-singular projective curve C/k s of genus g,

g
By the paragraph above we expect that Cc(t) = 0 (l—a&t)/(l—t)(l-qt) and that
1
[ai[ = {E . To prove this we first recall some results for non-singular projective

curves defined over a perfect field k.

Let ¥ be the algebraic closure of k and K(C) be the function field of C over
k, TIn place of O-cycle we use the word "divisor', Every f # O in X(C) defines a

divisor, (f), of degree O, If D is a divisor on C, then

L(D) = {fek(c)|£=0 or (£)+D > 0} 1is a finite dimensional vector space over K,

Set 4(D) = dim L(D), Divisors D and D' are linearly equivalent if D-D' = (f) for

gsome £,

-15-



We shall use the following pieces of the Riemann-Roch theorem for C, If
deg D > 2g-2, then 4(D) = deg D-g+1, There is a canonical divisor W on C such
that deg W = 2g-2 and 4(W) =g, Any divisor D of degree 2g-2 not linearly
equivalent to W has £(D) =g-1. We also need some 'rationality" results, The Galois
group G(k/k) operates on k(C), Call an element of K(C) k-rational if it is
invariant under G(k/k), If f is k-rational then (f) is k-rational, If D is a
k-rational divisor, then L(D) admits a basis of k-rational functions, If a
k-rational divisor is the divisor of a function, it is the divisor of a k-rational

function, Finally the canonical divisor W may be chosen to be k-rational,

We again restrict k to be GF(q).

Theorem 2,2 Let D be a k-rational divisor, The number of positive k-rational

divisors linearly equivalent to D is (qz(D)-l)/(q—l),

Proof: Let 4=4(D), and f,...,f, be a basis of L(D} consisting of k-raticnal

4

functions. Every positive k-rational divisor D' linearly equivalent to D has the
4

form ( iozifi) + D with @, €k, 0, not all O, (ozl,,,,,ocz) and (‘31""’5;&)

determine the same divisor D' if and only if Bi = yC@_ with vy # 0 in k, The

theorem follows,

An equivalence class of divisors under linear equivalence is called a divisor

class,

~16-



Theorem 2,3 Let s be an integer, There are only finitely many divisor classes

of degree s containing k-rational divisors,

Proof: Suppose s 2 2g , Then, if degD =s, £4(D)}) =s-g+1>g+1>0, So
if D is linearly equivalent to a kK-rational divisor it is linearly equivalent to
a positive kK-rational divisor, As there are only finitely many such of degree s
the result follows, To handle arbitrary s choose a kK-rational divisor D' of large

degree and make use of the map D —> D +D"',

Definition, The class number, h, of C/k is the number of divisor classes of

Let m be the smallest positive integer such that there exists a k-rational

divisor of degree m, We shall compute gc(t), and on the way show that m=1, Observe:

(1) If mfs, then A =0

5-g+1
(2) If m/s and s > 2g-2, then A_=h ( g—ati_ ), this is an easy consequence of
Theorem 2,2,
z h - +1
Now C (t) =2 A t° = (polynomial in t") + — & Ca JJtms:=(polynomialj11tm)
c 0 s q-1 s=0

b
a-1

( Cll—g ~ 1 )

1-g™" 1-t"

+

Thus Cc(t) is a quotient of 2 polynomials in t .

Viewing gc(t) as a function on the complexes we see that it has a simple pole

at t =1,

-17-



w Y
Now let £f(t) = 1m (1-t°) ™

with the M,j as in Theorem 2,1, Then
s=1

Cc(t) = £(t™). By the paragraph above f is a quotient of 2 polynomials, Let

* * *
k = km and (t) be the zeta-function of C over k¥ , Theorem 2,1 lets us write

*

(1-t%) ® . Now if P is any point of C, the prime k-rational divisor
1

) =

s

I &1 8

*
determined by P has degree a multiple of m; it follows that k(P) Dk . From this

* * * * m
we deduce that [k(P):k] = m-[k (P):k ] , and that Mo =mM . So¢ (t) = £(¢)".

*
Since { (t) as well as {(t) has a simple pole at t =1, m=1,

1-
2y i 2Ly - P(t)/(1-t)(1-qt) where P is

Thus {(t) = (polynomial) + g-1 " 1-gt = 1-t

a polynomial with integer coefficients, Since the constant term of { is 1, so is

that of P. We next show that P(t) = ¢®t“® + ... Suppose first g=0, Then

+1

s
AS =h (ng':j_:];) for all s > O, Taking s =0, we see that

L s+l
= = = a__-1ys o 1 P= >
h=Aj =1, So g(t) —(Z) ( oI o o= R and P= 1, Suppose next g > O,
* -t *
Let A = a_-hT— ( 58 l-l), If s>2g-2, A = AS . The divisor class containing
®-1
the canonical divisor has a1 positive k -rational divisors in it while the other
g_l 1
divisor classes of degree 2g-2 have the expected g—q——i— . So

~18-



s s
g l_g
*s _ b g ° _ 1
Now & As vo= a~-1 f T 1-t } This may be written as
0 1 1-qt
atbt

(Tt)(1-qr) for appropriate a and b. So,

2g-2 * ®x
N s s, g-l2g-2 a+bt ) e
gc(t) = ﬁ (A, -A oo+ 2 At = (a7t o000 —ijéyzi:igj . It follows

o)
g Pg °g

immediately that P(t) = q°t™>+,,. . Now write P = 0I (1=ait), Since the
1

coefficients of P are integers, the Oéi are algebraic integers., We have proved:

Theorem 2.4

Let C be a non-singular projective curve of genus g over k = GF(q), Then

2g 2g
¢.(t) = ™ (laait)/(lmt)(l—qt)_ The 0; are algebraic integers and I @ = q®.
1 1

By using the full Riemann-Roch theorem it's not hard to show that o —> g/«

is a permutation of the Oci, We shall skip this and go directly to the proof that

a”

4

- R

|a, | =\f<_1- . Since NS(C) =q%+1 -

s/2
\}1_ == il\‘,S(C) - qs-l} < constant . qg/ for all s, Conversely we shall

£
"
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show that if |NS(C) - qs-l < constant -qs/2 for all s, then each Ozi has absolute

value ﬁ .

Lemma 2,1 Let 'll""’lt be compiex numbers of absolute value 1, Then there

exists an integef m>0 such that each Kim is close to 1,

Lemma 2,2 Let Otl,. . .,Ctt be complex numbers, Then there exist infinitely many
m i m
integers m>0 such that |ocll < IZ a, I
1

Proofs: Lemma 2,1 follows from an obvious pigeon-hole principle argument, To

t
=1, and must show that |{1+Z o] > 1 for

prove Lemma 2,2 we may assume ocl 5
2

infinitely many m>0, But using Lemma 2,1 we may assume that (T&lT )m is close
i

to 1 so that the real part of Otim > 0,

Theorem 2,5

Situation as in Theorem 2.4, The following statements are equivalent:
(a) |Oéi| = \'q for all i

(b) There is a constant ¢ such that |N -qs—l < c-qs/2 for all s ,
s =
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Proof: (a) ==> (b} is trivial., Suppose (b) holds, By Lemma 2.2 there are

s % s s s/2
infinitely many s>0 such that |og|” < | 2 o] . .
1

2 -
Iall < ya . similarly, !ozil < {a . Since I:Ecxi = oF, ;aii =Va .

The simplest proofs that INS -qS -lI < c-qs/2 involve interpreting NS as an

intersection product of 2 curves on the surface CxC,  8So we recall some facts on

the geometry of non-singular projective surfaces (ef.[9]). By a divisor on the
surface S we mean a Z-linear combination of irreducible curves., There is a symmetric
bilinear form intoc Z, the intersection product, defined on the diviscrs; we write
(D-E) for the intersection product of D and E, If D is a divisor let #£(D) be the
invertible sheaf attached to D and hi(D) = dim Hi(S,£(D)). The Riemann-Roch

theorem for S states:

,
hO(D) -h" (D) + he(D) = % (D-D-K) + constant

where K is a certain fixed "canonical divisor” on S. By "Serre duality",
2 0 0 .
h“(D) = h (K-D), If we set £4(D) = h'(D) we find that
4(D) + 4(x-D) > % (D-D-K) + constant; this is a classical form of the Riemann-Roch
theorem for surfaces, and the one we shall use,
Now fix a projective imbedding S < PN, Let H be a hyperplane section of §.

If D is a divisor on S set degD= (D-H),
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Temma 2,3 Let {Di} be a set of divisors on §. If deg D, is bounded above,

then L(Di) is bounded above,

Proof': It E(Di) =m, the positive divisors linearly equivalent to Di form an

m~1 dimensional family, So m-1 is bounded by the dimension of the Chow variety of

divisors of a certain degree on S,

Lemma 2.4  (Hodge)

Let D be a divisor on 8, If degD= 0, then (D-D) < 0,

Proof . By Lemma 2.3, {4(nD)} and {4(K-nD)} are bounded above for neZ., By

the Riemann-Roch theorem, (nD-nD-K) is bounded above, So (D-D) < O,

Suppose now that S=CxC' with C and C' non-singular projective curves, If D

is a divisor on S, set dl(D) = (D-PxC") and dE(D) = (D-CxP') where P and P' are

points of C and C', The definition is independent of the choice of P and P',

Lemma 2,5 (Castelnuovo's inequality)

(p.D) < 2 dl(D)dg(D)

Proof: Let V be the three dimensional vector space over the rationals spanned
by the three divisors PxC', CxP' and D, Intersection product defines a quadratic

form on V whose matrix is given by
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0 1 dl(D)

M = 1 0 d2(D)

‘dl(D) dQ(D) (p.D)

Now det M = 2 dl(D) dE(D) - (D.D). Suppose det M < O, Choose an orthogonal

basis El, E2, E of V and let (Ei-Ei) =a,. Then a, a, a, < 0, so we may assume

3 17273

that ag and a, > 0 while a3 <0, (all a; can't be < O sgince the quadratic form

is indefinite on V). An appropriate Z-linear combination of E1 and E2 is a divisor

of degree O and positive self-intersection number, contradicting Lemma 2 L,

Let C be a non-singular projective curve and ®: C —=> C a morphism, Let
PQP and A be the graphs of ¢ and the identity map C —> C on the surface S=CxC,
1t

We shall apply Castelnuove's inequality to estimate the "number of fixed points',

' :A) of o,
((p) P

Theorem 2.6

Let d be the degree of the morphism p: C > C, Then
[(rga) -1 - al < (2-(a0))- VT .
Proof': Define a symmetric bilinear form * on the divisors of S by

D*E = dl(D) dg(E) + dl(E) dQ(D) - (D°E). By Lemma 2,5, D*D > O, The Schwartz
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inequality then tells us that |T *A| <[A*A)- (T _* T ) .
q v o e ( " o

Now dl(rcp> = 1, and intersection theory tells us that dE(Tq;) =d, So the

theorem will be proved if we can show that (rcp*rcp) = d. (A ¥A) and this reduces

to proving that (I"cp-r‘p) =d.{(A-A), Let j: CxC —> CxC be the map

*
(x,y) —> (9p(x),y). 3 induces a pull-back map j on the cycles of CxC, and
*

J commutes with intersection product in the Chow ring of CxC, Since

*
deg j =4, J induces multiplication by d on O-cycles mod algebraic equivalence,

So (I"CP-I“CP) = (j (A)-3 (&) =ad-(A-A) and we're done,

Remark : It can be shown that 2-(AA) = 2g,
Theorem 2.7 (Weil),

Let C be a projective non-singular curve of genus g defined over k =GF(q).

2g
s s .
Then NS(C) =q +1 - § Oci where Ioa.l I = \q for each i,

Proot Let ¢: C —> C Dbe the Frobenius map., Then deg cps =qs; by Theorem 2.6

|(1" S.A) - qs -1 < {2_(A-A)] . qs/2 . Now T S and A intersect precisely at
¢ ¢

the points (x,x) where x is a ks~rational point of C; furthermore they meet

transversally at each such point with intersection multiplicity 1. Thus

(r S-A) = N_, and we may apply Theorem 2,5,
?
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Chapter 3 - Ultra normed fields

We now turn to Dwork's remarkable proof, in [2],0f Weil's conjecture (a)
for an arbitrary variety defined over GF(Q), A bysic tool in the proof is
analysis in certain ultra-normed fields; we develop some basic machinery in this

chapter,

+
Definition, Let K be a field, A norm on K is a map: H H K-—> R UO

such that:

(1) eyl < 1=l + [yl
(2) Hxylt = [xl-1lyl]

(3) |lx|l =0 4if and only if x =0,

If we define the distance from x to y to be l [me[ ! , then K rescomes a astric

space and addition, multiplication and inverse are all continuous fum ms oon K,

IR = reals and C = complexes are the obvious examples of normed fieids, there are

some others of quite a different type as we shall soon see,

Definition A norm on X is an ultra-norm (or non-archimidean norm) if

Hn-l“ <1 for every integer n.

Theorem 3,1

A norm on K is an ultra-norm if and only if the strict triangle inequaliity,

Hx+y|| < max(|{x|l,]ly]l) holds for ail x and v in K,
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Proof Suppose [l 1| is an ultra-norm and M:=max(||xll,lfyll), Then

lfx+y|ln = [+, 4 ynll < (n+l)Mn, Taking n'th roots and letting n —> =
gives the desired result. The converse is obvious,

Remarks

(1) 1In characteristic p % 0, n-1 1is a root of unity or O for neZ, So

Iln‘l[l =1 or 0, and every norm is an ultra-norm,

(2) Ostrowski proved that every archimidean norm on a field K arises from a

complex imbedding of K,

Suppose now that K is ultra-normed, Let Gk = {xek: le, < l} and

lxll < 11, Ok is evidently a valuation ring with maximal ideal mK

m, = {x eK:

and quotient field K, The field Ok/mK is called the residue-class field of K,

and denoted by K. We say that K is trivially normed if GK =K (i.e,
x # 0 ==> I[xl[ = 1), and that K is discretely normed if OK is a discrete
valuation ring,

Suppose K is discretely normed, Let 7 be a generator of My and N = ‘lﬂ[l,

Let ord be the order function arising from the valuation ring Ok, Then for

ord x

X % 0 in K, l|x|l =X Conversely if O is a discrete valuation ring with

quotient field X and N is a real number with O < A < 1, then x -2 kordx: is a

discrete norm on K,
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As an application we determine all non-trivial ultra-norms on the rationals.
If p is a prime, the local ring Z(P) is a discrete valuation ring in @ and
gives rise to a discrete norm, the p-adic norm., Explicitly, if (m,p) = {n,p) =1,
s m s . : o s 1 N
then 'Ip . E-ll = A, We often normalize this norm by taking X = B . HNow let

|| If be any non-trivial ultra-norm on Q. Then (Gh,mQ) is a valuation ring and

my NZ = (p) for some prime p. Since Ob > Z<p) ) Gb = Z(p) and we have the

p-adic norm,

Remark It can also be shown that the only archimidean norms on € are powers

of the usual absolute value,

Definition A normed field is complete if it is complete in the metric derived

from || |].
The following is easily proved,

Theorem 3.2,

Ay
Let K be a normed field and K be the completion of K as metric space, Then

has the structure of complete normed field, If K is ultra-normed so is K , and

-

= >

s

~
=K If K is discretely normed sc is K

=1

The completion of Q with respect to the p-adic norm will be called Qp~ it is

Hensel's "field of p-adic numbers', The analysis that we do in these notes will

take place in Qp (or more generally in finite extensions of Qv}. Analysis is often

easier in ultra-normed fields than in archimidean ones, For example:
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Theorem 3,3

Let as be a sequence in a complete ultra-normed field, Then & ai converges

if and only if & —> 0,

Proof': If ai —> 0, the strict triangle inequality shows that the sequence
o0

of partial sums of & a, is Cauchy and so converges, The converse is trivial,
1 :

We next study prolongations of ultra-norm, Let K be an ultra-normed field

and XK' a finite algebraic extension of K. (In the applications, K =QP).

Theorem 3.4
(1) There is a 1-1 correspondence between the prolongations of ll H to K'
and the valuation rings in K' dominating GK, In particular, at least one

prolongaticn exists.
(2) If K is complete there is a unique prolongation, and K' is complete too.

Proof: For any prolongation, {xeX':||x|| < 1} is a valuation ring dominating OK .
*
Conversely suppose ¢ dominates QK We have a map of groups, K /units of
*
OK —> (K') /units of @, The cokernel of this map is finite, For if
*
Up...u € (K')  are in distinct cosets mod the image, they are linearly independent over K

*
Thus if xe (K') » £ =e¢y for some unit ¢ in O and element y of K, Set
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1

[lxll = Hyl In 5 it's easy to see this is well defined and that HXH <1 if

and only if xe 0. So Hx” <1 == Hx+l” < 1, and the strict triangle inequality
follows proving (1). Suppose K is complete and [K':K]=m, Prolong the norm on K
to K', We prove by induction on dimension that every K-linear subspace V of K' is
complete, If dim V=1, this is clear, If dim V>1, write V=KX®W, Since KX and W
are complete it's enough to show that the projection map V —> K& is continuous, If

it's not there's a sequence Xy —> 0 in V such that Xy =}\ia+wi with }\ieK

bounded away from O and w, €W. Then Xi/)”i —> 0 sow/A —> -q, As W is

complete it is closed in K' and e W, a contradiction, In particular K' is complete,
Now choose a basis of K' over K. The above proof shows that the projection

maps K' —= K are continuous so K' is homeomorphic with Km So any two norms

on K' prolonging the norm on K induce the same topology on K', Since Hx” > 1

if and only if x ' —> O as n —> %, the topology determines {xeK': {x]] < 1}.

By (1), the prolongation is unique,

Theorem 3.5

Let K be a complete ultra-normed field and L an algebraic closure of K. The
norm on K prolongs uniquely to L (but L need not be complete), L is the algebraic

closure of K,

Proof: Existence and uniqueness are obvious from (2) of Theorem 3.4, Also,
if K' is finite over K, K' is finite over K (elements of GK' representing

linearly independent elements of K' over K are themselves linearly independent
over K). Thus T is algebraic over 1—(__ Suppose fef[x] is monic, Pull T back to f

monic in OL[X], Since GL is integrally closed, f factors into linear factors over OL’
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T factors into linear factors over L and L is algebraically closed,
Theorem 3.6

Let L be the algebraic closure of Q,p; prolong the p-adic norm to L, Suppose

T
Qe L, Then a® -Q for some r and there is a unique "Teichmiller representative"

T
Qe GL such that o =a and o reduces to a,

r
Proof': a is algebraic over Z/p; if the degree of Q is r then a® = @, The

r
remaining assertions are true because the polynomial xP X factors into distinct

linear factors both over GL and T,

The Teichmuller representatives give a canonical set of representatives for
the residue classes of mp in GL‘ They are closed under multiplication, but not

under addition,
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Chapter 4 - The zeta function is "meromorphic"

Dwork's proof of Weil's conjecture (a) breaks up naturally into two parts,
First he expresses NS(V) in terms of the traces of certain infinite matrices with

co-efficients in a finite extension K of Qp, and deduces that Cv(t) is a quotient

of two everywhere convergent power series over K, A p-adic version of a classical

theorem of Borel then shows that Cv(t) is a quotient of two polynomials and

conjecture (a) follows easily., In this chapter we carry out the first part of this
program,
Suppose K is a complete ultra-normed field and f= & aixleK[[X]]. If

uekK and a.ul —> 0 then & a.ul converges in K; we write f(u) = £ a.,u

i . i . i
i>0 i>0
It's easy to see that the f converging at u form a subring of K{[X]] and that
f —> f(u) is a homomorphism of this subring to K. Let's assume now that K is a

complete extension of QP and that the norm in X has been normalized so that

[ee]
[Ipll = o7, 1£ % is real, let S(A) = {1+ £ e X eK[[X]] such that
1

~Ai
HciH <p for all i}. S(A) is closed under multiplication and if fe S()\)

then f converges at all u such that Hu” < p)\,

Now let 7 be an element of the algebraic closure, L, of Qp satisfying

ﬂp‘l=—p . We describe certain important power series over the complete ultra-normed

field QP(Tr),
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Definition

T
If r is an integer > 1, er(X) = exp m(x-xP ).

r-1 i
We write © for @l, Note that er(x) -1 ©xP).
2

Lemma 4,1 @res(o),

i
R

S [

Proof : The exponent to which p occurs in i! is | %] + [ &2_ 1+...<
b

o]

i r
It follows that |l—.l1r,— [|< 1 and that exp7Xe $(0). Similarly exp(-mxF ) e $(0).

Our next goal is to show that the er € 8()x) for some positive N, Suppose

- 2
seQ (or even Q,P). By (1+X)s we mean the formal power series 1+sX +S—(-§-——l—) X7+,

Lemma 4,2 Let w: A {0, +1} Dbe the MObius function, Then:
~un)
(1) expx =1 (1x7) ™
n>1
'M_r.l_) 2 2
(2) exp(X +p_]Xp) = n(1x") B (1x"P ) °P where the product extends over

all positive n prime to p.
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-p(n)

n

Proof: Let £ =1 (l—Xn) n . Then Xf£'/f = ¢ pn X . Using the familiar
_—— n
n>Ll n>1 1-X

fact that 72 p(d) = 0 for n>1, we find that £'/f = 1, proving (1). Now (1) may
d/n

() pla)

be rewritten as expX = M(1-x") ® (1-x"F) PP , the product extending over all

positive n prime to p. (2) follows immediately,

Lemma 4,3 Suppose s € QP_ Then :
(1) ()% e s0) 1r l[sll <2

>1 .

]
ke’

(2) (1) es(-r—;}—l-) ir |ls]]

o
Proof: (145)° = gax’ witha, - 821 (2371) oo ie (o] < T 51,
e 0 i 1 1,
ri i(r+ 1 )
then Ha.iH = ﬁj-]—--,-]—-r <p p-1’/ ., To prove (1) note that se€Z == a;€Z and
that s —> a, are continuous functions Qp —_—> Q’P .
L
Theorem 4,1

eres( _k]_-_)

r+l1
p
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Proof: Let f = exp(X +p_lxp), By Lemmas 4,2 and 4,3, £eS(8) where

8 == (-2- ) = 2ER Thus © (X) = £(mX) eS(d+ —= ) = s(&L ) |
2 p-1 2 : p-1 2
p p (p-1) P
r-1 i
Now use the fact that er(x) -1 O 2 ).
{20
Corollary Let K be a complete extension of Qp('rr) and u an element of K, If

Hull < 1, then the 61" converge at u,

Theorem 4,2

In the situation of the corollary suppose Hu” < 1, Then

e (u) = 1+mu (7T2) in GK .

o0
Proof : @ (u) = 1+mu + % ciul with c, € Qp(Tr), Tt clearly suffices to show
2

that Hclll < H’TTH for i > 2, This will follow from Theorem b1 provided

i- (E‘-gl ) > 2 i.e, 1> ( _1-3_)2. So we only need worry about the cases when
b

ESIS(L

-1 These can only occur when p=2 or 3 and are handled by a direct

calculation,
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Theorem U4, 3

KzQP("fr) containg the p'th roots of unity, There is a unique p'th root of

unity M in K such that A = l+’7T(’7T2) in GK .

s

Proof . @(X)p = (exp mpX)- (exp - wpXP). Both sides converge at X = 1; setting

- 2
A = ©(1) and substituting X =1 we find that 2P = 1. By Theorem k.2, A =1+m(nT),
So M £ 1, and the p'th roots of unity are in K, Since AN o= 1w (7r2), XA is the

unique p'th root of wmity £ 1+7 (7r2),

Now let k = GF(pr),, We shall define an additive character @r from k to the

multiplicative group of Qp(ﬂ) and then show that @r is a lifting of this

character,
Definition
(1) ¢:2z2/p —> Qp(ﬂ) is the additive character n —> A" (X as in Theorem 4, 3).

(2) O.: k —> QP('/T) is the map 9¢Tr where Tr is the trace map from k to Z/p.

Since k 1s separable over Z/p, @r is a non-trivial additive character,

Theorem L, 4

Let L be the algebraic closure of Q,P, u an element of L satisfying u =u , and

u the Teichmiiller lifting of u, Then er(u) = or(ﬁ),
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r

Proof: Since u* = u, the argument of Theorem 4,3 shows that 6r(u) is a p'th

r-1 i
root of unity. Furthermore, @r(X) = I e(XP ). Substituting X=u and using
i=0

r

-1
lﬂT(u+up+, RTL (71'2), Let n be an integer

Theorem 4, 2 we find that er(u)

such that n = Tr u = (u+u® +..., ). Then, n = (u+up+,,, ) (m). So

n

@r(u) = 1l+nw (7T2); it follows that @r(u) = A" = Qr(a).

A generalization of Theorem 4 4 in which er is replaced by a power series

in several variables is useful, We use the usual multi-index notation;

n Q,
if o = (OLO,_ _,,Otn) is an n+l tuple of non-negative integers then Xa means I Xi +
0
n
and 104 means L &,
0 1

Suppose now that L is the algebraic closure of QP, that Ge L[XO,, ,,,Xn] and

that every coefficient ¢ of G satisfies cCl =c, with q = pr, Let H be the formal

power series in n+l variables exp 7 {G(X) - G(Xq)},

Theorem 4.5
(1) There exists an ¢ > O such that H = ¢ caXa with HcaH < p—elot| .
(2) Suppose u = (Eo .. _ﬁn) is an n+l tuple in L satisfying u® = u, and
w=(uy..u) is the Teichmuller lifting of u. Then H(u) = 0,°G (w)
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Proof: Since both exp and Qr are multiplicative it suffices to prove (1) and

(2) when H is a monomial CXB, since c¥ = ¢, Theorem 4,1 shows that (1) holds with

e = 2L . As for (2), H(u) =er(cu B), But cuP is a root of x% = x., By

o gl

Theorem 4. 4, H(u) = gr(EEB) = Or°§ (u).

*
Now let k = GF(q) = GF(pr) and fek[Xl .. Xn]. Let V'  be the variety defined
by the equations f(Xl.. Xn) =0, XX, .. Xn # 0, We shall use p-adic methods to

*
study the zeta function of V .,

Lerma, qu(V*) - (g-1)" = T Or(xof(xl.. Xn)).

(xo, Xy )e(k*)nﬂ‘

*
Proof: Fix (xl,, xn) e (x ). 1 f‘(xl.. xn) = 0, the contribution to the sum

* *
is gq-1; otherwise it is -1, So the sum is (q—l)Nl(V ) - {(q-1)" - Nl(V )3,

Now let L be the algebraic closure of QP, Imbed k in L and let F be the

q

1}
0

lifting of f to OL[Xl,, Xn] whose coefficients satisfy c

Let GeoL[XO_, Xn] =X F and H = exp 7 {G(X) - G(Xq)}, Theorem 4,5 and the lemma

0

) * n - *n+1 - a
show that qu(V ) - (g-1)" =g H(xo,_ xn) where (xo_. An) e (L) and x,° = X, .

s s=-1 i
More generally, let H = exp 7 fex) -cx¥ )} = 1 H(xd ). The same argument
i=0

with q replaced by qS gives:
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Theorem 4,6

) xn), the sum extending over all

We next express the sums in the above theorem as the traces of certain infinite
matrices, Let K ¢ L be the extension of Qp generated by 7 and the roots of

x% = x. K is complete and contains the coefficients of' each Hs' Let W be the vector

space of formal sums I caXa with & running over n+l-tuples (Oto .. an), caeK and

¢y —> 0 as IOL| >0  If T: W —> W is K-linear and T(XB) = caBXa, the matrix
x

of T is the infinite matrix {caa], If ¢, —> O we define the trace of T (or of

. . . o a
the matrix of T) to be L c, . Let y: W —>W be the map £ c X~ —> % anx ;

TLemma Suppose PeW. Let y°eP: W—>W be §° composed with multiplication

by P, Let ca(P) e the coefficient of Xa in P, Then:

s 1
Trace (¢ °P) =Z ¢ (P) =——— = P(x, .. X_) ,
s s n+l 0 n
a (qa-1)a (a7-1)
*n+l qs
the sum extending over (x. .. x ) e (L) with x, =x, .
0 n i i
Proof: The diagonal term S in the matrix of \psoP is ¢ s (P).
(a7-1)a

It suffices to check the second equality for P a monomial ; this is easy,
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Theorem 4,7

N (V) - (@®-1)" = (@®- P me(yen)®

Proof By Theorem 4,6 and the lemma it's enough to show that

¢S°HS = (4oH)® . Now it's easy to see that for PeW, yo (P(X¥))=P(X)ey . Thus

s-1
(4oB)° = yeHeoyoH.. yoi = ¢ “ofux)-HEY). .HXY )} = ¢®on,

Now let W, < W = {z Cq x%; Hcau <landc, — 0}. The linear
transformations T: W —> W such that ’I‘(WO) < WO form an algebra over OK‘ If
T is in this algebra and {cas} is the matrix of T then caBeOK and for fixed B

Cop T 0 88 o] —=> w. It's not hard to see that T <—> {CGB} sets up a

1-1 correspondence between our algebra of linear transformations and the matrices

described above, So we can give this set of matrices the structure of OK algebra,

and we see that addition and multiplication are what we expect, In particular,

(©top = Cayyp -

Theorem 4.8

There is a matrix {ca } in GK with the following properties:

p
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(1) e,

< v for some fixed vy, O < y < 1,

n+l s

S.1)" " e M° for all s,

(2) N (V) - (-1 = (q

Proof: Let M be the matrix of yeH: W—>W, If M= {caa} » then

Cog = © (#). (1) +then follows from Theorem 4, 5 with y::p'e, The discussion
qQo-p

above shows that the matrix of (\y°H)s is M°, Theorem 4.7 +then gives (2).

We shall call an element of K[[X]] entire if it converges for all ueKk,
meromorphic if it is a quotient of 2 entire power series. We shall use Theorem 4.8

to show that { ,(t) is meromorphic, The key step is:
v

Theorem 4,9

| < yq[a[—[ﬁ[ for some

Let M = {Caﬁ} be a matrix in GK' Suppose ‘icaai

vs 0 <y <1, Then Tr M® exists for all s and the "characteristic power series',

s
Tr M ts)

o
9y (t) = exp(- £ is entire,
1

Remark Let Mo be a finite matrix, Easy linear algebra shows that

Tr MO
exp(~

™8

S £3%) = det (I —tMO). Thus @M(t) is some sort of generalization of

the characteristic polynomial to infinite matrices,

Proof: We need several lemmas,
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Lemma 4.4 Tr MS exists and is equal to 1lim Tr Mg where Mo runs over

the finite submatrices of M whose rows and columns have the same indexing

set. r.pM(t) is the coefficientwise limit of det(I - 'cMO), with M, above.

s (3) .
Proof: M =z C c .. C where X 1< j<s-1
Eroof 1(0),(0) L(0),(1)%,(2) 4 (2) " (s-1),(0) (13 <s-1)
run over the n+l-tuples of non-negative integers. Now the norm of the term
s-1
(e 2 @) sh (1) (1)
above is < vy . Since g [A] —> o as the A vary, it
i=0
s
follows that Tr M exists and is equal to = c .o .
4 (0),(1) "7 S (s-1),(0)

)\(O), .. _’x(s'l)

Using the similar result for Tr Mg we see that Tr Mg —> Tr M°. This,

together with the remark preceding the lemma, gives the final assertion.

Lemma 4.5 Let M, be a Jj x j submatrix of M, as in Lemma 4.4. Then,

JAL
[ laet u ]| <y I where A > = with .

Proof: det M is a sum of terms of the form + ¢ cee C o, .
Eroot 0 T e ) T (9),(9)

with the aﬁl) distinct n+l-tuples, and the 5(1) a permutation of the

J .
(a-1) £ otP)
a(l). The norm of such a term is < vy 1 . Let lj = a-1 min Ela( )l
J 1

where the a(l) run over distinct nt+l-tuples. Evidently Kj —> o with j.

J,
Since ]ldet Mof[ <vy J, we're done.
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It's now easy to prove Theorem 4,9, Let MO be a finite submatrix of M as in
Lemma U4, 4. The coefficient of tY in det(I-tMO) is a sum of determinants of jxJ
submatrices of MO (with rows and colums indexed by the same set) and has

A, I,
norm < y Y by Lemma 45. By Lemma b, if ¢ = ¢M(t) then ||cj(¢)|| <y 9, s0

¢ is entire,

Theorem 4,10

¢ .(t) is meromorphic over K,

\Y%
Proof: We may write (®*-1)* = = aiqls -z b, 18
i%n(2) ifn(2)
( S—l)n+l = z ciqls - T diqls where a,,b, ,c,,d, (>0) are certain
ifn(2) i=n(2)
*
binomial coefficients. By Theorem k4 8, qSNS(V ) =
= aiqls -z biqls-+2 ciqls Tr M - z diqls Tr Ms, It follows that
S i \°1 1%
an (V) n(1-a7t) -1 @, (at)
¢ (at) = exp (T — t ) =

. a, . b,
! m(1-g*) T g la’t)

Replace t by q-lt and use Theorem 4,9,
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Theorem 4,11

Let V be any variety defined over k = GF(q). Let K ¢ L be the extension of —

Q,P generated by 7 and the rdots of xq =X . Then Cv(t) is meromorphic over K,
Proof: By induction on dim V, If W is a closed subset of V then

=
=
0

NS(W) + NS(V-W), 0§y = Gy Gyy + SO if the result holds for two of

V,W and V-W it holds for the third,

By removing the singular set (which has lower dimension) from V we make V a
disjoint union of irreducible varieties and so may assume V irreducible over k,
V is birational with a hypersurface over kK, and hence birational with a V* as in
Theorem 4,10, Since dense open subsets of V and V* are isomorphic, Theorem U4,k 10

and an induction finish the proof,

It's also possible to get Theorem 4,11 from Theorem 4,10 by a combinatorial

argument as in Dwork [2].
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Chapter 5 - Rationality of the zeta function
We shall need a criterion, duve to E . Borel, for a power series

to represent a rational function.

Theorem 5.1
- (-]
Let K be a field and f =T aiX; an element of K[{X]] . If m,n are
o

integers > 0 1let Nn n be the determinant of the matrix » 0<i,j<m.
2

'an+i+j|

Then f is a quotient of two polynomials if and only if there exists an m such

that N = 0 for all large n .
n,m

b

k .
Proof: Suppose first f = g/(1-% din) with g € K[X] . Then for
1

= +o0 .
n>deg g, a dl a3y + dkan-k So Nn,m

n O for m=%+1 and n large.

Conversely suppose Nn m - O for n large ; choose m as small as possible.
b4
Take n large with Nn+1,m-1 #0 . Let Vi be the column vector (ai"‘°ai+m—l)
and M the symmetric matrix (anvn+1i "Vn+m-1) . Since det M = 0 there is a
m-1
non trivial relation E riVi+n =0 . &Since Nn+l,m-l # 0 , the lower left and

upper right (m-1l) x (m-1) submatrices of M are non-singular. It follows that

To % 0 and Tn-1 % 0, that Vn+m—l is a linear combination of Vn...Vn+m o

r
[e]

"

and that Nn+2,m—l = L Nn+1,m-l # 0 . Repeating the argument with n

+ , . . . . . . ..
replaced by n + 1 we find that Vn+m is a linear combination of Vn+l Vn+m-l .
m-1
I claim in fact that the vector ¥ r.V, =0 . The first m-1 components of
o i idn+l

the vector obviously vanish, and the last does also since the bottom row of the

matrix eV is a linear combination of the others.

(Vn+l| n+m)

~ L=



m-1l

An induction now shows that T r1V.+ =0 for all k >n ., Thus
o itk -

£ (r LIRERE rdxm'l) is a polynomial.

m-1

@
By Theorem 4.11 the zeta-function & aiti of a variety , V , may be written
o
as X c,t /(1-Z dit ) where numerator and denominator are entire over an ultra-
o 1

normed field K . To show that Cv(t) is rational we study the explicit dependence

of the Nn,m of Theorem 5.1 on g and di . The Nn,m are clearly polynomials

in ¢y and di 5 Wwe show in some sense that the Sy and di with 1 small

don't make much of a contribution to Nn "

The problem is a formal algebraic one so let c, (i >0) and d; (i >1)

be indeterminates over 2Z . Define i

i_ i
a, € Z[c,;,4,] by Tat =ZTct /1-Z 4t

and let a, =0 for i<0. If X-= (Al,.km) and p = (ul~-gm) are

()\l° “}‘m)

m-tuples of (possibly negative) integers let N
(CORRIN.

(or more briefly Nﬁ)

be the determinant of the matrix | aki+“1, 3 Ni £ Z[ci;di]. Let weight
" 8,
i c; i.n dj J=g iri + stj ; an element of 2 (ci,di] has weight r

if every monomial occurring in it has weight =r .
Lemma 5.1 Notation as above. Then:
(1) Weight N'=Ex, + L u
M i i

(2) N has total degree m in the c's

T >

>

(3) N has degree < max (Ai + uj) in each 4

€



- = +
Proof. Clearly a; ?i dl 8 1

weight i and total degree 1 in the c's . This gives (1) and (2). To

seet dia (i > 0). By induction a, has

! 1
<)\--<Rm=)\ and |J~l<u.2--,<p.m-u .

prove (3) we may assume that N o

1 1 1 1
If X +p <O, 1\13;=0. So we assume M + W >0 and argue by induction

1 1
3 t
on N +u . Let M be the matrix |a,)\i " ”’j | and M  the same matrix

with a}\i+ IJ" replaced by Cxi _— (or 0 if )\i_‘_ u' < 0) in the final

column. Using the relations 8 = Cp + dl ak-l"'+ dkao to decompose the last

(ll"lm) A (llJlgi"')l,) .
column of M we find that XN = T a.N +det M .

(“‘l"“’m) i=l * (ullugJ“.Jp”"‘i)

Expanding det M' in terms of the last column of M' and using induction gives

the lemma.

Lemma 5.2 Let K be an ultra-normed field. Suppose ci(i >0) , di(i' >0)eK.

Define a, € K by Z a.tt =3 c.tl/l -fd.tt s and N ¢ K as in Theorem 5.1.
i i i i n,m

Suppose ||cj|| <29 ana ]|dj|| <2 for j large, where A >0 . Then

nt3m }\m(m-l) +m

there is a constant ¢ such that H Nn <

Wl s

Proof: Choose A > 1 and jo so that | ]cj] | and | Idj || are <A 2 for
all j and <A for j > Jo » Let il cy L. dj be a monomial occuring

in N _ . In the notation of Lemma 5.1, (0,1--m-1)
H

(n,n+l,* *n+m-1)

(1) ir, +2 sy = om + m(m-1)
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1 5. j (n+2m)
Thus ||1'1ci 'deJHSAm-AO .)\mn+m(m-l)

Now take c = A © and use the strict triangle inequality.

Lemma 5.3. Let || || be the normalized p-adic norm on Q , | |  the
usual absolute value. If n 1is an integer and ||-n || . | n I <1, then n=0.
Proof: Write n=+p°m with (mp)=1. Then || n|] | n | =mn.

Theorem 5.2 (Dwork)
et f € 2 [[ X 1]. Suppose that f has positive radius of convergence
in € and is meromorphic over some extension K of Qp . Then f 1is a quotient
of two polynomials with rational co-efficients.
(A similar result was proved by Borel, assuming that f was a quotient

of two entire power series over & , rather than over K . For generalizations

see Dwork [2]).
a, £ Z . Since f has positive radius of convergence

©0
Proof: Write f = g a. X

in € , I ai] < aR" for some constants a and R . Choose A so AR< L .

Normelize the norm in K so that lell = p“l and write f = T ciXi/l -z di}(fL
with numerator and denominator entire. Then |!cj|! and |'dj|| are < lj for
j large.

Now define Nn s in Theorem 5.1. The Nn m re integers; we shall estimate

2 2
n+3m Xm(m—l) + nm

IINn,mlI and an,ml - By Lemma 5.2 Ian’m|! <ec for some constant

Since Iail < aR* » Obvious es%timates show that an mI <mi . 2" . Rm(m-l) *oom
?

Choose an m so large that (AR)™ g-j%; . Then, HNn mll . [Nn m’ < constant. *
s J

47~
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™ . (AR)™ < constant - (-%)n - By Lemma 5.3, N =0 for n large, and
2

Theorem 5.1 finishes the proof.
Theorem 5.3

Let V %be a variety over k = GF(q). Then Cv(t) ig a rational function
over Q . More precisely Cv(t) = g/h where g and h e Z[t] and have con-~

stant term 1 ; thus Weil's conjecture (a) holds for V .

Proof: Note first that Cv(t) has positive radius of convergence over ¢ . (When

Ve Gle) - ——

, when V c k™ the co-efficients of Cv(t) are bounded
1-gt

in absolute value by the co-efficients of , and the general case reduces

1-q"t
easily to the affine case on covering V with finitely many affines.) We saw

in the last chapter that Cv(t) is meromorphic over an extension of Qp . By

Theorem 5.2, CV(t) =g/h with g and h in Q[t]. We may assume that (g,h) =1
in Q[t] and that g and h have constant term 1. It will suffice to show
that h € 2Z[t]. Suppose on the contrary that some prime r divides the denominator

of a co-efficient of h . Write h =1 (l-ait) with @, in the algebraic closure

g and both

gides coverge at t = ai-l , since Qv € Z[[t]]. Substituting t = ai_l we

of Q. . Evidently | o, || >1 for some i . Then h - (%)

1

find that g(ai-l) = h(ai_ ) = 0 , contradicting the fact that (g,h) =1 . Writing

g =1 (l-Bit) and h =1 (l-ait), we get Weil's conjecture (a) easily.

Not too much is known about the ai and the Bi in general. As we've re-
marked, Weil conjectured that for V complete | ail e is an even and | ﬁil e an
odd power of q ; perhaps lai |2 and ]Bi |2 are powers of q even when V
isn't complete. There's one further interesting result. Putting Theorem 5.3

together with a result of Lang and Weil one finds that if V is absolutely irreducible

~UB



of dimension n ‘then N_ (V) = R Eais -z Bis with [, | and I8, |
-z
<q . (The proof depends on Weil's results for curves.) Presumably
n-1 . .
]ozi [ <q , but this remains unknown.

The proof that we've given of Theorem 5.2 differs a little from Dwork's,
which makes use of some factorization theorems for entire power series. As these

results are of interest in themselves we devote the rest of this chapter to them.

Let K be a complete ultra-normed field, &= { u ¢ K| flull <1} anda O {x}
© .
the ring of power series L c. X' where c, £ ® and c, —>0 .
o 1 1 1
If f=2ciXi£G{X} , set || £ ] = max {| c, [| . TIt's easy to see
that || £ +g || smax (|| 2|, (el ), Heell =112l -1lell,
and that @ {X} is complete in the metric, a(f,g) = || f-g || , definea by

[ I/ . 1 £= ZciXi e ®{x}, let T be the element E-Ei & ar %

Note that f is a unit in ©C {X} if and only if ¥ is a non-zero constant.
For suppose T is a constant 74 0 . We may suppose T=21. Then f = i-g
with |lg|l] <1, ana 1 + g + ge + ... converges to an inverse of f . Conversely

if f is awnit in G {x} , T is a unit in X [X] , and so constant.
We now prove a "Weierstrass preparation theorem" in & {X} .

Theorem 5.4

Suppose fe O {X}, T#0, degfT=n. Then f = ug where u is a unit

in G {X} and g € O [(X] 1is monic of degree n . The decomposition is unique.

If £ is in OfX] , sois wu ; if T is entire sc is8 u .
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Proof: Choose f_e O[X] of degree n so that T = Y‘o . Then || -1 Il <1

choose o in O so that |ja || = || f~f || . Since every element of & (X}
is congruent to a polynomial mod & , the ring ¢ {X}/(a,f) = O fX}/(a,fo) is

. n .
generated as O-module by X- » 0<i<n. In particular, =T a; ) G
i

v, & +w,f with a, € & and v in © {x} . Continuing we may write:

1 1 i 1"

1

n .
—1 o
v=Zban +vga+w2f

1
n n-i
v, = ¢, X +v, a+w,T
2 ;i 3 3
de
where b, , ¢, ,--- arein ¢ and v, , W, are in O {x} . Now let
2 , S m
r. =a, +0b, +c, +°°* and w=w, t0w, +tQ W, + . Then,
i i i i 1 2 3
n o n-i n n i3
X = i‘.ri X +wf . So wf is an element g =X - Er, X~ of O[X],
1 i -
monic of degree n . Since wf = g , W is a non-zero constant and w is a

unit. Set 1 = wl.

(=5} . o]
Next write f=%a, X' , u=LB. X Since f = ug , we find that:
Q Q

= + AR 4 .
By i T 3i+l * Ty Bl"‘n

r. B, t ety B

i+2 n Titn+l



Since ”Bi ||[=—>0 as j—>o, the above equations show that

HBi Hgmax||ocn+i+k|l (k >0). Soif f is in O [X] , so is u ;

if f is entire so is u . Suppose finally we had two decompositions

f=ug =u¥g¥, Then g = MNg¥ with M a wit in & {x3. Since g e O [X],
the argument above ghows that M ¢ O [X] As g and g¥ are monic of degree

n, g=g¥ and the decomposition is unique.

Corollary Suppose f g O [X] and O < deg f< deg . Then f is reducible
in O [X].

The corollary may be used to give another proof of the unique prolongation
of norm to a finite extension L of K . TFor suppose that u € L and
NL/K (u) € & . The irreducible equation h of u over K then has the form

n .
X+ f a; X with a € G . Now every a; must be in O , otherwise a
constant multiple of h would give a counterexample to the corollary. So u
is integral over ¢ . Thus NL/K (u) € & if and only if u 1is integral

over &, and the integral closure of G in I is a valuation ring. The

rest is easy.

Theorem 5.5

Suppose f € K [[X]] 4is entire and r is a positive real number. Then

o .
f=g fl where g € K[X] , fl =1+3ec, X is entire, and H ciH <t
1

for all 1 .

-51=



Proof: If r >1, apply Theorem 5.4 to a suitable constant multiple of £ .

In general, choose u in K so that 0 < || u ]Is;r and replace f by

£ ().

Remark: This is the tool used by Dwork in his proof of Theorem 5.2 which takes

the place of our Lemma 5.1. For details see [2].

Now let E be the ring of entire power series over K and EO =

{feB | co(f) =1}. We shall use Theorem 5.5 to study the multiplicative

structure of Eo .

Lemmae. Let p be an irreducible element of K[X] and u a root of p in

the algebraic closure of K . Suppose f e E. Then p divides f in E

if and only if f(u) =0 .

Proof: Suppose f(u) =0 . Let r= || u l[_l and write f =g f as in

Theorem 5.5. Since || ciui|| <1, f (w)#0 so g(w)=0. Twus p

divides g in K [X] and f in E . The converse is obvicus.

The lemma shows that p generates a prime ideal in E . Furthermore,
NpE = (0) . For suppose that f # 0 is in E . Write f = g £, as in
the proof of the lenma. Then p doesn't divide fl and only divides g
to finite order. Now, if f #0 is in E let ordp(f) be the largesst
integer s such that p° divides f . Evidently ordp(fg)= ordp(f) + or@p(g) .
We now turn our attention to EO , the seﬁlof elements of E of cifstant
term 1 . If fe Ej set A(E) = ?ig H ci(f) [T . (Note that g%ci(f)ll T e O

since f is entire.)
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Lemma M (fg) = max (A(f), A(g)). In particular, if f divides g in E, »

then A(f) < Meg) .
Proof: Let r = max (A(f), A(g)) . Then ||ci(f) [l < rt , ||ci(g)![ < rt
for all i . It follows that llci(fg)ll < r* and that AMfg) <r . To

prove the converse there are two cases to consider. BSuppose first that

r = A(f) >2(g) . Choose i >0 so that ||ci(f) | = 2" ; then c; (fg) = rt

too and A(fg) >r . Finally, if A(f) = M(g) =r choose i and j as large

as possible so that ||ci(f) [l = rt , ]]ci(g) Il = rJ . Then !lci+j(fg) [ = pit
and N(fg) >r .

Theorem 5.6

fes]

Let {fi} be a sequence in E_  such that l(fi) —> 0 . Then I fi
1

0

oo}
converges co-efficientwise to some f € EO .  Furthermore ordp(f) = I Ordp(fi)
1
for every irreducible p in K[X].

Proof: Since k(fi) —> 0 , all but finitely many f, are in 6 {x}, and
fi —> 1 in the norm metric on & {X} . Using the completeness of 6’{X}

we find that I fi converges co-efficientwise to some f and that a non-zero

constant multiple of f is in © {X} 5 1.e. that cj(f) —> 0 . Suppose
ue K. Since k(fi(u X)) =1||u - h(fi) we may apply the above argument
to the sequence fi(u X) and conclude that || u ||J . cj(f)——€> 0 . _As this

is true for all uw, f is in EO .
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Now choose r so that 0 <r < A(p) . (We may assume that co(p) = 1).

Let g = Il fi and h = I fi 3 the infinite product for h
l(fi) >r l(fi} <r
converges by the paragraph above. Using the lemma we see that A{h) <r so
p does not divide h . Thus ord (f) = ord (g) = z ord (f.) =
p P ML) > +
i
[ec]

L ord (f.) .
2 or p( l)

Theorem 5.7

Suppose pi(i > 1) are distinct and irreducible elements of K[X] with
constant term 1 and that n, (i > 1) are positive integers. Suppose further that

n.

l(pi) —> 0. Then I p; . cenverges co-efficientwise to an element £ of
i>1

EO. Conversely, every f ¢ EO admits such a "Weierstrass factorization”, and
the Ps and n, are uniquely determined.

Proof: The first statement and the uniqueness assertion are immediate from

Theorem 5.6. To show that f admits a Weierstrass factorization choose r > A(f)

and write f =g fl with g ¢ K[X] and l(fl) < —% ,» this is possible by

83 n,
Theorem 5.5. Write g =1 p; 1 with P, irreducible. Since 12 divides £,
1 : 3

x(pi) <t . By absorbing the p, with X(pi) < —% into fl We may assume
T 51 tso ni
that — < x(pi) <r . Similarly we may write fi = ( El p; y- f, where

5y
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x(fp) < E and E < AMp,) < r/2 . Continuing in this way we get a Welerstrass
2 17 2

factorization of f .

In particular if K dis complete and algebraically closed then every f

n,
in Eo has a product representation il (l-aiX) ' with 8y —> 0.
izx>1
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Chapter 6 - p-adic Banach Spaces

In the proof that the zeta-function of a variety is p-adic meromorphic a
certain linear transformation, ¢°H, on an infinite dimensional vector space
arose, We shall develop Serre's theory of completely comtinuous operators on

p-adic Banach spaces and use it to study these transformations, A fuller treatment is
given in Serre [12].

Let K be a complete ultra-normed field and V a vector space over K, A

norm on V is a function || ’I from V to the non-negative reals satisfying:
(1) har vl < max(( Jal VD
(2) [laul] = [lal}-Ilu]] , ack
(3) ||u|l =0 if and only if wu=0,
If we set d(u,v) = [iu—vfl we get a metric on V; V is said to be a

Banach space over K if it is complete in this metric, An imporitant example is

the following. Let I be any set and C(I) +the vector space of functions

f: I —> K such that f(i) —> 0, (I.e. for any - r > 0 there are only finitely
many i with ||f(1)|| >r). set ||f]| =max {|£(i)||; with this norm C(I)
becomes a Banach space, For JjeI Ilet ej € C(I) be the j-th coordinate vector,
ej(i) = Si,j' The ey are said to form an orthonormal basis of C(I)., A

collection {vi} of elements in a Banach space V is an "orthonormal basis”

of V 1if there is a Banach space isomorpbism Vo~ C(1) mapping vi on e,. If

a Banach space admits one orthonormal basis it admits many. In fact we have the

following useful.result,

-56-



Theorem 6,1

Suppose V admits an orthonormal basis and W is a finite dimensional
subspace of V, Then there exists an orthonormal basis of V containing a basis

of W over K,

Proof': To simplify nhotation suppose V has a countable orthonormal basis
[+

{ei}_ We argue by induction on dim W. Choose w =T a,e, #0 in W, Multiplying
1

by a constant and permuting the ej we may assume a, = 1, HaiH < 1l. Now the map

-] ©

T —_— + + . _ X N i fecti £4 N 5

Z rie,~—>r,e g(r:.L airl) e, 1s norm-preserving and bijective, fixes ei(ng_)

and maps e, on w, SO we may assume e, is in W, Now let V' be the closed

subspace of V having ei(izl) as an orthonormal basis, WY = V'IW, and
continue by induction,

Theorem 6,1 shows that W admits an orthonormal basis and is closed in V.
(More generally, a finite dimensional subspace W of any Banach space V is

closed; a proof along the lines of Theorem 3.4 is easily given).

We next study spaces of linear trensformations, If T: V-—>W is a
linear map of Banach spaces let HTH = sup Ll-?%—f—;i ;s uw#0 in V, Then

T is continuous if and only if ||T|] < «. Let L(V,W) be the space of
continuous linear maps V —> W, Then T -3 H'P’E is a norm on this space;
one checks easily that L{V,W) is complete in the norm metric and thus a Banach

space, The space L(V,V) is even a "Banach algebra", i,e, [iTeuli< 7]} lju]].

Suppose now that V admits a countable orthonormal basis {e;} . Let

c* (Z) be the space of sequences a = {ai} in K of
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*
bounded norm; set |la|| = sup ||ai||, Then L(V,K) is isomorphic with C (Z)
as Banach space, the isomorphism mapping T on the sequence {T(ei)}. One can

give a similar explicit description of L(V,V). Let ", be the space of matrices

M = |aij|, (1<1i,j <), in K such that l]aijll is bounded and the column
vectors of M are in C(Z). Set ||M|] = sup Ilaijll‘ If TeL(V,V) define a

o«
matrix M = |aij| by T(ej) = ifl a5 - Then T <—> M gives a Banach space

isomorphism of L(V,V) with %, and composition of maps correspondsto matrix
*
multiplication, Note that if Me % then the row vectors of M are in C (Z)

(but not necessarily in C(Z)).

From now on let V %be a fixed Banach space admitting a countable orthonormal
basis, We shall study a certain class of elements of L(V,V), the "completely
continuous" operators. (In fact, we don't need to assume that the basis of V 1is
countable and only do so to avoid the awkward notation arising from matrices with
wmcountably many rows and columns, Also many of the results we'll get are true

for arbitrary Banach spaces,)

Definition. Cfin(V,V) is the 2-sided ideal in L(V,V) consisting of operators

with finite dimensional image., C(V,V) 1is the closure of Cfin(V,V) in the norm
topology of L(V,V), The elements of C(V,V) are called "completely continuous

operators",

It's easy to see that C(V,V) is a 2-sided ideal in L(V,V), Note also

that every element, T, of Cfin(V,V) is the sum of finitely many, each of which

has l-dimensional image, For we have an orthonormal basis [ei} of V with

e >...,es spanning the image of T, If we let pi: Vv —> Kei be the i'th

1

S
projection map then T =3 pioT_
1
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Theorem 6,2

Let {ei} be an orthonormal basis of V, T an element of L(V,V) and M
the matrix of T on the basis {ei}_ Then TeC(V,V) if and only the row vectors

*
of M —> 0 in the norm topology of C (Z).

Proof: Let 7/6 C M be those matrices whose row vectors —> 0, We show first
that Te C(V,V) == Me?f(o . As 77(0 is a closed subspace of 7 we may assume

(o]
that TECf n(V’V>’ and even that T has l-dimensional image, Let u =S r. e be
1

1 i71i
an element of image T of norm 1, Then T(ei) =au with ]|ai|| < IITI I, and
the i'th row vector (alri, agri,_,,) of M has norm < HTHHrlH Con-
versely suppose Me??(o . Let Mi be the matrix obtained from M by replacing

all row vectors after the i'th by zero and Ti the element of L(V,V) with

matrix M,. Since M, —>M in 7, T, —>T in L(V,V). As image
i
T.© £ Ke, , TeC(V,V),
1 .
J=1

Our next goal is to describe a certain entire power series Dg(t), the

Fredholm determinant, attached to a completely continuous operator €, Suppose

first that ©Oc¢ Cfin(V,V), Let W be a finite dimensional subspace of V con-

taining image © and Oy = O[W. Set c,(6) = c,(6,) = (-1)* Tr Al(OO), Let

Dg(t) be the polynomial 1 + ¥ ci(Q)‘cl = det (1-t % ). An easy matrix
i>0

calculation shows that D@(t) is independent of the choice of W,
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Theorem 6.3

Suppose © and ©O' ¢ C .n(V,V) and have norm < 1, Then

fi
[eg(@) = e (0011 <[]0 - orf] zor a1l x,
Proof': Let W Dbe a finite dimensional subspace of V containing image ©
and image ©', Let {ei} be an orthonormal basis of V such that S ERRRELN
span W, Let M = [aijl and M' = laij'l be the matrices of 9|W and ©O'|W

on the basis e

||

with integer coefficients the result follows.

10---08, Oof W, By hypothesis, llaijll <1, [Iaij']] <1, and

- aij'll < |le-o'||. since ck(O) = ck(OIW) is a polynomial in the a,

a, . .
ij 1J

Combining Theorem 6.3 with the fact that ck(aQ) = akck(Q) we find:

Corollary The functions ck: Cfin(v’v) —=> K are uniformly continuous on

bounded subsets of Cfin(V,V) and thus extend uniquely to continuous functions

Cy c(V,v) —>K,

[oe]
Definition If 6 e C(V,V), Dg(t) is the power series 1 + % ck(O)tk
1

We shall show that D@ is entire, Choose an orthonormal basis {ei} of V

and let M Dbe the matrix of © on this basis, Arrange the norms of the row
vectors of M in order of decreaging size, allowing repetitions. We get in this way a

sequence of non-negative real numbers ri such that r, >r

1 2T

and r, —> 0,
i

5 3 .-
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Theorem 6 U4,

With the notation as above, l]ck(Q)]l Sryr, T Thus Dg(t) is entire,

Proof': Let M: be the upper left ixi submatrix of M and Ti be the maps
defined in the proof of Theorem 6,2, Then T, € cfin(v,v) and ck(Ti) is the
coefficient of tk in det (l-t14;>), This coefficient is a sum of products, each
of which involves terms from %k distinct rows of M, Thus

f‘ck(Ti)fl <ryrg...r . As T, —>0, ck(Ti) _— ck(O) and we're done,

In th

341

[0

study of completely continuous operators on V it's useful to

o0
consider the K-algebra of formal power series f = ¢ Ait with co-efficients
0

in L(V,V). The entire f, i.e. those for which rlul!AiIl —> 0 for all

real r, form a subalgebra of this algebra. If f 1is entire and u € K

© N
then T ulAi converges in L(V,V) to an operator which we call f(u); clearly
0

f —> f(u) is a homomorphism. By identifying the element a of K with the
element a.-I of IL(V,V) we may view every power series over K as a power

series over L(V,V); we do this from now on without further comment.

Definition Suppose © g C(V,V). R@(t) is the formal power series

De(t)-(l + oot + 6°t° . al)

RO is called the Fredholm resolvent of ©. Its co-efficients are poly-

nomials in ©.

Theorem 6.5

Re is entire.
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Proof': Let {eil be an orthonormal basis of V, M the matrix of ©

on this basis and ry > r, > ... the sequence of norms of row vectors of M

© .
arranged in order of decreasing size. Let Re(t) =1+3 ui(Q)-tl. Since
1

ry —> 0 1t suffices to prove:

Lemma, IIui(@)ll Sryry eee 1Ty

Now choose a seqguence Qi —> 0 as in the proof of Theorem 6.3 such that

s
image O _ c % K ey Since ui(@) is a continuous function of © it suffices
1

s

to prove the lemma for each OS. Thus we may assume image O c ¥ K e.. Let
1
s

6, and ui(@o) be the restrictions of @ and ui(G) to V, =ZI K e.. Wemst show
1

that [[u, (e [] <r r.. Restricting the equation (1-0t)-Ry = Dy to V_ we find that

L e o
(l-@b@(i + 3 ui(eo)ti) = det (l—@ot). It follows that ui(Oo) is the

co-efficient of @ in the adjoint transformation (1-@Ot)A to (1-90t).
Now the co-efficients of the matrix of (l—@ot)A are (s-1) x (s~1) sub-

determinants of the matrix of (l-@ot), and we may continue as in the proof

of Theorem 6.4,

Theorem 6.6

Suppose O g C(V,V). If 1-6 is injective, then it is invertible in

L(V,V).

Proof : The automorphism of L(V,V)[t] mapping t on t + 1 is easily

seen to extend to the algebra of entire power series over L(V,V). Let

~62-



o . 0 .
$ At and 3 a.t” be the images of R and D under this map. Since
0 i 0 i (€] Q

Ry # 0, some A; # 0. Let A, be the first non-vanishing A. Now

5]

- . o 03
(1-6t)-Ry = D5 it follows that ((1-8) - 6t).% A*t" = £(a;1)t". Comparing
0 0

o
co-efficients we find that (l—@)-As =aJ. As 1-6 is injective, it's not
a left zero-divisor in IL(V,V). Thus ag # 0 and (l-@)-(a;lAs) = I. Since

the Aj are limits of polynomials in © they commute with ©; it follows that

(1-6) 1is invertible.

Our next goal is to show that 1-6 is invertible if and only if De(l) # 0.

We need several lemmas.

Lemma 6.1 Suppose a £ K. Then & —> Dg(a) 1s a continuous function

c(V,Vv) —> K.

Proof': We may suppose a # O. Choose an orthonormal basis {ei} of V.

If © ¢ C(V,V) let M be the matrix of 6 and r, >r

7 > ... the sequence

2
of norms of row vectors of M arranged in order of decreasing size. Let o'

1

be a second element of C(V,V), and define M' and ro in a similar way.

o : o0

We must show that as M' —> M, % alci(O') — 3 alci(e). Given an € > O
1 - 1
J 1 £
choose j so large that [ max (r.,z—) < -, and r, < =. Suppose
1 i‘2a’ — aJ J -
1 1 k £
v = 1 Il - 1 < "
,l@ Ql, S-Ea' Then, r; < max (ri, Ea)’ so g Ty < ak for all k > j.
k 1,
By Theorem 6.4, |[|a ck(@)f[ < e for all k> j, and the same estimate holds
for flakck(@){[. By taking @' sufficiently close to © we can make

’lakck(d) - akck(@)fl < e for all k < j; the lemma follows.
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Lemma 6,2

(1) 1f ¢,8' € C(V,V) then Dg(a)'De,(a) = DG+9,_a99,(a)

(2) Suppose g & K[X] has constant term 0; let 1-g = n(i-a,X), «, algebraic
i i

over K. Then for © e c(V,V), Dg(e)(l) =1 De(ai)

Proof: By Lemma 6.1, it suffices to prove (1) when 6 and ©' have finite
dimensional image. Let W Dbe a finite dimensional space containing image ©
and image ©', and ¢ and ¢' be the restrictions of @ and 6' to W.
Then det (l-ap)-det(l-ap') = det(l-ap-ap' + aecpcp') and (1) follows easily.

The proof of (2) is similar.
Theorem 6.7
Suppose © € C(V,V) and a € K. Then 1-a6 is invertible in L(V,V)

if and only if D,(a) # O.

Proof: Suppose first that De(a) # 0. Substituting t = a in the relation
(l-Gt)-Re(t) = Dg(t) we find that 1-a@ is invertible. Conversely suppose
1-a8 is invertible; let 1-a8' be the inverse. Then © + @' - age' = 0.
Since C(V,V) 1is a 2~-sided ideal in L(V,V), ' & C(V,V). By Lemma 6.2,

De(a)-Dg,(a) = Do(a) = 1, and De(a) # 0.

Theorem 6.8

Suppose 6 € C(V,V) and f gK[t] with constant term # O. The following

conditions are equivalent:

(1) f£(8) 1is injective

(2) f(8) 1is invertible in L(V,V)

-6l



-1
(3) De(u ) # 0 for each root u of f in the algebraic closure of K.

Proof: We may assume that the constant term of f is 1; let f = 1l-g.

Then g(©) € C(V,V) and (1) and (2) are equivalent by Theorem 6.6. By

Theorem 6.7, f(®) is invertible if and only if Dg(e)(l) # 0; now apply the
second part of Lemma 6.2.

The following notation will be convenient. If f = o+ altn_l + o0+ &,

* -
is a monic element of X[t] with 8, # 0 set £ = £ (t l) =1+ alt + e, + antn

* *
f is irreducible if and only if f 1is, and the roots of f are the reciprocals

of the roots of f. From Theorem 6.8 we immediately get:

Corollary Suppose © £ C(V,V) and f # t is a monic irreducible element
of K[t]. Then f(8) injective <==> £(8) bijective <==> ord,, Dy = O.

From now on we shall make use of the notation and results of the final part

of Chapter 5, dealing with entire power series.

Lemms, Suppose © € C(V,V) and f % t is a monic irreducible element of
K[t]. Then:

[ee}
(1) N= Uker £(8)° is finite dimensional

s=1

(2) dim N = (deg f)oordf*Dg

(3) f£(8) induces a bijective map V/N —> V/N

Proof : To prove (1) it suffices to give an upper bound for the dimension

of a finite dimensional subspace NO of N. But every such NO is contained
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in a finite dimensional ©-invariant subspace (since a finitely generated torsion

module over K[t] is finite over K). Thus we may asSsume @(NO) < Ny Let

{ei} be an orthonormal basis of V whose first j elements span NO. The
M' ?

matrix M of © on {ei} has the form where M' 1is the matrix
O MH

of @|NO. Now M" is evidently the matrix of some completely continuous

operator 6. The proof of Theorem 6.4 shows how to compute Dy and D_
C]

using finite submatrices of M and M". In particular, we see easily that
Dy = det (1—t(elNO)).D6 .

Since f(@)S annihilates NO for some s, the characteristic polynomial

of o[N, has the form £!. Then det(t-(6[Ny)) = £ and aet (1-t(elN))) = (£9)% .

*
So D = (f )ED_, 4 < ordy, Dy and dim Ny = 4-deg f is bounded above. To
9

prove (2) and (3), repeat the above construction with N. replaced by N,

0
now known to be finite dimensional. Tt's easy to see that V/N has the structure
of Banach space with countable orthonormal basis and that © 1nduces a completely
continuous operator 6 on V/N with matrizx M". £(6) 1is evidently injective

on V/N. By Theorem 6.8 it's bijective proving (3). By the corollary
)

ord,.., D = 0; thus ordf*(D@) =4 and dim N = 4-deg £ = (deg f)-ord

K
f 3 f*7e

Theorem 6.9 (Serre)

Suppose © ¢ C(V,V) and f # t 1is a monic irreducible element of K[t].

Then:
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(1) v-= Nf{E‘wf where Ny and W, are ©-invariant subspaces, N. is finite

Hy

dimensional, f(@) is nilpotent on Nf and bijective on wf

(2) For any r > O there are only finitely many £ such that Nf # 0 and

AME) > v
(3) dim Np = (deg f)-ordf*])e
Remark - Note that any decomposition V= NEW as in (1) is unique. For

evidently, if such a decomposition exists, N = U ker f(@)S and W= N image f(@)s.

Proof : TLet T = f(8). By the lemma, N = U ker T~ is finite dimensional
and T: V/N —> V/N is bijective. Choose 4 so that T!N = 0. Since

Tz: V/N —> V/N is bijective, V = N + TEV and one sees easily that the sum

is direct. As T dis bijective on V/N it is bijective on oy proving (1).

Since D@ is entire it admits a Weierstrass factorization, and there are only

*
finitely many f with ord..D 0 and AMf )>r. (2) follows immediately,

%7 7

and the lemma gives (3).
Our next goal is to show that the sum of the diagonal elements of the
matrix of © 1s equal to the "sum of the eigenvalues" of 6. For this purpose

it's convenient to abstract Theorem 6.9 into a definition.

Definition Let U be a vector space (not necessarily a Banach space) over

K eand ©: U—> U a linear map. © is "muclear" if it satisfies (1) and (2)

of Theorem 6.9. If & is nuclear, then Tr__ (©)

ue T Tr (GINf), the sum

ranging over all monic irreducible f # t.

il

Note that the above sum converges. For if T £+ altn_ L a. then
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dim Nf , ) *
“Tr(olng) = (gopg) ey s [lrrelu)i] < ey |l < M27), ana
Tr(ele) —> 0. Observe also that if U 1is finite dimensional then any
6: U —> U is nuclear with Trnuc(e) = Tr(8). (In fact, the structure theorem

for finitely generated torsion modules over K[t] shows that U =€E)Nf where

f ranges over the monic irreducible polynomials including t; the rest is easy).

Theorem 6.10

Let V Dbe a Banach space admitting a countable orthonormal basis {ei]

and © an element of C(V,V) with matrix M = {aij} on {eil. Then © is

nuclear and Irnuc(G) = - cl(e) = ? a; -
Proof': By Theorem 6.9, © 1is nuclear and De(t) has the Weierstrass
deg f

factorization T(f ) Thus the co-efficient cl(Q) of t in D

e

dim N
is just ¢ (agéi?rd cl(f )y the sum extending over the monic irreducible

£ 4t in K[t]. By the paragraph above this is -Trnuc(G)- Finally one

proves that =~ ¢ (@) - T a;, by approximating @ by a sequence in Cfin(v’v)'
i
Theorem 6.11
Let U be a complex UP —> Un_1 e —> UO of vector spaces over X

and ©: U —> U a chain map such that each 9. is nuclear. Then each

n .
\ 3 L1)9 J
(ei)* is nuclear and %( 1) Tr (Q ) = Z( -1) Tr, c(ej)* .
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Proof: For each monic irreducible f # t in K{t], U is the direct sum

of the subcomplexes Nf.(U) and 'Wf(U}., Then H (U) = H (Nf(U))EBH (Wf(U));

the rest is easy.
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Chapter 7 - Dwork's"Lefschetz Fixed Point Theorem"

Let U be a hypersurface f(xl,“°‘,Xn) = 0 of degree d in projective n-1
space over k = GF(g). What can be said about N (U)? In Chapter 2 we computed
b=l
N (U) for certain diagonal hypersurfaces. In the next two chapters we shall
=

develop a similar result for arpitrary non-singular U :

(n-1)s_

Q¥ -1

1

)
- q n S
N (U) = + (-1) E A

where the vy, are algebraic integers #0 and & = d—lf(d—l)n + (-1) (a-1)).

The proof will be similar to that given by Dwork in [3].
As in the case of diagoral hypersurfaces, the above result is in agreement with

Weil's conjecture (d) , and the Y, are presumably the eigenvalues of the Frobenius

n-2

2

on some sort of Hn-Q(U). Thus vy ———>> v

should be a permutation of the Yi

This result has alsc been proved by Dwork, in [U]. Proofs have been given by

Grothendieck and Lubkin too, but they're all very difficult. One expects furthermore
n-2

that Iyil = q 2 s, but except for such special cases as diagonal hypersurfaces this

remains unproven.

)

We adopt the notation of Chapter 4. K 1s the extension of Qp generated by

n and the roots of x? = x , where ﬁp~1 = -p . K 1s discretely normed with residue
class field k = GF(g), and s generates the maximal ideal of OK . Normalize the
norm in K so that }ip'l = pul . Let f be an element of k[Xl,"',Xn] B

homogenesous oI degree d and U be the projective hypersurface defined by f .

We put no restrictions on U in this chapter. Let F be the Teichmiller lifting
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of F %o Gk[Xl,"',Xn] s, G = XOF , H = exp ﬁfG(X)mG(Xq)} and

s
H, = exp ﬂ{G(X)-G{Xq V3.
Suppose now that v 1is a positive real number. Let L{v) denote the

Banach space contalined in K[[XO,-'°,XQ]] and having as orthonormal basis the

elements =t Y0l ¥* witn an. =

o Ao (In other words L{y) consists of infinite

EM>s

K-linear combinations of these elements with co-efficients > 0). We write L

(p-1)°
Pa

Lemms 7.1 He L(y) for v«

Proof: Whenever a, 1is a non-zero co-efficient in G(X) or G(Xq) 5

A
n n
dx =X A, . It follows that dx =L A, for every non-zero co-efficient ¢ cof
0 ; 1 Q 1 i A
q . Now set q = pr , write G =2 akXA and note that XO = 1 for each ay -
“{p-1)
N i . R o A i . (pﬂl/ *
We see immedisately that H =11 ‘Af(aAX.)g By Theorem 4.1, g! C)]i <p P4 0 =
2
(p-1)°
o Tpa o
!gﬂ[] . The lemma follows.

In Chapter 4 we intrcduced an operator ¢ o H on K[[Xojoogxn]] whose

matrix M had remarkable properties. (See Theorem 4.3), We shall show that ¢ o H

is a nuclear operator on certain cf the L{vy). Write © for ¢ o H .



Theorem 7.1

2
For 0 < vy < P;l , L(v) is stable under © , and © £ C (L(y) , L(v)).

If M is the matrix of @ on [Xx} in the sense of Theorem 4.8, then for all s

‘ST
Tr ,o(® L)) = ™ @ .

Proof: By Lemma 7.1 H € L(—g~). Now L(mg—) is closed under multiplication:

furthermore ¢ maps L(—%—) into L(v). Thus (¢ o H) L(—%—) < L(y) and L(y)

is stable under © . Also, ©: L{y) —> L(y) is the composite map

L{vy) CIL(—%—) ~Hs L(—g—) 2 L{vy). Now the inclusion map L(¥) < L(y/q) is

represented by a diagonal matrix whose entries > 0 , and is thus a uniform
limit of continuous maps with finite dimensional image. Also H and  are easily

seen to be continuous. It follows that @ 1is completely continuous. Now let

M = {Clu} be the matrix of @ in the gsense of Theorem k4.8; Q(Xu) =z chXk .
A
n n
Using Lemma 7.l we see readily that e = O unless akO = i Al « If dry = i Ay

let v = LY 20 g e {aku} be the matrix of ©|L(Yy) on the orthonormal

basis {Y"}. Then g(v*) = T a,, ¥ - It follows that a, == S

ot

i axr = f = F: = = T ;]
In particular, a,, = ¢y, » and Trnuc (® {L{v)) Tiayy = ¢y, =Tr M. Replacing

H by HS and arguing similarly, we complete the proof.

2 .
In particular, it p#2 , 1 <f££§£) . and Theorem 7.1l holds for L = L(1).

For the time being we assume p % 2 3 the modifications necessary to build a good



nuclear operator on L for p =2 will be discussed at the end of the Chapter.

Combining Theorems 7.1 and 4.8 we find:
Theorem 7.2

Let V* be the affine variety defined by the equations f(Xl,---,Xn) =0,

n
. . +
I X, #£ 0 . Then qmi(v*) = (q-1)" + (g-1)" Lo

1 rnuc(elL)'

Our next goal is to transform Theorem 7.2 into a formula for Ni(U). We

need to intrecduce certain closed subspaces of L , stable under o.

n
Definition I X = \A0,=°°,An) is an n+l tuple with dxo =3 ki s then Yk is
1
)\A by
the element n “X of L . If A 1is a subsst of 11,?,‘“'n} let LA be the

closed subspace of [, having ag orthonormal base the YA such that ki >0 for all

iegA ., Similarly, let LA be the closed subspace having as orthonormal base the

)y —
Y such that A >0 for some ieA . Let A= {1,2,°n} - A, a = card A and

i

= card A .

o

The above construction can be generalized a little. ILet Sj (1 <3Jic< n)

be [Yklkj >0} . Let Zp be the ring of sets generated by the Sj ; i.e. take

unions and intersections of the Sj in all possible ways. If X ¢ xf , let L(X)

be the closed subspace of 1L having the elements of X as orthonormal basis; thus

L, = L(N Sj) while I = L(U Sj)a Using the explicit definition of ¢ we see that
A A

each IL(X) 1is stable under 6. The matrix of ©|L(X) is a submatrix of the matrix

of 6; thus QIL(X) is completely continuous, and hence nuclear.
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Lemma 7.2 If A is a subset of fl,e,---,n} then © 1is nuclear both on

L

A

A By, a
and L/T . Furthermore, Trnuc(QlL/L ) = A213(-1) Trnuc(OILA).

Proof: If X is an element of of let o(X) = Trnuc(QIL(X)). An easy matrix

calculation shows that w(Xl u Xg) = w(Xl) + w(XQ) - cp(Xl n XE) . By induction

4

(U Xi) = by w(Xi - p¥ w(Xiﬂ X.,) + +++ . 1In particular, Trnuc(QILB)
1 1<i<d 1<i<i<d J

= £ (1) o (oln,). since Tr _ (o|t/t®) = Tr _ (e|L) - Tr__ (o|L.) , and
ACB nuc A nuc nuc nuc B/
A#p

L =L, , the lemma follows.

*

Definition If A is a subset of {1,2,---,n}, let V(A) be the affine variety

defined by the equations f(xl,---,xn) =0, X =0 for ieh,X #0 for ieh.

Lemna 7.3 Ny (V' 4y) = (a-1)% + (a-1)%" Tr_ (0]1/L7)

Proof, Let f( be the polynomial obtained from £ by replacing Xi by 0 for

A)
* -
i€ A . Then V(A) , thought of as a variety in affine a - space,is defined by the

equations f(A) =0, I Xi % 0 . We shall apply Theorem 7.2 with f replaced by
ieA

f and n replaced by a . Define F G H L and © usin
(A) P ¥ (8) > %(a) 7 F(a) 7 H(a) (a) &

f(A) in the same way that F , G, H, L. and © were defined using f . Evidently

-7ha



H(A) is obtained from H by replacing Xi by 0 for i e A . Also L(A) may

be viewed as spanned by those Yk such that li =0 for all i € A ; in other

words L(A) z:L/LA . Under this identification the operator © on L induces

Q(A) on L(A) . Theorem 7.2 then gives the desired result. {The above argument

fails when A = fl,2,’°°n}q But in this case L/L'A ~ K, © induces the identity map

on L/LA and the lemma reduces to q = 1 + (g-1)}.

Lemma 7.4 Let U be the projective hypersurface defined by f . Then:

n-1 -
(1) ) - = l;? (a-1)* Tz _ (o]1/L*)
oy (-1)" 138 8
(2) W{U) = S+ §<~ R S CIIN)

*
Proof: The union of the V(A) is the affine hypersurface f(Xl,--a,Xn) =0 . Thus

(q-l)Nl(U) = -1 + X Nl(v*(A)), Multiplying by @ and applying Lemma 7.3 we find:

a+l

a(a-1)My(V) = -q + ((e1) #1317 + B (a-2) e (oln/th)

Dividing by a(g-1) we get (1). Now, by Lemma 7.2, 2‘(q-l)card B oo uc(eh;/LB) =
B

z (9| ) where r, = I (-1)® (q—l)Card B | But this sum is just
A BA

(-1)% « f(g-1) +1)* = (-1)" - (-1)* - o® . Substituting in (1), we get (2).
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Now let K© be an n-dimensional vector space over K with basis {ei} .

Then L ® AK' has the structure of graded Banach space over K , and © operates

K A
on this space via its action on L . Let #£. be the closed graded subspace
2 L7 - e Aoee A e;
t1tts 1 s
of L@A K" , the sum extending over all subsets fil,"',is} of {1,2,-+-,n}.

K

n
Since each LA is stable under © , #. is stable under © . Define a map Q: Qi-—€>;z

by setting ai = ql o .

Theorem 7.3

R N
ai is nuclear on i% and:

n—l_l

n .
s D w1y al
q nu dJ

n(u) = 4 .
3=0

q-1

More generally for every s we have:

(n-1)s .
NS(U) - 2 s =+ (_i)
g -1 ] J=0

n .
£ (-1 1
nuc j

—
Proof; The first result is immediate from Lemma 7.4 (2) and the definitionsof <£.

N
and a . (Note that i% aﬁg} LA). The proof of the second result is similar.
a=1

Theorem 7.3 looks rather like a Lefschetz fixed point theorem "on the chain level."
Our next goal is to make the graded Banach space Qi into a complex in such a way that

O Dbecomes a chain map. Then a result analogous to Theorem 7.3 will hold on the
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-
homology level and if we can compute the homology of #£. we'll get information

about NS(U).

Definition For 1<i<n, Di is the operator (exp -nG) ° X, —52; (exp =G)

on K[[Xy,-+-X 1]

Theorem 7.4
(1) The D, commute with one another
(2) p, (1)L

(3) © °D, =aD °0

Proof: (1) holds because the maps X, a; commute. To prove (2) note that
i
_ 3%, G . .
Di(¢) X 3, T X, 3X, ® . Since L is stable under

3G .
Xi 3Xi and Xi 3Xi e L , L 1s stable under Di . To prove (3) note that
© =1V H= (exp -nG) ° ¢ o (exp nG). So it suffices to show that ¢ ° X, —ng— =
X 3 e ¢ and this is eas
] v

Using (1) and (2) of Theorem 7.4 we can put a "Koszul complex” structure on

n .
L® AK'. Namely let 3 ale, ~ven e.*) =12 (-1)J D, (a)(ei Aceen 3& Aol ).
K 0 s j=0 3 0 3 s

Using (1) we see that ae =0 .

Theorem 7.5

2. is a subcomplex of I @A K" and a: f —>2. isa chain map. If Q.
K

is the map on homology induced by O we have the "Lefschetz fixed point theorem":



(n--l)s_l )S

3%

+ ('i)n ; (-1)3 Tr (x

v _(U) = 4 -
q -1 q j=0

nuc

. _ oy 20 &% .
Proof: Since D, () = X, 3, + X X, ®

we find that Di maps

L IR into I_ . So 3(2) c By Theorem T7.4,(3) the diagrams
A i x

Di
g b > Ly . .
q Ol \L q’ © all commute. It follows that « is a chain map.
D
L

I 1

>

The final result follows from Theorems 7.4 and 6.11.

In the same way that we built a complex of Banach spaces (2 ; 3) using

: i
I we may for each v > O build a complex of Banach spaces (&.(¥),d) , using
( _1)2 -~
L(y). For 0 <w< pp we get a chain map o1 £.(y) —> 2.('\/) .
P PAY
Theorem 7.5 remains true with L and #£. replaced by L(v) and &£.(v).
Unfortunately for p = 2 we must assume Yy <-2]1 - We next show how to get around

this restriction by modifying the definition of & and ® when p =2 .

2 Xh X8

Lemma 7.5 Over Q2,e}cp(X+22{-+h—+—8—-)gS(i%_)

-u(n) -(n) _u(n)
Proof: By Lemma 4.2, exp X =1 (1-X) Yoo (1-x%) . (1-x"%) 28

n>1 n odd
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.8 -u(n n
X, X mo(1-x%) 20 (1-xl6n_)%é>‘n'Z

Thus, exp (X + - + T T)

1

n odd
and we may apply Lemma 4.3.
%2 L4
Lemma 7.6 let g =-X +2X + 16X . Then, over Q:

(1) exp -2 (g(X) - g(XX)) € 8 ( L)
(2) exp -2 (g(x) -g(x})) e s ( %%1) s q a power of 2

L

Proof: Replacing X by 2X in Lemma 7.5 , we find that exp (2X + 2X° + X' + 32X8)

3 ( ) Now exp a8X2 and exp -32Xh are both in $(1). It follows that

L

exp (2X - 6 . 28" + 32X es ( ) But this is just exp -2 (g(X) - g(Xg)),

To prove (2), let q = 2° , 8 .(X) = exp -2 (g(X) - g(xq)) and & (X) = §1(X)°

r-1 2i
Then ir(X) = I & (X* ), and the result follows.
i=0

If G 1is a polynomial and & a positive integer let G(s) be the polynomial

obtained by raising every co-efficient of G +to the s'th power. Now let k = GF(q) ,

q = 2¥ and let f € k[Xl,X2,°'°,Xn] be homogeneous of degree d . Define K , F
. S . s A(2) 2

and G as was done at the beginning of this chapter. Set G' =-G + 2 G x7) +

16 oM (xh) , and let H' = exp -2 {a'(X) - ¢'(x%))
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Lemma 7.7 H' € L(y) for wy< —%']q'—

n
Proof: For every non-zero co-efficient ) of H' , d\_ = E A, ; the proof is
1

similar to that of Lemma 7.1l. Let G =2 aKXK . A brief calculation shows that

H' =1 Qr (a)\X}‘) with Qr defined as in Iemma 7.6. Since A\ =1 for each a, ,
~11

Lemma 7.6 shows that || ey |l <278 20 . The lemma follows.

Now let ©' be the operator ¢ ° H' on K[[Xo,"'Xn]}.

Lemma 7.8

(a) Por 0<y< w%k— ; L{y) is stable under ©' , and ©' £ C (L(¥),L(vy))

(b) I e (O'SI L(y)) is independent of vy

153

(¢) For 0<vy< s!

hel e

s Tr (e

L(v)) =T (o
nuc

I1.(vY)
nuc i \Nrtrs7

Proof': (a) follows from Lemma 7.7 in the same way that Theorem 7.1 followed from

Lemma 7.1. (b) is a simple matrix calculation using the orthonormal bvasis
[vagd o
{2 X"} of L(y). To prove (c), let R = exp 2(G'-G). Evidently R & L(y)

for y < % . Since 0'= (exp 2G') ° ¢ © (exp -2G') while © = (exp 23) * ¥ » (exp -2G)
' =R ° 0 o R-l ) But multiplication by R is an invertible linear transformation

of L(y) , and (c) follows.
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Now ©' operates on I @ A K" via its action on L and it's easily seen that

2. is stable under @' . Define a map Oa': 2. —> 2. by taeking ai' = q1 o'

Then:

Theorem 7.7

Theorem 7.3 holds with O replaced by a' .

P
Proof: Since p =2 , Theorem 7.3 is not true as stated, but it is true if “#£. is

~
replaced by £ (¥y) with 0 < v < —%— . Now an easy modification of the proof of

L 8 (b) and (c) shows that T e'sii?) =T SIZ () = T S|2.
emma. 7.8 (b) and (c) shows tha rnuc( L) = rnuc(e i(y) = rnuc(e i(y) )

The theorem follows.

Now let D, , (1 <i < n), be the operator (exp 2G') ° X.- 8 & (exp -2G')

178x;

on K[{Xo,a-u,Xn]]. Then Theorem 7.4 remains true with € and D, replaced by o'

and Di' . Since the Di' commute we may build a Koszul complex with underlying

space L ® A K. Then T L 1= - e, ~Aeeen g, is a subcomplex of this
K EPPETIEN B s

complex, and we denote it by Z' .  The same proof that gave Theorem 7.5 gives:

Theorem 7.8

~

P
Q' is a chain map &' —> L' . If Ot'* is the map on homclogy induced by

a' we have the "Lefschetz fixed point theorem” :

(n-1)s n n .
+ s = (-i) T (1) T e (aj')-‘i
q -1 q J=0 )

N (V) =
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We conclude this chapter by defining first an algebraic analogue to, and

second a slight generalization of, the complex 2.

Definition Let k be a field (of arbitrary characteristic), and f ek[Xl,f”.Xn] be
homogeneous of degree d . Build a complex £. in the following way. Let L

n
be the subspace of k[X ,-+3X ] spanned by X}‘ with da, = T A, . If
[¢] n (6] ;1

Ac{1,2, ***n} , 1let I"A be the subspace of I spanned by those X)" such that

)‘i >0 forall i € A . Let g = Xof and Dii L ~—> 1L be the commuting operators

3 L,y %%

X, Toax,
1 1

- Q. Then &£. 1is the subcomplex

L Im—m——— e, A sine, of the Koszul complex built on L & A K2 using the
ti,--1) 1 K

operators D, , (1<ign).

In Chapter 8 we shall compute the homology of #. , assuming that d # 0O in
k and that f defines a non-singular projective hypersurface. In Chapter 9,
assuming characteristic k = O , we shall relate the homology of #£. to De Rham

cohomology.

Definition Let K be a complete discretely normed field of characteristic O whose
residue class field has characteristic p > 0 . Assume Turther that there is an

element =t of K such that ﬁp—l = -p . Let F be a homogeneous element of

A
GK[Xl,-v-Xn] of degree 4 . Set G=XOF and build a complex &£. from G

Just as was done in this chapter. (The finiteness of K and the Tact that the
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co-efficients of F satisfy cd = ¢ were only used in defining the map «).

~

In Chapter 8, we shall compute the homology of #£. assuming that the reduction

F of F defines a non-singular projective hypersurface. In Chapter g we shall
LAY
discuss the connections between the homology of #. and the "formal cohomology

theory" constructed by Washnitzer and me.
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Chapter § - Non-Singular Hypersurfaces

In order to calculate the Hi(i.) and the Hl(Q) we shall need to make

extensive use of "Koszul complexes.” Iet A be an additive group and cpi(ls i < n)
be commuting endomorphisms of A . Then the graded group A @ AZ® can be given
Z

the structure of a complex, just as in the construction following Theorem 7.lk.
We denote this complex by K. (A;cpl,“',cpn) and its homology by H.(A;cpl,---,cp ).

n

The following well known fact is useful.
Lemma 8.1 Suppose @ A ——>A is injective. Then Hi(A;qu,n-,cpn) A
Hi (A/cpl(A); <p21 o ,(Pn) fOI‘ a'll 1 -

We shall say that cpl,cpe,-",wn is a prime sequence on A if

s-1 s-1
Q. A/ o, (A) ——> A/ T cpi(A) is injective for 1 < s < n . Repeated applica-
= 1 - 1 -

tions of Lemma 8.1 give:

Lemma 8.2 If cPl’”"’CPn is a prime sequence on A , then Hi(A;q:l,-“cpn) =0
for all i >1.

We proceed to give an alternative description of the complex . constructed

at the end of Chapter 7. Let k be a field, k[X] denote k,[Xl, . "an] and f

be a fixed element of Xk[X], homogeneous of degree d . Tf ¢ ¢ k{X] write )

for gi}g- and let Ai be the operator ¢ —> tpi + fizp on k[¥] . As the
i

4y commute we can form a Koszul complex, K.(k [X] ; Al""’Ar1>’ or more briefly,

K. (k[X1).

The spaces Hi(k[X]; Al,“',An) are invariant under linear change of co-ordinates.
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More precisely let T: Xi —_— a Xj be an invertible change of co-ordinates over

k. Then T induces an isomorphism between the homoleogy groups of the complexes

K.(k[X]) constructed from f and f o T . One way of seeing this is by giving an
alternative description of K.(k[X]). Let (q",d) be the co-complex of k linear
differential forms on k [X] , d being the exterior differentiation map. Define
a new degree 1 co-boundary map A on " by A(w) = dw + df A w. With the
obvious renumbering of dimension to change a complex into co-complex, K.(k[X]) ~

(o ,8). But Q° 1is evidently invarient under linear change of co-ordinates.
If j 1is a integer let k[X](J) be the subspace of k[X] spanned by monomials
{3 /.“
of degree = j (d). The operatorSZﬁ_ map k[X}‘J) into k[X]'Y 1) . It follows
X]) may be written as a direct sum of d subcomplexes. We shall be

particularly interested in the subcomplex z k[X](Smn) e
<sg<n 1y 1s

SRR VNN
We denote this complex by #£.(f) and its homolegy by H.(f) . The Hi(f) are

invariant under a change of co-ordinates Xi — 5 aij Xj .

Theorem 8.1

£, () is isomorphic with the complex £. constructed at the end of Chapter 7.

Proof: Let A = fil,"*is} be a subset of {1,2,-+:,n} of cardinality s . There
is a vector space isomorphism k[X](Swn) = I mapping * on x?-( T x}).xl
Y igh
. Al+n-s .
where Jj = ng———— . Putting these maps together we get a vector space isowmorphism
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between £.(f) and #. . It only remains to show that this a chain map, and this

follows from the fact that the following diagram commutes:

xrx) (5= 2 > 1L
{il’...i }
AiS . DiS
kx)(s-i-n) = o g i
{il’...is_l}

An alternative description of 2 may also be given. ILet K be a complete
discretely normed field of characteristic O , and k be the residue class field of

K. Let F be a fixed homogeneous element of degree 4 of GK[Xl,“-,Xn] with
reduction F 74 0 . As above we may construct spaces K[X] , K[X](J) and a complex

£.(F). Now K[X] , K[X](J) and £i(F) all have the structure of normed space

over XK with || T c}\X)\H = max Hc)\H . Let W, w(3) and zl(F) denote the
completions of these spaces. The maps A s K[X] ——> K[X] are continuous and
prolong to linear operators on W , which we also denote by Ai . The boundary

maps in £.(F) are continuous so Q(F) becomes a complex of Banach spaces.
Denote the homology groups of Q(F) by /ﬁl(F) . Again we see that these are in-
variant under change of co-ordinates. (More precisely, if T: Xi —_ ainj

is an invertible change of co-ordinates over GK > then T induces an isomorphism

between ﬁl(F) and /}fl(F °' T) ).
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Theorem 8.2

Suppose that k has characteristic p # 0 , and that K contains an element =«

- ”~~
satisfying P . -p . Then #£.(F) is isomorphic (as a complex of Banach spaces)

with the complex éi constructed at the end of Chapter 7.

Proof: The proof is essentially the same as that of Theorem 8.1; however the

)J( H__ Xi)'X)\

map W<S-n) = Iy 1is given this time by X — (7%
ieA

where j = J‘_}\'_L-'-_n'_—_.s_

d

0

We shall say that f ¢ k[X,°<°X ] , homogeneous of degree d , is non-singular
oL 11

if the only common zero of f and the fi is the origin. Our goal is to compute

the ﬁ;(F) under the assumption that F is non-singular. The calculations are a

good deal simpler when d % 0 in %k and we consider that case first.

Lemma 8.3 Suppose T ¢ k[X] , homogeneous of degree d , is non-singular, and
that d # 0 in k . Then the f‘i generate an (leo“,xn) primary ideal in k[X]

Furthermore f

l,°'°,fn is a prime sequence in k[X] ; i.e. the associated multiplication

operators form a prime sequence.

n

Proof: The Euler identity d4f = & Xifi shows that every common zero of the fi
1

is a zero of £ . Thus the only common zero of the fi is the orig’r and the

Nullstellensatz shows that (fF ,"’,fn) is (X, *,X ) primary. Now let A be

1’ %

the local ring of (Xl,"*,Xn) in k[X]. The maximal ideal of A is generated by
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"',Xn . A well known theorem then tells us that any n elements

the prime sequence Xl’

of A generating an (Xl,---,Xh) primary ideal form a prime sequence in A , and

the lemma follows easily.

Theorem 8.3
Situation as in Lemmas 8.3. Then:

(a) H (k[X]; &, +8) =0  (1<sg<n)

(v) Hy (f) =0 for i >0
(1) S (1)
Proof : Suppose ¢« (1 <i<s) arein k[X] , and T A (¢'"7) = 0. We must
1

show that there is a skew-symmetric set {aij} (1 <i,ic< s) such that

R s . .
w(l) = z Aj (aij) . We argue by induction on m = max deg w(l) . Let Q(l> be
J=1

(1)

the degree m component of ¢ . Then

Lo 1) - n a -
I, e = 0 . By Lemmas §.2 and 8.3,

[

Hl(k[X] 3 fl,"',fs) = 0 . Thus there is a skew symmetric set {bij} such that

. s
9(1) =z fj bij . We may assume bij homogeneous of degree m -(d-1). Now,
1
: 1) _ 5 i} (1) .
£a {9/ - T A(v,.)} =0, and deg (¢’ - £A(b,.)) <m for all i . An
1 i PEST R RN
induction now gives (a), and Lemma 8.2 shows that Hi(k[x} : Al,*--,An) =0 fori>o0.

Since Hi(f) is a direct summand of this space it vanishes tooc.
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The calculation of Ho(f) requires more machinery. If M is a finitely gen-

erated graded Kk[X] module the Hilbert power series PM(t) is defined to be

& . . .

z (dimk M<1)) < t% where M(l) is the homogeneous part of M of degree 1 .
0

If m= M mem> M o> ——->»MO is a complex of graded modules, the

maps being homogeneous of degree O , set Ian =3 (—l)J PM .
J J

Lemms 8.4 Situation as in Lemma 8.3. Then M = k[X]/(fl,,,.,fn) is finite

d

dimensional over k . If PM(t) = cjt , then

oM 8

S e, = d"l{(dml)n»+(=l)n(d~l)} .

Proof: Let M be the Koszul complex K. (k[X] ; Jf‘l,“*"’,,fn)° Grade 9 so that
the boundary maps are homogencous of degree O . Then M = HG(WD , and Lemmas 8.2
and 8.3 show that Hi(%® =0 for i >0 . It follows that PM(t) = Pﬂét) . Using

the fact that the Hilbert polynomial of Kk[X] ditself is (].-“c)mn one sees easily

that I&{t) = (1-t)"" - {(lwtd‘l)n} . Thus PM(t) = (l+t+a,;+td‘2)n is a polynomial
and M is finite dimensional. Let g(t) = tnPM(t) =T ajta . Then

& c,= T a,= a-t ¥ g(€) where € ranges over the d'th roots of unity.
j==n ¢ jgso Y C

Now g(1) = (da-1)" while g(&) = (g + §?~-- + gd'l)n = (-1)" ir g4 1, and

the lemma follows.
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Theorem 8.3

Situation as in Lemma 8.3. Then dim Ho(f) =at. {(a-1)" + (-1)" (a-1)3 .

Proof: By Lemma 8.4 dim {k[x]('“)/ Tt kx] ™3 - alfgae1)® + (-1)° (a-1)) .
Let V be a homogeneous subspace of k[X](_n) such that

Vesrr, kx] ) Crx3(1) | 14 will suffice to show that the natural map

N V—> k[x]<'“)/ o k[X](l_n) = Ho(f) is bijective. Suppose that v e V

A. w(l) with cp(1) € k[xj(l'n) . We shall show by an induction on

n
and that v = T
1 1

m = max deg w(l) that v =0. Let 9(1) be the degree m component of w<1) .
Then % fi m(l) is the degree m-1+d component of v , belongs to VN T fi k[X](l_n)

and must vanish. By Lemmas 8.2 and 8.3 there is a skew symmetric set {aij) such

that 9(1) =% fj aij . We may assume that the a’ij are homogeneous of degree

m-d+l . Now ¥ Ai (w(l) -3 Aj (aij)) =24 (q&) = v . An induction now shows that

v =0 . Thus XA 1is injective; in a similar but simpler way one shows that A is

onto.

Putting Theorems 8.1, 8.3 and 8.h together we find that we have computed the
homology of the complex #£. introduced in Chapter 7 provided that f is non-singular

and deg £ #0 in k . Explicitly H, =0 for i >0, and dimHj =

at {(a-1)" + (-1)" (a-1)}. We next seek a similar result for the homology of #.



We first prove a theorem which enables us to relate algebraic and analytic homology.
Let & be a complete discrete valuation ring with maximal ideal (x) . We say that an
O-module M is flat if n : M ——> M is injective, separated if N 79 M= 0 .
A separated O-module, M, has an obvious metric space structure with the an a
fundamental system of neighborhoods of O . We say that M is O-complete if it

is complete in this metric.

Theorem 8.5

Let C = Cn — Cn—l — e ———-——>~CO be a complex of flat, separated

O-complete O-modules (the boundary maps being G-linear). Let C = C/n C be the

reduction of C . Then:

(1) For any i , Hi(E) =0 =—=>H(C)=0

(2) 1f HO<€) has dimension £ <« over O&/(x) , and Hl(E) = 0 , then

Hy(C) is a finite free O-module of rank £ .

ker 3

= . Since
im @

Proof: Hi(c) = Ci+l is O-complete, im 3 is also O-complete.

It follows that im 8 is closed in ker 8 and that Hi(C) is separated. Now

the exact sequence of complexes 0 —> C z > C > C > 0 gives a long exact

sequence of homology, and we find that Hi(C)/ e Hi(C) imbeds in Hi(E) . Thus

if Hi(E) =0, Hi(C) = x Hi(C) . Since Hi(C) is separated Hi(C) =0 .

Suppose now that we're in the situation of (2). The long exact sequence of

homology shows that HO(C)/ Tt HO(C) ~ HO(E) . Using the fact that HO(C) is

separated, that dim HO(E) < o and that G is complete we find that HO(C) is a
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finite O-module. Thus it suffices to show that HO(C) has no O-torsion. But

this follows from the long exact sequence of homology since Hl(E) =0 .

Theorem 8.6

Suppose that the reduction, F, of F is non-singular and that the degree d

of F is # 0 in k . Then:

(1) ’ﬁi(F) =0 for i>0

(2) dim ’ﬁO(F) = d'l{(d-l)n + (-1)" (a-1)}

o
Proof : The unit ball in £.(F) is a complex of flat separated Ok-complete

OK—modules whose reduction is #.(F) . The result now follows from Theorems 8.3,

8.4 and 8.5.

The condition d % 0O in k is in fact unnecessary and we next show how to get
around it. If f e k[X] (n > 1) is homogeneous of degree d we shall say that f

is regular if f is non-singular and the "hyperplane section" f£¥* = f(Xl,--',Xn l,O)

]

is a non-gingular element of Xk[X "“’Xh 1

Lemma 8.5 Suppose f e k[X] is regular. Then (fl,---,fn_l,f) is an (Xl,"’,Xn)

primery ideal in k[X] . Furthermore f_ ,---,f l’f is a prime sequence in k[X] .

1’ n-

Proof: Let P be a common zero of £ ,...,f and f . Since df =

1 n-1 X015

1 1

HMB

*
either Xn(P) =0 or fn(P) = 0 . In the first case the non-singularity of f  shows
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that P is the origin; in the second the non-singularity of f gives the same result.

We continue as in the proof of Lemma 8.3.

Lemma, 8.6 Suppose f € k[X] is regular. Then Hl(k[X]; Ai,"',AS) =0 for

1 <s< n-1 .

Proof: By Lemma 8.5, f "';fs is a prime sequence in k[X] and we may copy the

l,
proof of Theorem 8. 3.

To continue further we introduce some new complexes and mappings. If J 1is an
inte (3), w3 — (5) : , .
ger, let Ab s k[X] > k[X] be the map taking a monomial ¢ into

{( degdm —J) +f} @. If j is an integer, let I,(J)(f) be the subcomplex

T k[X]k5+3) €, Meoen e, of K. (x[X]; Al,-'-A ) . Now the following diagram
i ls n-1

commutes:

_ A (3) .
A, A,
1 1
. A (j“l) X
k[x](J“l) 0 ~ k[x](J“l)

It follows that the mapping Ab: £(J)(f)-————> £(j)(f) which is A (s+3)

on every component in dimension s 1is a chain map.
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Recall now the definition of the "mapping cone." If ¢: X —> Y is a map

of complexes define a new complex, Z, the mapping cone of ¢ by taking

Z; =X, ,®Y, and ¥ 7, —>2Z; , to be the map (x,y) —> (3¥x,3y + (-l)l+l o(x)).

i i-1 1

The exact sequence of complexes O > Y > Z > X! > 0 with X' a

shift of X gives an exact homology sequence:

O @y
_ Hi(X) —_— Hi(Y) —_— Hi(Z) —_— Hi__l(X) —_— Hi_l(Y) _—
Now let ﬂ%j)(f) be the mapping cone of the map A: £(j)(f) —_— i(J)(f)
Lemma 8.7 Suppose f € k[X] is regular. Then:

(a) w5 (D=0

() aim B (7Y (2)) = (a-1)™t

Proof. (a) is proved by an explicit calculation very similar to that given in

Theorem 8.3 (a). The key idea is that Ai(w) = f, © + lower order terms, that

AO(J)(w) = f ¢ + lower order terms and that £, ,:--,f

n—l’f is a prime sequence.

1
We omit the details. To prove (b) one first shows, as in Lemma 8.1, that PM(t) =

d-2\n-
)

(L+t+ "+t Lo+t 418y yhere M= K[X1/(£),"*" s, _1,%). Then,

if we write PM(t) =Tc t? we find that T c, = (d-l)n'l . Now
4 . £
=3 (4)

-9&-



. . . . -1 .
HO(Wfa%f))= k[X](J)/ CAO(J) k[X](J) + nZ A.i k[X](J+l)}, and we continue very
1

much as in the proof of Theorem 8.4, again using the fact that fl,---,f f

n-1’
is a prime sequence.
The constructions we have made admit analytic analogues. Suppose then that

Fe GK[XI,---Xn] is homogeneous of degree d . The maps AO(J): K[X](J) —_— K[X](‘j)

are continuous and prolong to maps W(J) —_— W(J) . The complex iZ(J)(F) has
~
a normed space structure; let £.(J)(F) be its completion. Then A_. prolongs

0

; —~
to a chain map of QE(J); let %L(J)(F) be the mapping cone of this map.

Lemma 8.8 Suppose that the reduction, F ; of F is regular. Then for all

(3) (), ¥, L)
the endomorphism Ab of W / b Ai W is injective. Furthermore the
1

cokernel has dimension (d-l)n"l .

Al =
Proof: The unit ball in W{J)(F) is a complex of flat separated Ok-complete C%

modules with reduction %{J)(F). Lemma 8.7 and Theorem 8.5 then show that
Hl(%J)(F)) = 0 while dim HO(%J)(F)) = (a-1)™1 . The result now follows from

the long exact sequence of the mapping cone.

Lemma 8.2 Suppose that the reduction F of F is regular. Then: ?ﬁi(F) =0 for

A
i >2 , while Hl(F) and ‘ﬁo(F) are isomorphic with the kernel and cokernel of the
n-1 n-1
map A W<l-n)/ AN W(2—n)_____> W(-n) / T

A& w(l—n)
1 1
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Proof: Using Lemma 8.6 and Theorem 8.5 we find that Hl(W; Al,---,as) =0 for

is a prime sequence on W . Repeated applica-

n-1
tions of Lemma 8.1 now show that Hi(W; Al,---,Ah) ain(W/ f Ai(w); Ah) and

s <n-1 . It follows that Ai,---ah_l

the lemma follows immediately.

Lemms, 8.10

n
If ¢e w('“) ; then £ A, (X, 9) =da A (-n) ()
; 1+ 1 0

n-1

(1) | then T A (X,0) + XA (9) = a4, (g)
1

If e W

Proof: We may assume ¢ 1is a monomial. Then

n
= = = (-n)
fﬂi (%, 9) fo+X o +X F, ol =(degp+n+adf) o=4d By (9) .

HMB

The procf of the second result is similar.

- *
Lemma 8.11 Suppose that the reduction, F , of F is regular. Let F be the

element F(Xl,-~-X Then:

n-1’°) of OK[xl, <X

n—l] :

(1) ’ﬁl (F) =0

(2) ain B, (F) = (a-1)*t - aim ﬁO(F*)
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en) , "L ey —s ™) SEa w@on)
Proof: We have obvious maps A : w8 AW T - :‘L"Ui
1
(~n) n-1 (1-n) (1-n) n-1 (2-n) the second map
and X : W / I oW —_— W / T oW ’
1 1

being induced by multiplication by Xn .

- (t-n) . _ (-n) .
By Lemma 8.10, Xn ° An =4 Ao while An ° Xn =4d Ao . Since

characteristic X = 0 , Lemma 8.8 shows that these maps, and therefore An and Xn

themselves, are injective. By Lemma 8.9, /ﬁl(F) ~ker A =0, while /ﬁo(F) ~ cok A .

VA
Now dim (cok A ) = dim cok (A °X )} - dimecok (X ) . But cok (A °X ) =coka ‘7
n n n n n n 0

and has dimension (d-l)n-l by Lemma 8.8. Finally cok (Xn) is evidently isomorphic

with %o F).

Theorem 8.7
Suppose that the reduction, F s of F 1is non-singular. Then:
Pl
(1) Hi(F) =0 for i>0

(2)  dim ’ﬁO(F) =at f(a-1)" + (-1)" (a-1)}

(3) The image of the unit ball of 20(F) in ’ﬁO(F) is a finite GK-module

Proof: Suppose first n =1, Then F =c de with ¢ a unit in OK . Now it's

A
easy to see that the complex 2. (c de) is essentially the same as the complex £.(ch),
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~ ~
the only difference being that the boundary map =£_L E— =£O is multiplied by 4 .

T e
Theorem 8.6 then shows that H,(F) = HJ_(F) =0.

Suppose next n >1 . By replacing XK by a finite extension and making an invertibl¢
change of co-ordinates Xi > aij Xj we may assume that- F is regular. Lemmas 8.9
- —%
and 8.11 then give (1). Since F is regular, F is non-singular. Lemma 8.11 and

an induction give (2). To prove (3) it suffices to show that the image of the unit

n-1 (-n)
pall of W™ in w('n)/ (2 4 w(n) 4 B, w3y g a finite O -module; i.e.
1
Py
that the image of the unit ball of Wf'n()) (F) in HO(%‘H.) (F)) is a finite Og-module.

N -
Since the unit ball in 7I£ rl)(F) is a complex of flat separated GK—complete GK-modules

this follows from Theorem 8.5 and Lemma 8.7.

Theorem 8.8

Let k = GF(q) be a finite field (of characteristic p # 2) and let f be

an element of k[X w,Xn] s homogeneous of degree d and defining a non-singular

1’

projective hypersurface U in oL,

~~ Pal PN
Let £. Dbe the complex constructed from f in Chapter 7, and a: £ —> &£.

the chain map constructed there. Then:

A
(1) H, (£)=0 for izl

(2)  dim HO(:Z.) =4=at {(a-1)" + (-1)* (a-1))
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(3) If av; (1 <1 < 4) are the eigenvalues of (o,ro)* on H (#£.), then the

Yi are non-zero algebraic integers

n-1
(h) NS(U) = q( s )S-l + (‘l)n
q° -1

HF M
<

Proof: (1) and (2) follow from Theorems 8.2 and 8.7. For an operator on a finite

dimensional space, Trmlc is the ordinary trace. The "Lefschetz fixed point theoren",

£ n-2 +1
Theorem 7.5, then gives (Lk). It follows that 1 (l—'yit) = m (1-¢%t) - CU(t)} .
1 5=0
£
Thus TI (l-«,fit-) has integer co-efficients and the v; are algebraic integers. It
1

remains to show that v; #£0 , i.e. that (ao)* is bijective. We have a commutative

diagrams:

Y
Put a Banach space structure on the finite dimensional space Ho(aﬂ) s taking any

basis as orthonormal basis. By Theorem 8.7, the map 20 _ Ho(af) is continuous.
Pl A
Furthermore ay: =£O — £O has dense image. (For it suffices to show that
¢ °H : LA —_— LA has dense image. This follows by factoring ¢ ° H as
1 H 1y ¢ . . . 1 .
c = = =
Ly €L, ( q) > Ly (q) > L, since L, 1is dense in I, (q) , and H and ¢
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are continuous and onto.) The diagram above now shows that (ao)* has dense image.
So (ao)* is onto, and we're done.
To handle the case p =2 we generalize the definition of the complex éi(F)
a little. Let 4 %be an integer >0 and F be an element of OK[Xl,"‘,Xn].
In defining QL(F) the fact that F was homogeneous of degree d was only used

_1).

to show that A& K[X](J) c K[X](J This remains true if we only assume that every

monomial occurring in F has degree a multiple of d . So in this extended context

we may still speak of #2.(F) and H.(F) .

Theorem 8.9

Suppose that characteristic X = p , that every monomial occurring in F has
degree either d or a multiple of pd , and that the reduction F of F has the

form f + g where f 1is homogeneous of degree d and non-singular, each monomial

Fh

" A - | ] b 3 £ mn N
n g has degree >d , and g, =0 for all i . Then the conclusions of Theorem

1

8.7 remain true.

Proof: Again the proof is easiest when p/d. For, since g = 0 for all i , the
ol
reduction of the unit ball in £ (F) is just &£.(f) , and we may use Theorems 8.3,

8.4 and 8.5. To handle the general case one again has to introduce maps

AO(J): K[X](J) —_— K[X](J). This is done as follows: Write F =2 F(l) with

F(l) homogeneous of degree i . If ¢ is a monomial in K[X](J), let

Ao(j) ((P) . { degdg -J + % _;-__ F(l)) c Q. Again, Ai o Ao(-j) - Ao(j'l) ° Ai
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~ s A . A\ .
and we may build complexes =£.(J)(F) » & chain map Ag: 1(‘])(]5‘) —_— =£(J)(F) s
and the mapping cone ’ﬁt(‘])(F) of 4, .

i = ~ sucti ; in 2 3) ;
Since g = 0 for all i , the reduction of the unit ball in <. (F) is
Just ;{.(j)(f) . Since 2—%— F(i) reduces to f , the reduction of A, is just

Ay £.(j)(f) _— £.(j)(f) . It follows that the unit ball in %J)(F) has

reduction m.(J)(f) . This enables us to prove Lemma 8.8 for our more general F
(assuming that f is regular). The proofs of Lemmas 8.9, 8.10, 8.11 and Theorem 8.7

now go through virtually unchanged.

Theorem 8.8 remains true when characteristic k = 2 , provided we replace 2.

and O by £ ana a'. (See Chapter 7 for the appropriate definitions).

Proof': Let X Dbe the field obtained from Q2 by adjoining the roots of = x 9
and F be the Teichmuller lifting of f . Set F' = -F . F(g) (X2) - 2F(u) (Xu) 5

2
G=XF, and G = - G+ 2(}(2) (x7) + 16 G(u)(XM) . We show first that the complex

2.' constructed in Chapter 7 is isomorphic to Q.(F') . The map is the same as that
of Theorem 8.2. In other words it is a direct sum of maps W(S*n) = > I’K sending
j A Al+n-
X" into (_QXO)J-( M.X;)'X" vhere j = J__la_n_s_ . To see this is a chain map we must
igA

show that the following diagram commutes:
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(s-n) __
W > LK

0 Lo

W(s-l—n) S LKU{j}

where Aj (o) = ¢E + (F')j ® and Dj'(¢) = xj ¢5._ 2Xj (G')j ® . This is straight-
forward.

Now F' satisfies all the conditions of Theorem 8.9. It follows from Theorem 8.9

"
and the isomorphism above that Hi(i.') =0 for i >0 while dim Ho(éi') =4 =

a1 {(a-1)" + (-1)" (a-1)} . We now continue as in the proof of Theorem 8.8, using

the Lefschetz fixed point theorem, Theorem 7.8.

Finally we give some examples to illustrate Theorems 8.8 and 8.10. Suppose first
n = 3. Then U is a non-singular (and therefore absolutely irreducible) plane curve

f(Xl, X, x3) =0. Also £=a"t {(d-1)3 - (a-1)} = (a-1) (a-2) = 2g where g is

the genus of U . Then N_(U) = ® +1 - yis , in accordance with the results of

M

Chapter 2.

Suppose next that n =5 and d =3 so that U 4is a cubic 3-fold. Then

10
2
S+ g7 4+ ®+1-% Y.s. Bombieri and Swinnerton-Dyer
1 1

4= % (2°-2) = 10 and N (U) = ¢3

3/2
have shown in [1] thatlyal =gq in this case (at least if p # 2). Finally we have

the case of the qQuartic surface n=d =4 . Then 4 = % (3)+ +3) =21 and

21
2
NS(U) =q Sy qs +1+ & Yis . For certain special quartic surfaces Dwork has recently
1
given a remarkable proof that lyil =q .
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Chapter 9 - Connections with cohomology theories

In the calculation of NS(U) for a non-singular projective hypersurface U
defined over GF(q) , certain complexes and homology groups played a key part.
We shall study these complexes more closely in this chapter and try to show that
there is a cohomology theory of De Rham type lurking in the wings. First we shall
look at the "algebraic complex" #£. of Chapter 7, and then go on the "analytic
complex" 2 .

Let k be a field of characteristic O and f 74 0 an element of k[X] =

k[xl,---,xn] , homogeneous of degree m . In Chapter 8 we defined operators

b: g—> @ + £ ¢ on k[{X] and a subcomplex &£.(f) , with homology H.(f) ,
of the Koszul complex K. (k[X]; Al"“’An)" It turned out that #£.(f) was iso-

morphic with the complex ##. of Chapter 7. We shall find it more convenient in

this chapter to replace #.(f) by an isomorphic co-complex &£ (f) .

To this end we define Koszul cohomology. Suppose that A.L’“ °,0  are commuting

n
endomorphisms of an abelian group A . Then A ® A z" may be given the structure
Z
of co-complex, the degree 1 coboundary map ® sending a &y N~y into
1 s
: voe o i - (A oo A
?Dj(a) e~ eil/\ ~ ej_S Denote this co-complex by K°(A; Al, s n) s, and

its cohomology by H'(A; Al”“’An)' We see readily that with the obvious renumbering
of dimensions the complex K.(A) and the co-complex K'(A) are isomorphic.

Now let £ (f) be the subcomplex I k[X](—S) e, ~trney of
1 s

K (k[X]; AL,---,AH), and H'(f) be the cohomology of £ (f) . The isomorphism
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between K.(k[X]) and K'(k[X]) maps £ (f) onto £ (f) . It follows that

Hi(f) ~HH(f) . It will be convenient to work with a subcomplex of £ (f) .

Definition i;% = £ (f) for i>0. iz ={z ¢ -.Co(f)iz has constant term O}
The cohomology of =£# will be denoted by H#(f) . Evidently H;é(f) =

HY(f) for i>2.

Definition r: i# ] =£# is the degree -1 map

n+l ~ . .
vos s T (-1 1, . e e cee e, . ALy —
) eil/\ A elS > ( l) 13. @Y e L ~ A~ ; A els # > =£#

is the degree O map @ ey N e ey 5 i
1 s 1 s

¢ 1is homogeneous of degree mh-s .

Lemma 9.1 AO is a chain map, and &r + rd =m Ao .

Proof: Iet z =9 & A e ey with ¢ homogeneous of degree mi-s . Set
1

1

S = {il,---,is}. Then &r + rd (z) = {k’gzs A (X, ) + kfs AN (0)} eil/\ RN e.S +

terms which cancel in pairs. This may be rewritten as

n n
(s X @ +tse+TX f o} e, ~c++~e . By the Euler identity, this is
1 1 1 5

VAN . + =mA_ . i = .
m O(z) So Br +rd=m o It follows that 8&0 AOS

Assuming that f % 0 we see immediately that the chain map AO has kernel O .

We next show how to identify the cokernel of AO with a complex of differential
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forms. Suppose A is a k-algebra. Let Q' (A) denote the exterior algebra on the

A-module Ql Q°(A) admits a degree 1 coboundary map; exterior differentiation.

Alk °
The cohomology of (Q°(A),d) will be denoted by HDﬁ(A) and called the (algebraic)

De Rham cohomology ©of A. A map of k-algebras induces mappings on Q° and HDR .

Suppose now that A = k[X]f; the localization of k[X] with respect to the

powers of f . Then Q°(A) is a free exterior algebra on X, (1 <i<n). We

show how to put a grading both on A and on Q°(A) . If we let each Xi have
weight 1 , then A has the structure of graded k-algebra (the weights being negative
as well as positive). Let A(j) denote the subspace of elements of A of weight

Then A(

0) is a subalgebra of A . Geometrically, A(O) is the co-ordinate ring

of the complement in !Pn-l of the projective hypersurface f =0 .

If we let each dXi have weight 1 , the grading on A prolongs to a grading on

Q' (&) . Let 9(3)(A) be the space of elements of weight J . Since

)

ax,
i

: A ——> A are homogeneous mappings of weight =1 , d: Q°'(A)}) —> Q°(A) is

homogeneous of weight O , and the Qij)(A) are subcomplexes of  (A) .

Definition R: 9" (A} —> @ (A} 1is the degree -1 map
J+l =
©dX, Ao ndX, > 2 (-1) X. ®dX ~--+dX, - ~dX,
i i i, i i, i
1 s 3 1 J s

Lemnma 2.2

1) R (L) =m

() R(wAm=EaAn) + (1) (4 AR M)
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(3) dR+R4 (w) =3 w for wsﬂij)(A)

(4) The inclusion map tgio)(A) c q"(A) is a homotopy equivalence of complexes.

T f,dX,
i

Proof: R(%f)=R( ——) = f

-1

* TX;f; =m proving (1). he proof of (2)

is straightforward. To prove (3) suppose &= @ dXi A cee A dXi 5
1 s

set 8 = {i;,--+,i ). Then 4R + Rd (w) = { kfs ;-Xk— (X, @) + k;':s Xk%] .

dXi AN seen dXi + terms which cancel in pairs. This may be rewritten as
1 ]

3
{x Xk ? . s @) dXi A see A dXi . For ¢ homogeneous, this is precisely
1 X 1 s

k

(weight ) * w . Pinally, let p be the projection map @' (A)—> Qio)(A) and

let R': Q" (A) ——> Q" (A) be the map which is 0 on Q&O)(A) and —%— « R on

Q&j)(A) for j # O . Using (3) we see that R' 1is a chain homotopy between i ° p

and the identity. Thus 1 and p are homotopy inverses.

Theorem 9.1

(1) There is an exact sequence of complexes:

%o

0 >=£# >=e# >Q%O)(A) —>0

(2) TFor each 1 one has exact sequences:

. * . .
0 ——> Hy (£) 2—> 1 o (8) 2 o H;;l (£) >0
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(3) There is a commutative diagram:

£ g > 9oy (4)

r R
v
i% o S Q&O) (a)

Proof: Suppose z = @ ey ANttt ey is in {; with ¢ homogeneous of degree
1 s

mh - s . By the definition of £, A >0. Iet ofz) = -ty g

dXil,\ TEDN dXis . Then ¢ is a degree O map 1# e Q'(O)(A) . @ is obviously
onto. Since @ ° Ao(z) =g (Mf) o e, A ree A eiS =0, 0 °A;=0. It'snot

hard to see that ker ¢ = image A . To complete the proof of (1) we must show that

dg = ¢d . Now:

ds(z) = (ml))‘”l()\ml)f {z cpj/f)‘ dxj /\dXil/\ coe A dXiS} +

A A+1 }
(“‘l) A {2 <|:>f‘j/f dXJ.AdXi A.,.AdXi

1 s

Since 8(z) =EZ (g, + £, ®) e.~e, ~°°* ~e, , o is indeed a chain map.
d J J 11 1g
The above exact sequence of complexes gives a long exact sequence of cohomology.
By Lemma 9.1 AO induces the O map on H#(f) . {2) now follows from Lemms 9.2 (L).
The proof of (3) is straightforward.
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Corollary Ho(f) = Hl(f) =0

Proof: Suppose @ € Ho(f) . Then Ai(<p) =0 for 1<i<n. So
/

n
mA(¢) = TX A () =0. Tt follows that ®= 0, and that BO(f) = Hfé(f) =0.
1

Now it's easy to see that HODR(A) =k. (IfoeA, of¢ k , then ¢ is part of a

separating transcendence base of k(Xl,“',Xn) over k , there is a derivation of

A non-trivial on ¢ , and do # 0). So by Theorem 9.1, H;g(f) =k . Using the

exact sequence of complexes O > &£ > L (f >k ——> 0 , we find
#

that Hl(f) =0 .
' Theorem 9.1 relates the Hl('f) to the De Rham cohomology groups of A . One

gets a nicer result by using the De Rham cohomology of A(O) .

Lemma 9.3 The natural map Q (A )) —> 0*(A) is injective.

(o

. |
Proof: Let A' be the subring % A() of A . Then A' =A(o){f,f -7 .

mlj \J
Since f is transcendental over A(O) , A' is isomorphic with the ring A(O)[t,t'l]
So it suffices to show that q°(A') —> @'(A) is injective. ILet K' and K be

the quotient fields of A' and A ; K is a finite separable extension of K'.
It follows that Q°(K') —> Q' (K) is injective and that the kernel of the map
Q" (A') ——> 0" (A) is a torsion module. But A' is the co-ordinate ring of a
non-singular k-variety. It follows that Q'(A') is projective, and thus torsion

free, proving the lemma. (One may also show by a direct calculation, localizing at

ij , that Q°(A') is a locally free A' module).
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From now on we shall view Q'(A(O)) as a subcomplex of Q'(A) . Evidently

Q'(A(O)) < n&o)(A) .

Lemma 9.4 Any we QEO)(A) may be uniquely written as w' + ( d—g Aw'') with
w' and w'' in Q(A(O)) . If R 1is the map of Lemme 9.2, then R maps

QEO)(A) into Q'(A(O)) .

Proof: Let S be the set of w which may be written as above; S 1is a subalgebra

of QEO)(A) . If p is a monomial of deg m in the Xi's , then

A gy 4 B ap -yl ¢ _ oy -l
7 d\f, 7 f,aso I,.eS.,Letu. Xi a.nc:tu.—xi st
2m-1
Then mX, dXJ, = my dp' -(m-1) u* dp . It follows that
X 2m-1 ax
i J € S . From this we see that __c_pz dXi A e A dXi is in S , provided
fe f 1 s

deg @ =ml - s and 4 is large. Thus S = Q(o)(A) .

Now if R is the map of Lemma 9.2, R(A(O)) =0 . Since dR +Rd =0 on A(O) 5
R annihilates dA(O) as well. Using (1) and (2) of Lemma 9.3 we find that R
annihilates @~ (A(O)) and that R(w) = R(%) Aw@'' =mw'' . So ' is uniquely

determined by w , and the same is true of @' . Finally, mw'' is in Q'(A(O)) .
Theorem 9.2

Hli)R (A) ~ H%)ﬁl (Aoy® HiDR (A(0))
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Proof: By Lemmas 9.3 and 9.4, Q(o)(A) is a direct sum of 2 subcomplexes, one
isomorphic to Q'(A(o)) and the other isomorphic to Q(A(O)) shifted over by 1 .
Now apply Lemma 9.2, (k).

Theorems 9.1 and 9.2 suggest that H;(f) ~ H;I'{l (A(O)) To get an explicit

isomorphism we introduce one further map.

s s _ 1 ves 1 ) .
Definition Let ¢, =0 and c, = -(1 + 5+ + -——-)\_l) for A >1. Define
v: i# > i# by

Pe. A*re Ae

> o 0} &y Nrerney for ¢ homogeneous of

11 ig 1 S
degree mi-s
. af
Lemma 2.5 If z e &5 , U(‘YS—BV) zZ = 5 AC z)

Proof: We may assume 2z = @ e, Nt e with ¢ homogeneous of degree mi-s .
1 “s ’

Then, (v - dy)z = (c}\_}_l - c)\) : §fj 9eyn eilA e A eiS . So

- . A P i
o(vs - dy)z = (ch - c)\) (-1)" .« ! T T fj de. ~ax, ~ ~dxX; . Since

f}d—

1 s
1 e as
Ca4pm Oy = - % » this is just A‘c(z) .
Lemma 9.6 The map o: £;¢ —_— Q(o)(A) is chain homotopic to a map into the

subcomplex ——gi AQ'(A(O)) of Qio)(A) .
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Proof: o r Yy is a degree -1 map i% _ Qio)(A) . Let us compute 4 ° (o r v)
+(ory) 8. Since do = gd. this may be rewritten as

{c (6r +rd) v } + for (vd - 8y)}). By Lemma 9.1 and Theorem 9.1, o(dr + rd) = & by =0
Furthermore or = Ro ; it follows that d@ ° (cr y) + ( ¢ r y) ° & maps =z into

Ro (yd - 8y)z =R (9% ~ o (z)) by Lemma 9.5. Using Lemma 9.2, we may rewrite this

as mo (z) - { %ﬁ ~R @ (z)). By Lemma 9.4, R o(z) is in Q'(A(O)) 5 it follows

that m™t (o r v) provides the desired chain homotopy.

From now on we shall think of H;R(A(O)) and H%ﬁl(A(o)) as imbedded as

complementary subspaces in H;R(A) « (For an explicit description of the imbedding,

look at the proof of Theorem 9.2.)

. i i+l
Lemma 9.7 The homomorphism a: HDR(A) — H# (f) of Theorem 9.1 maps

i . .
HDR(A(O)) sur jectively.

Proof: Suppose z is a cocycle in d%ﬁi . Set w=R& (z)=6r (z). Then

W E Q?O)(A) and dw= - Rd ¢ (z2) = -R o 8(z) =0 . Since ® e image R , it represents
a cohomology class in H%R(A(O)) . Now r (z) is a pull-back of w by o to i% 5
and & (r(z)) = (8r + rd) z = Ab (z) - The definition of the connecting homomorphism
in an exact sequence of complexes then shows that @ maps the cohomology class of w

ontc the cohomology class of 2z , proving the lemma.

-111-



Theorem 2.3

* i i i . .
The map o : H#(f) —_ HDR(A) of Theorem 9.1 maps H#(f) isomorphically

i-1
onto the subspace Hpp (A(O)) .

* i-
Proof: By Theorem 9.1, ¢ is injective; by Lemma 9.6 image o C Hllle(A(O)) .

Suppose O € Hlbil(A( O)) . Let 3 Ve the connecting homomorphism of Lemma 9.7. By
Lemma 9.7 there is an Q' in H;R(A(O)) such that 3(a') = 3(@) , So a - a' is
in the image of c* , O' = 0 , and the theorem follows.

Using the corollary to Theorem 9.1 and the fact that Hl(f) = H:é(f) for i >2

we get:
0 1 s i i-1
Corollary H(f) =H (f) =0. For i>2, H (f) ~ Hp (A(o)) .
. . n-i
Finally, since Hi(f) ~H ~(£):
Theorem 9.4
For i <n-2, H (f)~ n'l'i(A ) . H (f)=H(f)=0.
= | iR (o) n-1 n
Corollary Suppose f 1is non-singular. Then:
0
(1) Hyp (A= k
i .
(2) Hop (A(O)) =0 for 1<i<n-2

(3) Hgil (A(O)) has dimension m"l{(m-l)n + (-1)" (n-1)}
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Proof: (1) was proved in the course of proving the corollary to Theorem 9.1.

(2) and (3) follow from Theorem 9.4 and the calculations of Chapter 8.

Suppose now that V is a non-singular variety over k . Then Grothendieck,

(see [6]), has shown how to define algebraic De Rham cohomology groups HﬁR(V) 3
explicitly HﬁR(V) is the hypercohomology of the complex of sheaves of differential
forms on V . The assigmment V#+——> HbR(V) is functorial, and one gets a good

cohomology theory for non-singular varieties. When V is affine with co-ordinate ring
A, H%R(V) = H%R(A) . When k is the complexes, a comparison theorem of Grothendieck
shows that HbR(V) is just the classical cohomology of V , viewed as a complex
manifold.

Now let U be the projective hypersurfacedefined by f . Theorem 9.4 shows

n-l-i n-l-i n-1

that H (f) ~H R (A(O)) ~ Hop (P -U) for i< n-2. Sowhen k=20,

the Hi(f) have a classical topological interpretation, and in any case they are
related to a good cohomology theory for k-varieties. If U is non-singular one
may use the corollary to Theorem 9.4 together with a Gysin sequence to calculate
the groups H%R(U) + In particular it can be shown that Ho(f) imbeds as a sub-

-2
space of H%R (U) of codimension O or 1 according as n is odd or even. This
result is due to Katz [7]-

We next turn our attention to "analytic homology". ILet K be a complete
discretely normed field of characteristic O whose residue class field X has
-1 -

characteristic p > O . Assume further that K contains a root = of -p .

Let F be a homogeneous element of Ok{Xl,'--,Xn] of degree m such that F # 0 .

In Chapter 7 we constructed a certain complex éﬁ from F ; 1let 1?.(F) denote

the homology of this complex.
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Suppose first that the reduction F of F is non-singular and let U and U
be the projective hypersurfaces determined by F and F. By Theorems 8.3 and 8.7,

aim §(F) = aim H(F) = 7t {(m-1) + (-1)" (m-1)}. It's easy to see that
HO(F) —-—>'I3IO(F) is onto and hence bijective. So we may identify 'ﬁO(F) with a

ne-

D32 (U) of codimension O or ‘1 . Assume now that K = GF(q) ,

subspace of H

that characteristic K # 2 , and that the co-efficients of F satisfy ¢? =c .

Then we have constructed an operator o, on EO(F) and proved (see Theorem 8.8)

that N_(U) = PG LY (-1)* v (q°t @,)® . The Lefschetz fixed point

theorem formalism then strongly suggests that Hg;f (U) should be thought of as an

n~2 dimensional cohomology group of U with co-efficients in X , and that q'l a,

should be the restriction to ﬁO(F) of a map Hgf-{e(U) —_— Hgiz (U) induced by
the Frobenius.

This circle of ideas has been developed in detail by Lubkin [8). He has shown
that if V is a non-singular projective variety over X , then any two liftings of T
to K have canonically isomorphic De Rham cohomology. Furthermore if V and W

are non-singular projective with liftings V eand W then any morphism V —> W

induces a map H]')R(W) —_— Hl‘)R (V) . 1In this way one gets a good cohomology theory

U ————>»HLub(U) = Hp (U) for liftable projective varieties over K . When U is

a non-singular projective hypersurface defined by F , then as we have seen /I-YO(F)

-2 \
imbeds in ngb (U) . Presumably the mep induced by the Frobenius in Lubkin's theory
restricts to Dwork's q'l a, .

*

Let us now turn to the case of an F whose reduction F may be singular. Let
U be the projective hypersurface defined by F . Theorem 9.4 suggests that

Hi(F) , (i < n-2) , be thought of as an n-1-i dimensional cohomology group, with

co-efficients in K , of the affine variety IPn'l.-'f;f . When T is singular, the
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Hi(F) are unreasonable however, and it is better to replace the complex #£. by
+

a larger complex #£. which we now describe.

Recall that L CK [[XO,"',Xn]] is the Banach space having as orthonormal

RO A
base the elements = X with mx_ =

o A, . More generally L(y) Yas as orthonormal

HMDB

[vkol 2
base the elements = X" with mlo =

HM™MDB

+ +
A; - Let L -Y§b L(y) . Then L is

stable under the operators D, = (exp -n XOF) o X5 ~%§ o (exp 1 X, F) , and we may
i

+ +
build a complex &#£. contained in K. (L ; Dl,--~,Dn) in the same way that we built

+
2. < K. (1; Dl,°°“,Dn) . Denote the homology of £ by H. (F) .
When K is finite one has an endomorphism © = (exp - = XOF) ° § o (exp x XOF)

+ + +
of L and a chain map o: . ~—> s as in Chapter 7. It may be shown that ai

and (ai)* are nuclear and that the Lefschetz fixed point theorem, Theorem 7.5,

A +
remains valid with . replaced by <. If ¥ 1is non-singular it doesn't matter

+ ~
whether one works with #£. or #£. . Indeed one can show that Hi(F) R’Hi+ (F) in

this case. But this need not be true when F is singular. One final fact: the

Hi+(F) only depend on the reduction of F . Indeed if F and F2 have the same

1
reduction, then multiplication by exp = XO <F1'F2) sets up an isomorphism between
+
the complexes £. attached to Fl and F2 .
Now for non-singular affine varieties over K (subject to a mild restriction),
Washnitzer and I have developed a cohomology theory which we call '"formal cohomology" ;

the theory is of De Rham type and the co-efficient field is X . What one expects and
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+
can more or less prove is that the spaces H; (P) bear the same relation to formal

cohomology that the Hi(F) bear to De Rham cohomology. To make things more
precise, let's adopt the language of [10]. If A is a K-algebra which 1lifts

very smoothly to O let Hp . (R) denote the formal cohomology of A with

n-1

co-efficients in K . ILet K( be the co-ordinate ring of TP T.

0)

Theorem 9.5

Suppose that K( lifts very smoothly. Then, for i < n-2 ,

0)

n-l-i

+
Hi (F) ~ HFor

(o)) + Purthermore H () = H: (F) =0 .

Results of this sort were first proved by Katz in [7]. I suspect that A

(0)
always lifts very smoothly, (it always has a weak formalization), but have been

unable to prove this so far.

The proof of Theorem 9.5 is much like that of Theorem 9.&, but as it's analytically
nasty we won't go into it. One final remark. Suppose that K is finite. Then under

the identification of Theorem 9.5 the Dwork map (ai)* is essentially the inverse

n-1-i

of the map induced by the Frobenius on HFor

(K(O)) , and the Lefschetz fixed point

theorem, Theorem 7.5, becomes a special case of a result proved in [11].
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