Lettre à J. Dixmier 28.6.1954

Alexander Grothendieck

Transcription by

Edited by Mateo Carmona

mateo.carmona@csg.igrothendieck.org Centre for Grothendieckian Studies (CSG) Grothendieck Institute Corso Statuto 24, 12084 Mondovì, Italy

> © 2024 Grothendieck Institute All rights reserved

This transcription is based on an unpublished scan previously available within the 'Grothendieck circle.' This project was carried out by researchers and volunteers of the CSG under the supervision of Mateo Carmona. More details are available at:

https://csg.igrothendieck.org/transcriptions/.

How to cite:

A. Grothendieck. *Lettre à J. Dixmier*. Unpublished letter, 28.6.1954. Transcription by M. Carmona et al., CSG, Grothendieck Institute. Draft, May 2024.

A. Grothendieck 1052 rua Oscar Freire Sao Paulo (Brésil)

Cher Dixmier,

Connais-tu la réponse à la question suivante. Soit \underline{A} un anneau d'opérateurs dans un Hilbert H, existe-t-il une projection u de norme l de R(H) sur A, compatible avec l'involution, et telle que u(ATB) = Au(T)B pour $A, B \in \underline{A}$? C'est vrai si H est de dimension finie (et évidemment c'est bien facile dans ce cas), ou si $\underline{A} \supset \underline{A}'$, et de ce dernier cas on déduit facilement que c'est vrai si \underline{A} est commutative (commencer à appliquer le résultat précédent à un anneau commutatif maximal B contenant A, d'autre part on sait qu'il existe une projection de B sur A qui a les propriétés voulues). Bien entendu, même si A est commutatif maximal, il n'y a pas unicité de la projection u. Voici la démonstration du deuxième cas $\underline{A} \subset \underline{A}'$: Soit K le spectre de \underline{A}' , Ω l'ensemble des partitions finies de K en ensembles ouverts et fermés, muni de sa relation d'ordre naturelle; pour $\omega = (\omega_i) \in \Omega$ on pose $u_{\omega}(T)\sum_{i}T_{\omega_{i}}TT_{\omega_{i}}$, on considère un ultrafiltre sur Ω plus fin que le filtre des sections croissantes, et on pose $u(T) = \lim u_{\omega}(T)$ (limite faible !) – Le problème m'intéresse pour pouvoir ramener les propriétés vectorielles-topologiques d'algèbres autoadjointes uniformément fermées quelconques d'opérateurs, aux propriétés de R(H), d'où facilement aux propriétés de l'algèbre $R_0(H)$ des opérateurs compacts, ce qui ramènera souvent à des propriétés de nature métrique sur les R(H) où H est de dimension finie. De même, les propriétés des espaces duals de C^* -algèbres (et aussi des espaces L^1 qui interviennent en intégration non commutative) se ramèneraient aux propriétés des espaces $H \widehat{\otimes} H$.

À propos, en vue de simplifier l'exposé de Godement sur la transformation de Fourier des groupes loc. comp. unimod., j'ai eu besoin du résultat suivant, qui se démontre assez facilement en se ramenant à R(H): les formes linéaires positives sur une C^* -algèbre engendrent le dual. Cela est-il connu, ou te semble-t-il utile de publier une petite note là-dessus ?

J'espère que cette lettre t'arrivera, et que tu pourras me donner une réponse positive.

Bien à toi

A. Grothendieck