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The exceptional mathematical talent of Alexander Grothendieck was apparent 
very soon. He had been a student at the University of Montpellier which, at that 
time, was among the most backward of French universities in the teaching of 
mathematics; it is not there that he could have been made aware of the main 
problems on which contemporary mathematicians were working. His first contact 
with them occurred in 1948-1949, in the first of the famous Seminars initiated by 
H. Cartan; the themes chosen for that year were simplicial algebraic topology and 
the basic notions of sheaf theory (theories taught nowhere else in France at that 
time). B u t -  surprisingly enough when one thinks of his subsequent ca ree r -  
Grothendieck was not particularly attracted by these subjects, whereas, from 

what he had heard of functional analysis, he was anxious to learn more in that 
field. On the advice of Caftan, he went to Nancy in October 1949. At that time, 
Delsarte, Godement, L. Schwartz and myself had organized a Seminar there on 
topological vector spaces, a theory on which we all were then working (from 
different angles). 

Banach spaces and their duality were already almost classical around 1950, but 
the theory of locally convex spaces was barely beginning; only special types of 
these spaces had been investigated, such as the K6the spaces of sequences and the 
spaces of distributions introduced by Sobolev and Schwartz. A general theory of 
duality for locally convex spaces had to be worked out; Schwartz and I had started 
its study for Fr6chet spaces and their direct limits, but we had met a series of 
problems which we could not solve. We therefore proposed them to Grothen- 
dieck, and the result turned out to exceed our most sanguine expectations. In less 
than a year, he had solved all our problems by very ingenious new constructions; 
then, with the techniques he had developed, he started to work on many other 
questions in functional analysis. When, in 1953, it was time to grant him a 
doctor's degree, it was necessary to choose from among six papers he had written, 
any one of which was at the level of a good dissertation. Of course, his 
fundamental paper on tensor products and nuclear spaces is the one that was 
chosen and it rapidly became a landmark in functional analysis. 

In that long paper, he entered an entirely unexplored domain, the study of 
'reasonable' topologies one could define on the tensor product of two locally 
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convex spaces; the case of Banach spaces was the only one which had been 
investigated. In the deep and original study he made of the general case, 
Grothendieck already exhibits what will become his style. Although at that time 
the concept of a category was not yet widely spread, the spirit of that notion 
pervades the paper, with its persistent search for 'natural' definitions and 'fun- 
ctorial' properties. But, coexistent with these general theorems, at every turn one 
finds a clever counterexample to test their limits of applicability. The most 
remarkable discovery in that thesis was that of nuclear spaces, obtained by 
comparing two possible topologies on tensor products. Although unsuspected 
until then, they turned out to be the class of spaces that are closest to the finite 
dimensional ones in their pleasant features. Grothendieck showed that the 
beautiful results known for spaces of distributions (in particular, Schwartz's 
'kernel theorem') were just consequences of the fact that these spaces are 
nuclear. Since then, nuclear spaces have found many other applications, in 
particular in probability theory. 

Another remarkable novelty in Grothendieck's thesis is the study of continuous 
linear maps between locally convex spaces that can be factorized through suitable 
L 1(ix ) spaces. Grothendieck later wrote a paper on the 'metric' theory of tensor 
products, in which these factorizable maps are deeply investigated. That paper 
has become a classic in the geometry of Banach spaces. 

Thus, in less than three years, concepts and results were created whose impact, 
in my opinion, can only be matched by the work of Banach himself. 

But, after giving a course on locally convex spaces at S~o Paulo in 1953, 
Grothendieck began to turn to other fields, namely homological algebra, sheaf 
theory and their applications to algebraic and analytic geometry, which, in the 
years 1950-1960, were developing at an unprecedented rate. He was helped in his 
endeavors by Serre, with whom he had exchanged many letters since 1954. But he 
progressed in these new directions as rapidly as he had done in functional 
analysis; whereas in 1954 he still acknowledged that he did not feel quite at home 
with spectral sequences, in 1956 even Serre was astonished by his virtuosity in 

their manipulation. 
In 1955, he was invited to stay for a semester at the University of Kansas, 

where he chiefly worked on homological algebra and on holomorphic vector 
bundles. He obtained their complete classification when the base space is the 
complex projective line, the first step in a theory that is still very active today. 
Having in mind applications of homological agebra to algebraic geometry, he 
developed ideas (unknown to him at first) of Buchsbaum and Mac Lane on 
Abelian categories, extending the work of Cartan-Eilenberg on modules in their 
well-known book (not yet in print at that time). As usual, he went straight to the 
heart of the matter by giving a system of axioms for Abelian categories. His most 
important result was the proof that sheaves of modules on an arbitrary topological 
space are the objects of an Abelian category with enough injectives. This enabled 
him to define cohomology with values in a sheaf of modules, with no additional 
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restriction on the sheaf or on the topological space. For many years, this paper 
remained a classic for the specialists in homological algebra (who called it 'the 
T6hoku', after the name of the journal in which it was published). 

After his return to France in 1956, Grothendieck took an active part in the 
work of the Paris mathematical school and he more and more devoted his efforts 
to algebraic geometry, and assiduously studied the papers of Serre on algebraic 
varieties over a field k of positive characteristic, which had just been published. 

The main trend of his work is the one that will lead him from 'absolute' 
properties of algebraic varieties to the corresponding 'relative' theorems, the 
properties of morphisms. Oddly enough, whilst the notion of morphism had been 
central in most categories - long before the general concept of category had been 
formulated - in classical algebraic geometry one was chiefly dealing with rational 
mappings X--~ Y, which, in general, are not defined everywhere in X. Genuine 
morphisms, defined everywhere, did not attract much attention, in contrast with 
what was being done in contemporary papers on analytic varieties (K. Stein, 
Grauert and Remmert). 

In his first result in algebraic geometry, Grothendieck focused his research on 
the notion of 'proper morphism', the 'relative' counterpart of A. Weil's 'complete 
variety'. He used it to give a 'relative' version of Serre's theorem proving that, for 
a complete variety X and a coherent Gx-module 0%, the cohomology groups 
Hi(X; ~) are finite dimensional vector spaces over the base field k when k is 
algebraically closed. Grothendieck proved in 1956 that, for a proper morphism 
f :  X--~ Y, the 'higher images' Rqf,(,~) of a coherent 6x-module ~ are coherent 
6y-modules. 

It is in the same direction that, a little later, he accomplished his first 
breakthrough in algebraic geometry, the 'relative' version of the Riemann-Roch- 
Hirzebruch theorem. 

In 1953, building on the work of Cartan-Serre and Kodaira-Spencer on sheaf 
cohomology on complex varieties, Hirzebruch had proved a general theorem for a 
complex smooth projective algebraic variety M of dimension m: for a holomor- 
phic complex vector bundle E with base space M, one has, in sheaf cohomology, 
the general formula 

dim H ~  - dim Hl(o ~)  + . - -  + ( -1)  m dim Hm(~) = K2m(Ch(E ) U tdM); (1) 

o~ is the sheaf of germs of holomorphic sections of E over M, ch(E) the Chern 
character of E, td M the sum of the Todd polynomials T~(cl, c2,. . .  , ck) in the 
Chern classes cj of the tangent bundle of M; the right-hand term in (1) is the 
value (u, [M]) at the fundamental class [M] of M, of the sum u of all terms of 
ch(E) U td M belonging to  Hzm(M; (1~). When M is a curve (m = 1) and E the line 
bundle associated with a divisor on M, formula (1) implies the classical Riemann- 
Roch theorem. 

To understand what a 'relative' version of formula (1) might be, suppose, for 
simplicity, that X, Y are two smooth projective complex varieties with dim X = 
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m, dim Y = n, and let f :  X--+ Y be a morphism. The initial goal would be to 
establish, if possible, a relation between chx(E ) U td x and chy(E ' )  U tdy, where 
E' should be a holomorphic vector bundle on Y, depending on f ;  for Y=pt. 
(n = 0), one should recover (1). But many hurdles had to be overcome before this 
idea could be transformed into a genuine mathematical statement. 

The first step is that for z E H'(X; Q), Kz,,(z ) should be replaced by f,(z), 
where f , :  H'(X; Q)--+ H'(Y; Q) is a ring homomorphism. Since H" is a con- 
travariant functor, this f ,  cannot be a 'natural' map but, using Poincard duality, it 
is possible to define homomorphisms 

f ,p" HP(X; Q)---~ HP+d(y; Q) 

with d = 2(n - m); for n = 0 one has f ,p(Z)  = 0 fo rp  < 2 m ,  andf,,2m(Z ) = N'2m(Z ) 
for p = 2m. 

The next difficulty is to have a 'relative' version of the cohomology groups 
H ] ( ~ ) .  The natural candidates are the Leray 'higher direct images' R J f , ( f f ) ;  but 
if one wanted to stick to the Hirzebruch formula, dealing with vector bundles, 
should be a locally free sheaf. However, the RJf,(~) are not locally free in 
general when ~-is locally free; but if ~ is coherent, so are the RJf,(o~), and the 
'relative' version of (1) should thus deal with general coherent sheaves ~-. 

But what could replace the left-hand side of (1) when the H ] ( ~  -) are replaced 
by sheaves? It is here that comes the essential new idea, what is now called the 
Grothendieck group K(Y). Let C(Y) be the set of isomorphism classes of 
coherent ~v-modules, and consider the 7/-module 7/(c(v)) of their formal linear 
combinations; write [~]  for the class in C(Y) of a coherent Or-module 0% and 
e[~ 1 the corresponding basis element in the free Z-module 77 (c(r)). Then 

K(Y) = 7/(c(Y))/S(Y) (2) 

where S(Y) is the Y-submodule generated by all elements 

e[~] - e[o~, ] - elan. ] 

such that there is an exact sequence 

0--+ ~'--> if---> if"---> 0 (3) 

of coherent Oy-modules. This is a typical 'universal' 
~: C(Y)--> G into a commutative group G, such that 

~ ( [~] )  = ~ ( [~ ' ] )  + ~([~"])  

for all exact sequences (3), is uniquely factorized into 

~: C(Y)--2>7/(c(y)) ~Y, K(Y) *--~G, 

object: any mapping 

(4) 

(5) 

where e : ~ - ~  e[~j, Yr is the natural homomorphism and ~0 is a homomorphism of 

groups. 
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Once the group K(Y) is defined, the alternate sum 

( -  1)qTy(e([Rql.(W)])) (6) 
q 

is meaningful as an element of K(Y), and only depends on the class [W] in C(X); 
if one denotes it by p([W]), then relation (4) is a consequence of the cohomology 
exact sequence 

�9 ..--> Rqf,(~,)-...-> Rqf,(~)----> l~qf,(c~")----> Rq+lf,(o%")----> . . . .  

which has only a finite number of nonvanishing terms. The element (6) can thus 
be written 

f,(~x([~])), 
where f.,: K(X)----> K(Y) is a homomorphism of groups. 

One still has to define a Chern character, i.e. a group homomorphism 

ch: K(X)--> H'(X; Q) . 

Grothendieck uses the fact that any coherent ~x-module W has a finite resolution 

0 <--- o~ <--- r <--- ~1 <--- �9 �9 �9 <---- r <-'- 0 ,  (7) 

where the ~ are locally free sheaves, corresponding to vector bundles over X; the 
total Chern class c ( ~ )  is therefore defined. The total Chern class c(W) is then 
defined as 

C ( , ~ )  = C(o ,~o)C(~I )  l c ( , ~ 2 )  . . . C(~.~Or) ( -2)r  

in the ring H'(X; Q); it is independent of the choice of the resolution (7) of W. 
Then ch(W) is deduced from c(W) in the usual way. 

With these definitions, the Grothendieck version of the Riemann-Roch 
theorem is the equality 

chy(f,(x) t J tdy) = f . (chx(x  ) t J tdx) (8) 

in the ring H'(Y; Q), for every element x C K(X). 
Grothendieck's proof of (8) is a purely algebraic one: it relies on a new method 

(later used by other mathematicians), the splitting f =  g oh of a morphism 
f :  X--> Y, where h: X--~ X x Y is the natural injection mapping X onto the graph 
of f, and g is the second projection X x Y--~ Y. One first proves that f, = g~ o h~, 
and thus reduces the proof of (8) to the proofs of the same relation for g and h. 
For g the arguments are fairly simple, but they are more intricate for h. The main 
purpose of Grothendieck was to obtain a proof which could be extended to 
complete varieties over an algebraically closed field of positive characteristic. To 
do that he had to replace the cohomology ring H'(X; Q) applicable to complex 
varieties, by the ring A(X)  | Q, where A(X)  is the Chow ring of classes of cycles, 
and the Chern classes have to be defined with values in that ring. 
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I have gone into some detail concerning this paper, due to its importance as the 
starting point of K-theory, which has spread to so many parts of mathematics; and 
also to show the originality and fruitfulness of Grothendieck's imagination. He 
did not publish his proof of (8), leaving that task to A. Borel and Serre, who 
animated a Princeton Seminar, using Grothendieck's notes. This was the first 
example of what became a pattern in his career; having to think about so many 
ideas that sprung into his mind, he often left to colleagues or students the details 
of their consequences. 

He had barely finished proving his version of the Riemann-Roch theorem 
when he embarked on a much more ambitious undertaking. In his address to the 
Edinburgh International Congress in 1958, he disclosed, for the first time, his 
ultimate objective, which remained central in his work during the next 10 years: 
to define, for algebraic varieties over fields of arbitrary characteristic, cohomology 
groups with coefficients in a field of characteristic O, with the properties staked out 
by A. Weil in order to prove his famous conjectures. Without yet unveiling any 
details, Grothendieck conceived that to reach that goal, he had to conduct a 
reorganization of algebraic geometry along new lines - similar to the one made by 
Weil himself for classical algebraic geometry in the light of the proof of his 
conjectures for curves. Grothendieck was to carry on this gigantic task through 
the thousands of pages of his papers and Seminars. 

Ever since Weil's definition of 'abstract' varieties, not necessarily embeddable 
in a projective space, the various definitions proposed for them all started with 
'affine varieties', which afterwards were 'glued' together. In his famous paper 
FAC, Serre had observed that an 'affine variety' M, initially conceived as an 
'algebraic set' contained in a vector space k n (for an algebraically closed field k) is 
in canonical correspondence with a reduced, finitely generated k-algebra, consist- 
ing of the 'regular' functions on M. Conversely, such a k-algebra A defines a set 
M, the set of k-homomorphisms A--~ k (or, equivalently, the set of maximal 
ideals of A); then A defines a topology on M, by taking as a basis of open sets the 
sets D( f )  = (x ~ M I f(x) # 0} for all f @ A; and finally a sheaf 6 M of local rings, 
by the condition that the ring of sections F(D(f ) ,  6M) be the localized ring Ay for 

every f E A. 
Chevalley animated, jointly with H. Caftan, a Seminar on algebraic geometry 

in 1955-1956. He introduced objects which he called schemes, by gluing together 
'affine schemes'; for certain properties, the latter were more general than Serre's 
affine varieties, but more restrictive in other features. The starting point was 
again a k-algebra A, but the field k was not necessarily algebraically closed and A 
was restricted to be an integral domain. There were no sheaves in Chevalley's 
theory; the 'affine scheme' defined by A is the set of all localized rings A,  for 
prime ideals p, not only maximal ideals. The 'Zariski topology' on M is defined by 
taking for all closed sets 

E(c 0 = {A~ [ P DOt} 
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for all ideals ~ of A. A little later, Nagata extended Chevalley's definitions by 
replacing the field k by a Dedekind ring in the definition. 

Grothendieck had followed the Cartan-Chevalley Seminar, and he knew 
Nagata's paper. The obvious relations between all these definitions and commuta- 
tive algebra led him to throw away the various restrictions imposed by Serre, 
Chevalley, and Nagata, in order to reach the most useful conception of what 
algebraic geometry should be. He therefore called affine scheme the 'prime 
spectrum' Spec(A)= X, the set of all prime ideals of an arbitrary commutative 
ring A with unit element. A topology is defined on X by taking as a basis of open 
sets on X the sets 

D(f)  = {P I f ~ ' P }  

for all f E A; finally, a sheaf C x of local rings on A is defined by the condition that 
F (D( f ) ,  Gx)= nf  for all f E  A; its stalk at the point p is the local ring A~. A 
general scheme (X, Gx) is a rin~ed space having a basis of open sets (Us) such 
that (U~, ~x[ U~) is an affine scheme; the open sets having this property are 
called the affine open sets. 

Schemes are the objects of a category; the morphisms of that category are 
defined as morphisms of spaces equipped with sheaves of local rings. Affine 
schemes constitute a full subcategory, which is equivalent to the dual category of 
all commutative rings with unit element. 

In his 1958 address, Grothendieck had already sketched these definitions, and 
stressed the two main directions in which he wanted to develop the theory. The 
first one was to emphasize morphisms more than schemes: once a 'base scheme' S 
has been fixed (it can be any scheme), the genuine objects of study are the pairs 
(X, f )  consisting of a scheme X and a rnorphism f :  X--~ S. They are called 
S-schemes, and they are the objects of a category; the morphisms of that category 
(called the S-morphisms), written (X, f)--~ (Y, g), are the morphisms of schemes 
h: X---~ Y such that go h = f ;  S thus plays the part of the 'base field' in classical 
algebraic geometry. 

The other main direction was the extension to schemes of the sheaf cohomology 
techniques inaugurated by Serre; Grothendieck extended them from coherent 
sheaves to quasi-coherent ones; on an affine scheme Spec(A), they correspond to 
arbitrary A-modules. 

From 1960 to 1970, Grothendieck was a permanent member of the newly founded 
'Institut des Hautes Etudes Scientifiques' (IHES), in which he animated a 
Seminar on algebraic geometry; it soon attracted many students, to whom he very 
generously suggested research themes connected with the theory of schemes, and 
provided useful guidance. 

During that time, he organized the publication of his results on two levels. The 
basic notions of the theory of schemes were given a systematic and detailed 
exposition in his Eldments de Gdomdtrie alg~brique (EGA) published in successive 
instalments in the 'Publications math6matiques de I'IHES'. At the same time, the 



306 JEAN DIEUDONNE 

more advanced parts of the theory were the material of rather succinct talks at the 
Bourbaki Seminar and, in more elaborate form, in Grothendieck's own Seminar 
at IHES, where he was helped by colleagues and students in their publication. 

Grothendieck's influence very soon spread and became enormous. Already in 
1962, in an address to the International Congress at Stockholm, Serre could say 
that the theory of schemes was the best frame for the development of algebraic 
geometry. This is completely obvious nowadays; every student who wishes to 
learn algebraic geometry must become familiar with the theory of schemes; 
several good textbooks make it easier to assimilate than the ponderous EGA. 

I leave to more competent specialists the description and evaluation of the 
more than 6000 pages of the Seminars in which Grothendieck, with some help 
from his colleagues, built up the powerful new tools that he introduced in 
algebraic geometry: descent criteria, Hilbert and Picard schemes, derived 
categories, residues and duality, group schemes and, above all, the 'Grothendieck 
topologies' that, after much toil, finally provided the ultimate goal towards which 
he had been striving, the cohomologies with coefficients in a field of characteristic 
0. It is well known that the properties of these cohomologies enabled Deligne to 
prove the Weil conjectures, and Faltings the Mordell conjecture. But it is 
appropriate to stress that these beautiful results should not be dissociated from 
the tremendous surge of new concepts and theorems which have made algebraic 
geometry one of the most active and fruitful parts of mathematics of the last 40 
years, including the spawning ground of K-theory. 


