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by 
Jean Giraud 

The basic facts about the classifying topos of a stack of 

groupoids were first stated in [3J and are exposed in detail in [4] 

Ch. VIII. This construction is useful in cohomology theory and has 

been introduced independently by D. Mumford to study the moduli of 

elliptic curves [7). Algebraic stacks of groupoids are used in 

algebraic geometry cf. [1]. Here a Simpler and more general approach 

allows us to treat the case of a stack whose fibers are not supposed 

to be groupoids. As a by-product we get the existence of fibered 

products in the bicategory of topos. This result was first announced 

by M. Hakim several years ago but was never published. I suspect that 

any written proof would have to deal with rather subtle technical 

difficulties about finite limits which are overcome here by the 

results of § I . 

If S is a site we use the work stack for the french champ [41 

and pres tack for pre champ (a pres tack is merely a fibered category 

over the underlying category of the site) and split stack for champ 

scinde. Up to equivalence a split stack can be viewed as a sheaf of 

categories over ~ (or a category-object of the corresponding topos) 

satisfying some extra condition namely the patching of objects. As 

usual we choose and fix a universe U For clarity it should be 

recalled that a ~-topos is a special case of ~-site [5] and that any 

category can be viewed as a site such that any presheaf is a sheaf and 

any prestack is a stack. 

§l. Left exact stacks. 

A category is left exact if it admits finite limits. A functor 

f:A~ B between left exact categories A and B is left exact if 

it preserves finite limits. A site is said to be left exact if the 
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underlying category is so. A stack e over a site S is said to be 

left exact if its fibers are left exact and if for any map f:T-+ S 

in S the inverse image functor induced by f between the fibers 

of e is left exact. 

Lemma 1.1. A stack e over a left exact site S is left exact if 

and only if the underlying category and the structural functor p:e~~ 

are left exact. 

The proof rests on the fact that a commutative square of e whose 

projection is cartesian in 8 is cartesian as soon as two opposite 

sides are S-cartesian. 

Lemma 1.2. A morphism m:A-+ B between two left exact stacks is left 

exact if and only if for any s£lsl (1) the functor mS:AS-+ BS 

induced by m between the fibers at S is left exact. 

Proposition 1.3. Let f:8' ~ S be a morphism between two sites 

(e.g. two tapas) Then the direct image (resp. inverse image) of a 

left exact stack and of a left exact morphism of stacks over S' 

(resp.~) is left exact. 

1.3.1. The direct image of a stack being nothing but pull-back along 

the underlying functor f*:8 ~ 8' of f I preserves the fibers, 

hence the left exactness. To treat the case of the inverse image by 

f of a stack over 8 we will use the following caracterisation of 

left-exactness. 

1.3.2. First let I be a finite category. For any stack Faver 

S let FI be the prestack whose fiber at s£I§1 is the category 

of functors from I to the fiber FS One checks easily that this 

is a stack provided with a morphism of stacks (constant diagrams) 

(1) The set of objects of a category C is denoted by lei 
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(1) 

Furthermore F is left exact if and only if for any finite cate9:2..l:Y-I 

cF admits a right adjoint in the bicategory of stacks. The if part 

is obvious since such an adjoint A induces an adjoint to each 

functor CFS ' 5EI!1 , induced by cF on the fibers at 5 and since 

A is cartesian. The only if part is no more difficult than (1.2). 

Since the property of having a right adjoint is preserved by morphisms 

of bicategories and since the inverse image of stacks is such a 

morphism [4] p.BB, it remains to show the following. 

Lemma 1.3.3. One has a natural equivalence e:f*(FI)~f*(F)I such 

that e.f*(cF) = cf*(F) 

According to (4) p.SS, the inverse image of a stack F is given 

by the formula 

(1) f*(F) = Af-I(LF) 

where LF is the free split stack associated to F (4] p.39, where 

f- l denotes the inverse image of LF as a category-object of the 

topos S and where A stands for "associated stack". Since there 

is a natural equivalence F ---7 LF and L is a morphism of bicategor

ies we get a natural equivalence of split stacks L(FI ) ---4 (LF)I 

Since the functor "inverse image of sheaves of sets" is left exact 

one gets a natural isomorphism f- l «LF) I) ~ (f- l (LF» I and 

it remains to find, for any prestack Gover S' a natural equiva-

lence A (GI ) ~ (AG) I One has a commutative square 

AG 1 cAG 

(AG) I 

where a is the structural map of AG According to [4] p.77 it 

suffices to show that a I is "bicouvrant" [4] p.72 , which is an 

easy consequence of the fact that a has this property. Q.E.D •• 
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Corollary 1.4. Let F and F' be left exact stacks on Sand 

8' m:F ~ f*(F') be a morphism of stacks and m':f*(F) ~ F' 

the morphism associated to m by the universal property of the inverse 

image. Then m is left exact if and only if m' is 

This is a formal consequence of (1.3) 

§2 .. Classifying topos of a stack. 

Proposition 2.1. Let S be a left exact U-site and C a prestack 

over 8 whose fibers are equivalent to categories which belong to 

U (C is said to be small) • Let us denote by J the coarsest 

topology on C such that the projection p:C ~ ~ is a comorphism 

[51 III 3.1 ,and by C-8 the category of sheaves on C for J 

with values in U 

(1) J is defined by the pretopology whose covering families 

are those (mi:ci ~ c),iele~ ,such that each mi is S-cartesian 

and such that p(mi),ieI ,is a covering family. 

(2) C-S is a ~-topos and the morphism TI:C-S ~ S defined by 

p is essential [i.e. TI* has a left adjoint TIJl If C is left 

exact then is left exact. 

(3) If S is a ~-topos and C is a stack, then the Yoneda 

functor e:C ~ C-S is full and faithful and the composite 

C~C-S S is equal to p 

Proof. (1) is an easy consequence of the definition of a comor-

phism and of the observation made in the proof of (1.1). Let 

Sa,a~A~~ ,be a family of generators of 8 and Ga,a£A t be a sub

set of Ics I which both belongs to U and contains an element of 
a 

each isomorphism class of objects of the fiber Cs a 
The union of 

the Ga is a generator of the site (C,J) , hence this one is a 

U-site and C-8 is a £-topos. Using (1) one sees easily that for 
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any sheaf F on S Fp is a sheaf on C hence rr*(F) Fp 

hence rr* has a left adjoint hence rr is essential. The last 

assertion of (2) follows from the fact that when C is left exact, p 

is the underlying functor of a morphism of sites S ~C The 

first assertion of (3) follows readily from (1) and the patching 

condition for morphisms in C 

one has 

Hom(rr! c: (c) ,S) =Hom (c: (c) ,11* (S» =11* (S) (c)=Hom(p (c) ,S) 

by adjunction, Yoneda and the formula 1T*F = Fp , and this concludes 

the proof. 

2.2. Under the assumptions of (2.1) C-S is called the classify-

ing topos of the (pre)stack C Note that a morphism of stacks 

m:C -? C· is a comorphism of sites and induces a morphism of topos 

m-S: C-S ---'" C I-S If m is an equivalence, then so is m-S 

If C is a split stack one can define a split stack CV whose fibers 

are the opposites of the fibers of C Note that the underlying 

category of CV is not the opposite CO of C Let us consider 

the category 

(1) 

of morphisms of stacks F:CV~ SH(~) , where SH(S) is the split 

stack whose fiber at SEI~I is the category of sheaves on siS 

[equivalent to ~S since S is a topos]. One has a natural functor 

(2) 't*:S~ B (S) 
- C -

,* (S) (c) E (sxp (c) ) 

where E is the Yoneda functor of ~/S 

Proposition 2.3. If S is a ~-topos and C a split stack one has 

an equivalence of categories 

(1) b (F) (c) F(c) (p(c» 
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and an isomorphism of functors 

2.3.1. Note that this proposition proves that BC(~) is a g-topos 

equivalent to C-S even when C is not split since one can replace 

C by an equivalent split stack. Furthermore, by the universal 

property of the associated stack, BC(~) is equivalent to BC'(~) 

when C is the stack associated to some prestack C' 

Furthermore, Lawvere and Tierney have introduced for any category-

object E of the topos S , the topos of objects of S provided 

with operations of E One can prove that this topos is equivalent 

to BC(~) where C is the split pres tack defined by E hence also 

equivalent to C'-S , where C' is the stack generated by C . Thus 

we have three constructions of the classifying topos. 

2.3.2. For any split stack D , any map f:T ---4S in S and 

any sEIDsl we denote by f the inverse S image of s by f and by 

f the cartesian given by the splitting. To define b sf:s --+ s map 

completely one must define for any m:c ---'> c' in C an application 

b (F) (m):b (F) (c')~ b (F) (c) Let f p (m) , f: S ' -----" S Since 

C is split there is a canonical factorisation 
m' f cf 

c' ~ C ---'> C 

Since F is cartesian one has a canonical isomorphism i:F(cf)~F(C)f 

which for the values at S' (or rather ids') of these sheaves 

induces a bijection j:F (cf ) (8') ----., F (c) (f) and we take for b (F) (m) 

the composite 

F (c) (5) f (c) (f~ 
.-1 

F(c) (f) ~ F(cf ) (S') flm') (S~)F(C') (5') 

where f: f ~ idS is the terminal map in ys It is easily 

checked that b(F) is a functor, recalling that the underlying 

category of CV is not the underlying category of CO The sheaf 

axiom for b(F) is verified by using (2.l(1»: for a given family 

(ci -7c) it is a consequence of the fact that F(c) is a sheaf and 
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F a cartesian functor. The functoriality with respect to F is 

obvious. To prove that b is an equivalence one constructs explicitly 

a functor 

(2) 

where c£IFI and f:T ~ pic) is a map in S 

Proposition 2.4. Let f:~'~ S be a morphism of ~-topos and let 

e be a left exact stack over S One has an equivalence of 

categories 

(1) TOPS(~"C-~} ___ Stexs(C,f.SH(§.'»o , where the domain is the 

category of morphisms of ~-topos n:S'~ C-S , where f.SH(~') is 

the direct image by f of the stack of sheaves over ~'[its fiber at 

s£I~1 is the category of sheaves over ~'/f.(S)l and where the 

codomain is the opposite of the category of left exact morphisms of 

stacks C ~ f*SH(§.') 

Since e is left exact and £: e ----'lo e-s full and faithful, 

a morphism of topos n:~'~ c-~ is nothing but a left exact functor 

n-l:e ~ ~' n-l=n*E Furthermore, since C is left exact 

there exists a cartesian section p-I of C whose value at SEI~I 

is the terminal object of the £iber Cs and p-l is a morphism of 

sites defining 'IT:C-~ --') ~ since 'IT*F = Fp 'for any sheaf F on 

S Hence an isomorphism of morphisms of topos i: 'lTn ~ f is 

.-1 -1 -1 'V nothing but an isomorphism ~ :n p ~ f* In other words the 

category ToPS(~"C-~)o is equivalent to the category M of pairs 
-1 --1 -1 -1 'V -1 

(n :C --) ~',i :n p ~ f) where n is continuous and left 

exact. Let Ar(~') be the category whose objects are arrows of S' 

and let b:Ar(~')~ ~' Since every object 

CElcl determines a terminal map -1 c ----4 p (p (c) ) , a pair 

(n-I,i- I ) can be viewed as a functor n'le ~ Ar(~'} such that 
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bn' = f*p and which is left exact [the continuity condition disappears 

by (2.1 (1»1. Since b makes a stack over S' out of the category 

Ar(~') , by the very definition of the direct image of a stack, n' 

is nothing but a functor n":C ---7 f*Ar (~') and, since n' is left 

exact, n" is ~-cartesian and left exact, hence an object of 

StexS(C,Ar(~I». The conclusion follows since Ar(~') is equivalent 

to SH(~') 

According to the proof, the morphism of topos n:~' ~ C-§. 

which corresponds to a left exact morphism of stacks n":C ---")f*Ar(§.') 

is characterized up to unique isomorphism by the equality n*E = dqn" 

(2) c n" q d 
--="'--_) f*Ar(§.') ~ Ar(~') ~ S· 

where q is the first projection of f*Ar (~') Ar (§.') xS'~ d the 

"domain functor" and E the Yoneda functor. 

Corollary 2.5. If C is left exact one has an equivalence (1) 

(1) ToPS (~. ,C-~) --4 Stexs I (f* (C) ,SH (~'» 0 

This follows immediately from (2.4),(1.4) and the universal pro-

perty of the inverse image f*(C) of C This gives the universal 

property of C-S in the bicategory of §.-topos. 

Corollary 2.6. Let C' f*(C} One has a commutative square of 

morphisms of topos 

C-S ( 
C-f C f ~wS 1 

(1) 1 1~ 

~ 5' 
f 

which is bicartesian. 

(1) Stexs ( , stands for "category of left exact morphisms of 

stacks" . 
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This means that for any morphism of topos g:§."~ §.' the 

functor given by composition with C-f 

(2) TOp, (S"/C'-S') ~ TOp (S"/C-S) 
~ - - ~--

is an equivalence. By the very definition of C' [4] p.87, one has 

a commutative square 

_.!..~-...:l=--~) C I 

(3) 

S ___ f_._~} S I 

where ~-l is cartesian. Furthermore $-1 is left exact by (1.3). 

By (1.4) and the univsal property of C' = f.(C) for any 

g: §." --'J- S I , the functor 

(4) Stexs I (C I ,g ... SH (~"» ---+ Stexs (C,f.g.SH (§."», u --l> u~ -1 , is 

an equivalence. By (2.4) the proof is now an exercise about 

universal properties in bicategories. 

§3. Generating stack of a £-topos. 

The question of defining a relative notion of generators has been 

raised by Lawvere and Tierney. We propose here an answer in the 

language of £-topos. It is clear that Prop. (3.3) is still valid when 

working in their framework and that (3.2) is not. 

Definition 3.1. Let f:!~ ~ be a morphism of £-topos. A 

generating stack of f is a full subs tack C of F = f.(Ar(!)} which 

is small (2.1) and such that, for any s£I~1 and any xEIFSI 

there exists a covering family (Si ~ S) 

(c. ~x.) 

I iEI I in S and for 

each i€I a covering family 
~,J ~ 

in the fiber 

with c .. £Ic! , where x~ is the inverse image of x by S~~ S 
~,J ~ • 

A generating stack C is said to be left exact if C and the 
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inclusion functor i:C ~ F are left exact. 

Let us recall that the category of arrows of X provided with 

the codomain functor Ar(!)~! is a stack. Hence its direct 

image F is a stack whose fiber at s£I~1 is the topos !!f*(S) and 

the inverse image functor Fu:FS~FS' associated to a map u:S'----"S 

in S is nothing but pull-back along f* (u) :f* (S') ~ f* (S) 

Hence F is a left exact stack and the condition that a full subs tack 

C of F is left exact is that each fiber Cs is stable by finite 

limits in the fiber FS 

Proposition 3.2. Any ~-topos admits a left exact generating stack. 

Let us choose a generator (Si)/i£I£~1 of S and for each i£1 

a full subcategory C. of FS. stable by finite limits I generating 
1. 

1. 

FS. and equivalent to a category which belongs to U Let us 
1. 

define C as the full subcategory of F whose objects of projection 

s£I~1 are those xEIFsl such that there exists a covering family 

I such that each Sa is one of the S. 
1. 

and the 

inverse image of x by c a is isomorphic to an object of Ci • This 

condition being local on S it is clear that C is a full sub-

stack of F and even a left exact one since F is left exact. 

Furthermore C is small since for each s£I~1 the set of classes of 

equivalent covering families (Sa ----t S) as above belongs to U 

Eventually C is a generating stack since any SEI~I can be covered 

by the s. 
1. 

Proposition 3.3. Let ~ be a ~-topos and C a generating stack of 

an ,§.-topos f:! ~ ~ Then C-S is an ~-topos and there exists 

an ~-morphism of topos n: X --4 C-S such that n*:! ----'l' C-~ is full 

and faithful [in other words X is a subtopos of C-~l 
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3.3.1. We note first that since C is small, c-s is a ~-topos 

Furthermore there exists a left exact generating stack C' of X 

containing C and such that each object of C' is a finite limit 

of objects of C Hence the inclusion C ~C' induces an equi-

valence between the ~-topos C-S and C'-S and this fact allows 

us to assume that C is left exact. Since the inclusion i:C~ F, 

F = f",Ar(~) , is left exact one has an ~-morphism n:~ ~ C-~ 

(2.4) , whose inverse image functor n"':C-~ ~ ~ is such that its 

composition with the Yoneda functor €:c --? C-S is equal to the 

composite of 

(1) (2.4 (2» • 

For any CE I c I and any Xe: I ~I one has n", (X) (c) = Hom (e: (c) In", (X» = 

Hom(n"'e:(c),X) = Hom(dqi(c},X} = Homs(i(c),Xxf"'(S» where the last 

set of morphisms is taken in the fiber Vf'" (S) of F with S = p (c) , 

and the last equality sign is justified by the definition of F as a 

fibered product. Hence the formula 

(2) n",:~ ---t C-S , n", (X) (c) = Horns (i (c) ,xxf'" (S)) , S p(c) . 

3.3.2. To prove that n", is full and faithful we will first compose 

it with the inverse a:C-S·~ BC(§) of (2.3(l)} 

(3) an*:~ ~BC(~) • an*(X) (c) = ~(i(c) ,xxf*(S» , S = pic) , 

ce:lcJ 

the above formula being justified by (2.3(2» , where Homs(u,v) 

stands for the sheaf (over S of S-morphisms between the objects 

u and v of the fiber at S of the stack F Let us prove that 

(3) is the effect on the fibers at the terminal object of S of a 

morphism of stacks 
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(4) m:F~ ST(eV,SH(~» 

where ST(A,B) stands for the (split) stack of morphisms of stacks 

between A and B [internal Hom in the bicategory of stacks [4] p.57, 

771 , whose fiber at Sf: I ~I is the category of morphisms A/S ~ B/S 

of stacks over £IS We obtain (4) by composition of 

(5) F 
y ST (eV ,SH (~» 

where j is induced by composition with i:C ~ F and where y is 

a "relative Yoneda functor" defined by 

(6) yea) (b) f Homs(b,a ) 

where f: T ~ S is a map in Sand aE I F S I One should 

note that the restriction of y to the terminal fiber of F is also 

the restriction of the composite F~ F-~~BF(~) , (2.1(3», 

(2.3(2». By localisation it follows that the restriciton of y 

to each fiber is full and faithful hence y is such. On the other 

hand, since any object of F can be covered for the canonical 

topology of F by objects of i(C) and since i is full and faithful 

it is easy to show that j is also full and faithful and the 

conclusion follows. 

Proposition 3.4. Fibered products exist in the bicategory of ~-topos. 

According to (3.2) and (3.3) any morphism of ~-topos X ~ S 

can be factored in ~ ~ C-~ ~ ~ where n* is full and 

faithful and where C is a left exact small stack over S By 

(2.6) the pullback of ~ along any morphism of ~-topos f:~'---7~ 

exists. On the other hand the pull-back of n along any morphism 

of ~-topos y:! ~ C-~ exists because X is a subtopos of C-S 

hence is defined by some topology J on C-S and it suffices to 

take as a pullback the subtopos of Y defined by the finest topology 
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J' on Y such that the inverse image functor y*:C-~~! is 

continuous. The conclusion follows by transitivity of pullback in a 

bicategory. 
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