SEMINAR ON ÉTALE COHOMOLOGY OF NUMBER FIELDS

by

Michael Artin & Jean-Louis Verdier

1.)

Notation (1.1) k = a number field.

A = integers in k.

X = Spec A.

UCX a nonempty Zariski-open subset.

The etale cohomology of $\,U\,$ with values in the multiplicative group $\,G_{m}\,$ can be described by class field theory as follows:

Denote by

i: Spec
$$k \longrightarrow U$$

the map. One has the usual exact sequence

$$(1.2) 0 \longrightarrow (\mathbb{G}_{\mathbf{m}})_{\mathbf{I}} \longrightarrow i_*(\mathbb{G}_{\mathbf{m}})_{\mathbf{k}} \longrightarrow \mathbf{D} \longrightarrow 0$$

where

$$D = \bigoplus_{\substack{x \text{ closed} \\ \text{in } U}} (\mathbb{Z})_x$$

is the sheaf of Cartier divisors on U . Now by local class field theory,

(1.3)
$$R^{q}i_{*}G_{m} = 0, q > 0, i.e.,$$

$$H^{q}(U,i_{*}G_{m}) \approx H^{q}(Spec k, G_{m}), all q.$$

Taking into account the vanishing of certain groups, the exact cohomology sequence of (1.2) yields the exact sequences

where Br $k = H^2(Spec \ k, \ G_m)$ and $Q/Z = H^2(k(x), Z)$. The map \emptyset is the one given by class field theory.

Corollary (1.5): If k is totally imaginary then

$$H^{q}(X, \mathbf{G}_{m}) = \begin{cases} \widehat{A}^{*} & , & q = 0, \\ \mathbf{Pic} X & , & q = 1, \\ 0 & , & q = 2, \\ \mathbf{Q}/\mathbf{Z} & , & q = 3. \end{cases}$$

Theorem (1.6): Suppose $p \neq 2$ or that k is totally imaginary. Then $cd_p X = 3$ and $cd_p U = 2$ if $U \neq X$.

2.)

In this section we denote by $f: X \longrightarrow Spec \mathbb{Z}$ a scheme of finite type. Because of "Artin-Schreier" theory, one can show that for a scheme Y of characteristic p

$$(2.1) cd_{p}Y \leq cdqc Y + 1 (p = char Y)$$

where cdqc $Y = \sup[q \mid H^q(Y,F) \neq 0 \text{ for some quasi-coherent sheaf } F \text{ on } Y]$. Using this and dimension theory for fields, one obtains

Theorem (2.2): $\operatorname{cd}_{p} X \leq 2 \operatorname{dim} X + 1 \text{ if } p \neq 2$.

The rest of this section is devoted to 2-cohomology.

Notation (2.3): X_{∞} = space of closed points of $X \times X$ IR with the real topology

= X(C)/G, where X(C) is the space of points of X with values in C, with the usual topology, and where $G = \mathbb{Z}/2$ operates by complex conjugation.

 $X(\mathbb{R})$ = real locus of X, which is a closed subspace of X_{∞} . \overline{X} = the topological space whose underlying set is $X \perp X_{\infty}$ with the topology whose open sets are pairs (X°, U) where X° is a Zariski open set in X, and U is an open subset of X°_{∞} .

Actually, we will work with the following $\underline{\acute{e}tale}$ topology on \tilde{X} : The category of open sets are pairs $(f:X'\longrightarrow X$, U) consisting of a morphism of schemes f and an open subset U of X' having the following properties:

- (a) f is étale.
- (b) In the map $g: U \longrightarrow X_{00}$ induced by f, $g(u) \in X(\mathbb{R}) \Longrightarrow u \in X^{\epsilon}(\mathbb{R})$.

A map $(f_1, U_1) \longrightarrow (f_2, U_2)$ is a map $X^i_1 \longrightarrow X^i_2$ commuting with the structure maps and such that under the induced map $X^i_{1 \infty} \longrightarrow X^i_{2 \infty}$, U_1 is carried into U_2 . A family of maps with range (f, U) is a covering iff (X^i, U) is the union of the images.

For this topology, there are morphisms $X_{et} \xrightarrow{j} X_{et}$ and $X_{\infty} \xrightarrow{i} X_{et}$ where X_{∞} is taken with the topology of local isomorphisms. The map j is formally an open immersion and i is its closed complement. The derived functors $R^q j_* F$ for a sheaf F on X_{et} are 2-torsion sheaves concentrated on the real locus $X(\mathbb{R})$, q > 0.

Theorem (2.4): Let $X = \operatorname{Spec} A$ be the ring of integers in a number field, and set $(\mathbb{G}_m)_{\overline{X}} = j_*(\mathbb{G}_m)_{X}$. Then

$$H^{q}(\bar{X}, \mathbb{G}_{m}) = \begin{cases} A^{*}, & q = 0, \\ \text{Pic } X, & q = 1, \\ 0, & q = 2, \\ \mathbb{Q}/\mathbb{Z}, & q = 3, \\ 0, & q > 3. \end{cases}$$

(Slight variations in dimensions 0,1 could be obtained by insisting that a unit of \mathfrak{E}_{m} be positive at a real prime.) The above is an easy consequence of the following theorem:

Theorem (Tate): Let k be a number field and F a sheaf on Spec k. Then

$$H^{q}(Spec \ k, \ F) \longrightarrow H^{q}(Spec(k \boxtimes_{\mathbb{Z}} \mathbb{R}), \ F_{\mathbb{R}})$$

is surjective, q=2, and bijective, q>2 . Here $F_{I\!R}$ denotes the induced sheaf.

Theorem (2.5): Let F be a sheaf on \bar{X} whose restriction to X is a noetherian torsion sheaf. Then $H^Q(\bar{X},F)=0$ for q>2 dim X+1.

 $\underline{\text{Corollary (2.6)}}\text{: (a)} \quad H^q(X,F) \xrightarrow{\sim} H^q(X \boxtimes_{\mathbb{Z}} \mathbb{R} , F_{\mathbb{R}}) \quad \text{for} \quad q > 2\dim X + 1.$

- (b) $\operatorname{cd}_2 X < \infty \iff \operatorname{cd}_2 X \leq 2 \dim X + 1 \iff X(\mathbb{R}) = \emptyset$.
- (c) for a field $\, K \,$ of finite type, $\, cd_2^{\,\,\,\,\,\,\,\,\,\,} \,$ on iff $\, K \,$ is a real field .

(Part (c) is also an easy consequence of a general result of Serre.)

3)

We use the notations of section 1. Let F° be a complex of sheaves over X whose cohomology is bounded (i.e., $H^{q}(F^{\circ}) = 0$ for q sufficiently large) and such that $H^{q}(F^{\circ})$ is a noetherian torsion sheaf for all q.

We denote by $\operatorname{H}_{\mathbb{R}}^q(X,F^*)$ the hypercohomology of X into F^* and by $\operatorname{Ext}^q(X;F^*,G_m)$ the global hyper-Ext on X. For any q those groups are finite commutative groups and for q sufficiently large they are equal to zero.

For any prime integer $\,p\,$ and for any finite commutative group $\,M\,$ we denote by $\,M\,_{p}\,$ the p-primary component of $\,M\,$.

Theorem (3.1): The Yoneda product

$$(^*)_p \quad \overset{\underline{\underline{H}}^q}{=} (X,F^*)_p \textbf{x} \; \underbrace{\underline{Ext}^{3-q}}_{} \; (X;F^*,G_m)_p \longrightarrow H^3(X,G_m)_p \; \xrightarrow{} \; Q_p/\mathbf{Z}_p$$

is a perfect duality for $p \neq 2$. If k is a totally imaginary field, the pairing $\binom*2$ is also a perfect duality.

Let now U be an open subscheme of X and F a complex of sheaves on U satisfying the same conditions as in the beginning of the section. The complex F_U^* will be the complex of sheaves on X obtained by extending the complex F_U^* by zero. We define $\frac{H^2}{C}(U,F)$ (hypercohomology with compact support on U) by the equality:

$$\underline{\underline{\underline{H}}}_{c}^{q}(U,F') = \underline{\underline{\underline{H}}}^{q}(X,F'_{U}).$$

Similarly, given any complex G of sheaves on U (whose cohomology is bounded), we define the groups $\underbrace{Ext}_{C}^{q}(U;F^{*},G^{*})$ (Hyper-Ext with compact support) in the following way: First we take an injective resolution $I(G^{*})$ of G^{*} (i.e., a morphism of complexes $\rho:G^{*}\longrightarrow I(G^{*})$ into a complex whose objects are injective

sheaves which induces an isomorphism on the sheaves of cohomology). Then we define the complex of sheaves on $U: \underline{Rhom}\ (F^*, I(G^*))$ to be the single complex of sheaves on U of sheaf homomorphism of F^* into $I(G^*)$. Then we define $\underline{Ext}^Q(U; F^*, G^*)$ by the equality:

$$\underbrace{\operatorname{Ext}}_{\mathbf{C}}^{\mathbf{Q}}(\mathbf{U}; \mathbf{F}^{*}, \mathbf{G}^{*}) = \underbrace{\operatorname{H}}^{\mathbf{Q}}(\mathbf{X}, \underline{\operatorname{Rhom}}(\mathbf{F}^{*}, \mathbf{I}(\mathbf{G}^{*}))_{\mathbf{U}}).$$

When the complex $\,G^{\,\circ}\,$ is the single sheaf $\,G_{m}^{\,}\,$, the complex $\,\underline{\rm Rhom}\,$ (F', $I(G_{m}^{\,})\,)\,$ will be denoted by $\,D(F^{\,\circ})\,.$

As an immediate corollary of the theorem 3.1, we obtain:

Corollary 3.2: The Yoneda product

$$\underbrace{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}{\overset{\text{\tiny = c}}}}}{\overset{\text{\tiny = c}}{\overset{\text{\tiny = c}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

is a perfect duality for any prime p different from 2. If k is totally imaginary, it is also a perfect duality for p = 2.

Let us denote by Δ the canonical morphism of complexes

$$\triangle : F \rightarrow D(D(F)).$$

Theorem 3.3: When the torsion of the cohomology sheaves of F is prime to the residual characteristics of U, the morphism Δ induces an isomorphism on the sheaves of cohomology.

As an immediate corollary of the theorem 3.3, we obtain:

Corollary 3.4: The Yoneda product

$$\underline{\underline{H}}^{q}(U,F')_{p} \times \underline{\underline{Ext}}^{3-q}(U;F;G_{m})_{p} \longrightarrow \underline{\underline{H}}^{3}_{c}(U,G_{m})_{p} \xrightarrow{\sim} Q_{p}/\mathbb{Z}_{p}$$

is a perfect duality for any complex F whose torsion of cohomology sheaves is prime to the residual characteristics of U and for any prime p different from 2. As usual, when k is a totally imaginary field, the restriction $p \neq 2$ can be omitted.