CLASSIFYING TOPOS

by

Jean Giraud

The basic facts about the classifying topos of a stack of groupoids were first stated in [3] and are exposed in detail in [4] Ch. VIII. This construction is useful in cohomology theory and has been introduced independently by D. Mumford to study the moduli of elliptic curves [7]. Algebraic stacks of groupoids are used in algebraic geometry cf. [1]. Here a simpler and more general approach allows us to treat the case of a stack whose fibers are not supposed to be groupoids. As a by-product we get the existence of fibered products in the bicategory of topos. This result was first announced by M. Hakim several years ago but was never published. I suspect that any written proof would have to deal with rather subtle technical difficulties about finite limits which are overcome here by the results of §1.

If <u>S</u> is a site we use the work <u>stack</u> for the french champ [4] and prestack for prechamp (a prestack is merely a fibered category over the underlying category of the site) and <u>split stack</u> for champ scindé. Up to equivalence a split stack can be viewed as a sheaf of categories over <u>S</u> (or a category-object of the corresponding topos) satisfying some extra condition namely the patching of objects. As usual we choose and fix a universe <u>U</u> . For clarity it should be recalled that a <u>U</u>-topos is a special case of <u>U</u>-site [5] and that any category can be viewed as a site such that any presheaf is a sheaf and any prestack is a stack.

§1. Left exact stacks.

A category is left exact if it admits finite limits. A functor f:A \longrightarrow B between left exact categories A and B is left exact if it preserves finite limits. A site is said to be left exact if the underlying category is so. A stack C over a site \underline{S} is said to be left exact if its fibers are left exact and if for any map $f: \mathbb{T} \rightarrow S$ in \underline{S} the inverse image functor induced by f between the fibers of C is left exact.

<u>Lemma 1.1</u>. A stack C over a left exact site <u>S</u> is left exact if and only if the underlying category and the structural functor $p:C \rightarrow \underline{S}$ are left exact.

The proof rests on the fact that a commutative square of C whose projection is cartesian in \underline{S} is cartesian as soon as two opposite sides are \underline{S} -cartesian.

<u>Lemma 1.2</u>. A morphism $m:A \rightarrow B$ between two left exact stacks is left exact if and only if for any $S\epsilon |\underline{S}|^{(1)}$ the functor $m_{\underline{S}}:A_{\underline{S}} \rightarrow B_{\underline{S}}$ induced by m between the fibers at S is left exact.

<u>Proposition 1.3</u>. Let $f:\underline{S}' \longrightarrow \underline{S}$ be a morphism between two sites (e.g. two topos). Then the direct image (resp. inverse image) of a left exact stack and of a left exact morphism of stacks over \underline{S}' (resp. S) is left exact.

1.3.1. The direct image of a stack being nothing but pull-back along the underlying functor $f^*:\underline{S} \longrightarrow \underline{S}'$ of f, preserves the fibers, hence the left exactness. To treat the case of the inverse image by f of a stack over \underline{S} we will use the following caracterisation of left-exactness.

1.3.2. First let I be a finite category. For any stack F over <u>S</u> let F^{I} be the prestack whose fiber at $S\epsilon |\underline{S}|$ is the category of functors from I to the fiber F_{S} . One checks easily that this is a stack provided with a morphism of stacks (constant diagrams)

(1) The set of objects of a category C is denoted by |C| .

(1) $cF:F \longrightarrow F^{I}$

Furthermore F is left exact if and only if for any finite category I CF admits a right adjoint in the bicategory of stacks. The if part is obvious since such an adjoint λ induces an adjoint to each functor cF_S , $S\epsilon|\underline{S}|$, induced by cF on the fibers at S and since λ is cartesian. The only if part is no more difficult than (1.2). Since the property of having a right adjoint is preserved by morphisms of bicategories and since the inverse image of stacks is such a morphism [4] p.88, it remains to show the following.

Lemma 1.3.3. One has a natural equivalence $e:f^*(F^I) \longrightarrow f^*(F)^I$ such that $e.f^*(cF) = cf^*(F)$.

According to [4] p.88, the inverse image of a stack F is given by the formula

(1)
$$f^*(F) = Af^{-1}(LF)$$

where LF is the free split stack associated to F [4] p.39, where f^{-1} denotes the inverse image of LF as a category-object of the topos \underline{S} and where A stands for "associated stack". Since there is a natural equivalence $F \longrightarrow LF$ and L is a morphism of bicategories we get a natural equivalence of split stacks $L(F^{I}) \longrightarrow (LF)^{I}$. Since the functor "inverse image of sheaves of sets" is left exact one gets a natural isomorphism $f^{-1}((LF)^{I}) \xrightarrow{\sim} (f^{-1}(LF))^{I}$ and it remains to find, for any prestack G over \underline{S}' a natural equivalence $A(G^{I}) \longrightarrow (AG)^{I}$. One has a commutative square

$$\begin{array}{ccc} G & \xrightarrow{a} & AG \\ CG & \downarrow & & \downarrow CAG \\ G^{I} & \xrightarrow{a^{I}} & (AG)^{I} \end{array}$$

where a is the structural map of AG . According to [4] p.77 it suffices to show that a^{I} is "bicouvrant" [4] p.72, which is an easy consequence of the fact that a has this property. Q.E.D. .

<u>Corollary 1.4</u>. Let F and F' be left exact stacks on <u>S</u> and <u>S'</u>, $m:F \longrightarrow f_*(F')$ be a morphism of stacks and $m':f^*(F) \longrightarrow F'$ the morphism associated to m by the universal property of the inverse image. Then m is left exact if and only if m' is .

This is a formal consequence of (1.3) .

§2.. Classifying topos of a stack.

<u>Proposition 2.1</u>. Let <u>S</u> be a left exact <u>U</u>-site and <u>C</u> a prestack over <u>S</u> whose fibers are equivalent to categories which belong to <u>U</u> (<u>C</u> is said to be <u>small</u>). Let us denote by <u>J</u> the coarsest topology on <u>C</u> such that the projection $p:C \longrightarrow \underline{S}$ is a comorphism [5] III 3.1 , and by <u>C-S</u> the category of sheaves on <u>C</u> for <u>J</u> with values in <u>U</u>.

(1) J is defined by the pretopology whose covering families are those $(m_i:c_i \longrightarrow c), i \in I \in \underline{U}$, such that each m_i is <u>S</u>-cartesian and such that $p(m_i), i \in I$, is a covering family.

(2) $C-\underline{S}$ is a <u>U</u>-topos and the morphism $\pi:C-\underline{S} \longrightarrow \underline{S}$ defined by p is essential [i.e. π^* has a left adjoint π_1]. If C is left exact then π_1 , is left exact.

(3) If <u>S</u> is a <u>U</u>-topos and <u>C</u> is a stack, then the Yoneda functor $\varepsilon: C \longrightarrow C-\underline{S}$ is full and faithful and the composite $C \xrightarrow{\varepsilon} C-\underline{S} \xrightarrow{\pi_1} \underline{S}$ is equal to p.

<u>Proof.</u>(1) is an easy consequence of the definition of a comorphism and of the observation made in the proof of (1.1). Let $S_a, acAc\underline{U}$, be a family of generators of \underline{S} and \underline{G}_a, acA , be a subset of $|C_{\underline{S}_a}|$ which both belongs to \underline{U} and contains an element of each isomorphism class of objects of the fiber $C_{\underline{S}_a}$. The union of the \underline{G}_a is a generator of the site (C,J), hence this one is a \underline{U} -site and $\underline{C}-\underline{S}$ is a \underline{U} -topos. Using (1) one sees easily that for

any sheaf F on <u>S</u>, Fp is a sheaf on C hence $\pi^*(F) = Fp$, hence π^* has a left adjoint hence π is essential. The last assertion of (2) follows from the fact that when C is left exact, p is the underlying functor of a morphism of sites <u>S</u> \longrightarrow C. The first assertion of (3) follows readily from (1) and the patching condition for morphisms in C. For any $S\varepsilon |\underline{S}|$, and any $c\varepsilon |C_{\underline{S}}|$ one has

 $\operatorname{Hom}(\pi, \varepsilon(c), S) = \operatorname{Hom}(\varepsilon(c), \pi^{*}(S)) = \pi^{*}(S)(c) = \operatorname{Hom}(p(c), S)$

by adjunction, Yoneda and the formula $\ \pi^{*}F$ = Fp , and this concludes the proof.

2.2. Under the assumptions of (2.1) , C-S is called the <u>classify-ing topos of the</u> (pre)<u>stack</u> C . Note that a morphism of stacks $m:C \longrightarrow C'$ is a comorphism of sites and induces a morphism of topos $m-S:C-S \longrightarrow C'-S$. If m is an equivalence, then so is m-S . If C is a split stack one can define a split stack C^V whose fibers are the opposites of the fibers of C . Note that the underlying category of C^V is not the opposite C^O of C . Let us consider the category

(1)
$$B_C(\underline{S}) = St_S(C^V, SH(\underline{S}))$$

of morphisms of stacks $F: \mathbb{C}^V \longrightarrow SH(\underline{S})$, where $SH(\underline{S})$ is the split stack whose fiber at $S\varepsilon |\underline{S}|$ is the category of sheaves on \underline{S}/S [equivalent to \underline{S}/S since \underline{S} is a topos]. One has a natural functor

(2)
$$\tau^*: \underline{S} \longrightarrow B_{C}(\underline{S})$$
 , $\tau^*(S)(c) = \varepsilon(S \times p(c))$

where ϵ is the Yoneda functor of S/S .

<u>Proposition 2.3.</u> If <u>S</u> is a <u>U</u>-topos and C a split stack one has an equivalence of categories

(1) $b: B_{C}(\underline{S}) \longrightarrow C-\underline{S}$, b(F)(c) = F(c)(p(c))

and an isomorphism of functors $b.\tau^* \xrightarrow{\sim} \pi^*$.

2.3.1. Note that this proposition proves that $B_C(\underline{S})$ is a \underline{U} -topos equivalent to $C-\underline{S}$ even when C is not split since one can replace C by an equivalent split stack. Furthermore, by the universal property of the associated stack, $B_C(\underline{S})$ is equivalent to $B_C, (\underline{S})$ when C is the stack associated to some prestack C'. Furthermore, Lawvere and Tierney have introduced for any categoryobject E of the topos \underline{S} , the topos of objects of \underline{S} provided with operations of E. One can prove that this topos is equivalent to $B_C(\underline{S})$ where C is the split prestack defined by E hence also equivalent to C'- \underline{S} , where C' is the stack generated by C. Thus we have three constructions of the classifying topos.

2.3.2. For any split stack D , any map $f:T \longrightarrow S$ in <u>S</u> and any $sc|D_S|$ we denote by s^f the inverse image of s by f and by $s_f:s^f \longrightarrow s$ the cartesian map given by the splitting. To define b completely one must define for any $m:c \longrightarrow c'$ in C an application $b(F)(m):b(F)(c') \longrightarrow b(F)(c)$. Let f = p(m), $f:S' \longrightarrow S$. Since C is split there is a canonical factorisation $c' \xrightarrow{m'} c^f \xrightarrow{Cf} c$. Since F is cartesian one has a canonical isomorphism $i:F(c^f) \rightarrow F(c)^f$ which for the values at S' (or rather $id_{S'}$) of these sheaves induces a bijection $j:F(c^f)(S') \longrightarrow F(c)(f)$ and we take for b(F)(m)

 $F(c)(S) \xrightarrow{f(c)(f)} F(c)(f) \xrightarrow{j^{-1}} F(c^{f})(S') \xrightarrow{f(m')(S')} F(c')(S') ,$

where $\dot{f}:f\longrightarrow id_S$ is the terminal map in S/S. It is easily checked that b(F) is a functor, recalling that the underlying category of C^V is not the underlying category of C^O. The sheaf axiom for b(F) is verified by using (2.1(1)): for a given family $(c_1 \rightarrow c)$ it is a consequence of the fact that F(c) is a sheaf and F a cartesian functor. The functoriality with respect to F is obvious. To prove that b is an equivalence one constructs explicitly a functor

(2)
$$a:C-\underline{S} \longrightarrow B_{c}(\underline{S})$$
 , $a(G)(c)(f) = G(c^{I})$

where $c\epsilon |F|$ and $f:T \longrightarrow p(c)$ is a map in <u>S</u>.

<u>Proposition 2.4</u>. Let $f:\underline{S}' \longrightarrow \underline{S}$ be a morphism of \underline{U} -topos and let C be a left exact stack over \underline{S} . One has an equivalence of categories

(1) $\operatorname{Top}_{\underline{S}}(\underline{S}^{\,\prime}, \mathbb{C} - \underline{S}) \longrightarrow \operatorname{Stex}_{\underline{S}}(\mathbb{C}, f_*SH(\underline{S}^{\,\prime}))^{O}$, where the domain is the category of morphisms of \underline{S} -topos $n: \underline{S}^{\,\prime} \longrightarrow \mathbb{C} - \underline{S}$, where $f_*SH(\underline{S}^{\,\prime})$ is the direct image by f of the stack of sheaves over $\underline{S}^{\,\prime}[$ its fiber at $S\varepsilon |\underline{S}|$ is the category of sheaves over $\underline{S}^{\,\prime}/f^*(S)$] and where the codomain is the opposite of the category of left exact morphisms of stacks $\mathbb{C} \longrightarrow f_*SH(\underline{S}^{\,\prime})$.

Since C is left exact and $\varepsilon: C \longrightarrow C-\underline{S}$ full and faithful, a morphism of topos $n: \underline{S}' \longrightarrow C-\underline{S}$ is nothing but a left exact functor $n^{-1}: C \longrightarrow \underline{S}'$, $n^{-1}=n^*\varepsilon$. Furthermore, since C is left exact there exists a cartesian section p^{-1} of C whose value at $S\varepsilon|\underline{S}|$ is the terminal object of the fiber $C_{\underline{S}}$ and p^{-1} is a morphism of sites defining $\pi: C-\underline{S} \longrightarrow \underline{S}$ since $\pi^*F = Fp$ for any sheaf F on \underline{S} . Hence an isomorphism of morphisms of topos $i:\pi n \xrightarrow{\sim} f$ is nothing but an isomorphism $i^{-1}:n^{-1}p^{-1} \xrightarrow{\sim} f^*$. In other words the category $\operatorname{Top}_{\underline{S}}(\underline{S}', C-\underline{S})^{\circ}$ is equivalent to the category M of pairs $(n^{-1}:C \longrightarrow \underline{S}', i^{-1}:n^{-1}p^{-1} \xrightarrow{\sim} f)$ where n^{-1} is continuous and left exact. Let $\operatorname{Ar}(\underline{S}') \longrightarrow \underline{S}'$, $b(X \longrightarrow Y) = Y$. Since every object $c\varepsilon|C|$ determines a terminal map $c \longrightarrow p^{-1}(p(c))$, a pair (n^{-1}, i^{-1}) can be viewed as a functor $n':C \longrightarrow \operatorname{Ar}(\underline{S}')$ such that bn' = f*p and which is left exact [the continuity condition disappears by (2.1 (1))]. Since b makes a stack over <u>S</u>' out of the category $Ar(\underline{S}')$, by the very definition of the direct image of a stack, n' is nothing but a functor $n": C \longrightarrow f_*Ar(\underline{S}')$ and, since n' is left exact, n" is <u>S</u>-cartesian and left exact, hence an object of $Stex_{\underline{S}}(C,Ar(\underline{S}'))$. The conclusion follows since $Ar(\underline{S}')$ is equivalent to $SH(\underline{S}')$.

According to the proof, the morphism of topos $n:\underline{S}^{*} \longrightarrow C-\underline{S}$ which corresponds to a left exact morphism of stacks $n^{*}:C \longrightarrow f_{*}Ar(\underline{S}^{*})$ is characterized up to unique isomorphism by the equality $n^{*}\varepsilon = dqn^{*}$

(2) $C \xrightarrow{n''} f_*Ar(\underline{S}') \xrightarrow{q} Ar(\underline{S}') \xrightarrow{d} \underline{S}'$,

where q is the first projection of $f_*Ar(\underline{S'}) = Ar(\underline{S'}) \times \underline{S'}, \underline{S}$, d the "domain functor" and ε the Yoneda functor.

<u>Corollary 2.5</u>. If C is left exact one has an equivalence (1)

(1)
$$\operatorname{Top}_{S}(\underline{S}', C-\underline{S}) \longrightarrow \operatorname{Stex}_{S}(f^{*}(C), SH(\underline{S}'))^{O}$$

This follows immediately from (2.4), (1.4) and the universal property of the inverse image $f^*(C)$ of C. This gives the <u>universal</u> property of C-<u>S</u> in the bicategory of <u>S</u>-topos.

<u>Corollary 2.6</u>. Let $C' = f^*(C)$. One has a commutative square of morphisms of topos

(1)

$$\begin{array}{ccc} c - \underline{s} & \underbrace{c' - \underline{s}}_{f} & c' - \underline{s} \\ \downarrow & \downarrow \\ \underline{s} & \underbrace{c' - \underline{s}}_{f} & \underline{s}' \end{array}$$

which is bicartesian.

Stex<u>s</u>(,) stands for "category of left exact morphisms of stacks".

This means that for any morphism of topos $g:\underline{S}^n \longrightarrow \underline{S}'$ the functor given by composition with C-f

(2)
$$\operatorname{Top}_{\underline{S}}(\underline{S}^{"}, C' - \underline{S}') \longrightarrow \operatorname{Top}_{\underline{S}}(\underline{S}^{"}, C - \underline{S})$$

is an equivalence. By the very definition of C' [4] p.87, one has a commutative square

(3)
$$\begin{array}{c} c & \xrightarrow{\varphi-1} & c' \\ p & & \downarrow p' \\ \underline{s} & \underbrace{f^*} & \underline{s}' \end{array}$$

where ϕ^{-1} is cartesian. Furthermore ϕ^{-1} is left exact by (1.3). By (1.4) and the univsal property of C' = f*(C) , for any $g:\underline{S}^{"}\longrightarrow \underline{S}'$, the functor

(4)
$$\operatorname{Stex}_{S}, (C', g_*SH(\underline{S}^{"})) \longrightarrow \operatorname{Stex}_{S}(C, f_*g_*SH(\underline{S}^{"})), u \longrightarrow u\phi^{-1}$$
, is
an equivalence. By (2.4) the proof is now an exercise about

universal properties in bicategories.

§3. Generating stack of a U-topos.

The question of defining a relative notion of generators has been raised by Lawvere and Tierney. We propose here an answer in the language of <u>U</u>-topos. It is clear that Prop. (3.3) is still valid when working in their framework and that (3.2) is not.

<u>Definition 3.1</u>. Let $f:X \longrightarrow \underline{S}$ be a morphism of \underline{U} -topos. A generating stack of f is a full substack C of $F = f_*(Ar(\underline{X}))$ which is small (2.1) and such that, for any $S\varepsilon |\underline{S}|$ and any $x\varepsilon |F_S|$, there exists a covering family $(S_i \longrightarrow S)$, $i\varepsilon I$, in \underline{S} and for each $i\varepsilon I$ a covering family $(c_{i,\overline{j}} \longrightarrow X_i)$ in the fiber $F_S = \underline{X}/f^*(S)$, with $c_{i,\overline{j}}\varepsilon |C|$, where x_i is the inverse image of x by $S_i \longrightarrow S$. A generating stack C is said to be left exact if C and the inclusion functor $i: C \longrightarrow F$ are left exact.

Let us recall that the category of arrows of \underline{X} provided with the codomain functor $\operatorname{Ar}(\underline{X}) \longrightarrow \underline{X}$ is a stack. Hence its direct image F is a stack whose fiber at $\operatorname{Se}|\underline{S}|$ is the topos $\underline{X}/f^*(S)$ and the inverse image functor $\operatorname{F}_u:\operatorname{F}_S \longrightarrow \operatorname{F}_S'$ associated to a map $u:S' \longrightarrow S$ in \underline{S} is nothing but pull-back along $f^*(u):f^*(S') \longrightarrow f^*(S)$. Hence F is a left exact stack and the condition that a full substack C of F is left exact is that each fiber C_S is stable by finite limits in the fiber F_S .

Proposition 3.2. Any S-topos admits a left exact generating stack.

Let us choose a generator (S_i) , $i \in I \in \underline{U}$, of \underline{S} and for each $i \in I$ a full subcategory C_i of F_{S_i} stable by finite limits, generating F_{S_i} and equivalent to a category which belongs to \underline{U} . Let us define C as the full subcategory of F whose objects of projection $S \in |\underline{S}|$ are those $x \in |F_S|$ such that there exists a covering family $(c_a: S_a \longrightarrow S)$, such that each S_a is one of the S_i and the inverse image of x by c_a is isomorphic to an object of C_i . This condition being local on \underline{S} , it is clear that C is a full substack of F and even a left exact one since F is left exact. Furthermore C is small since for each $S \in |\underline{S}|$ the set of classes of equivalent covering families $(S_a \longrightarrow S)$ as above belongs to \underline{U} . Eventually C is a generating stack since any $S \in |\underline{S}|$ can be covered by the S_i .

<u>Proposition 3.3</u>. Let \underline{S} be a \underline{U} -topos and C a generating stack of an \underline{S} -topos $f:\underline{X} \longrightarrow \underline{S}$. Then $C-\underline{S}$ is an \underline{S} -topos and there exists an \underline{S} -morphism of topos $n:\underline{X} \longrightarrow C-\underline{S}$ such that $n_{\star}:\underline{X} \longrightarrow C-\underline{S}$ is full and faithful [in other words \underline{X} is a subtopos of $C-\underline{S}$].

3.3.1. We note first that since C is small, C-S is a U-topos. Furthermore there exists a left exact generating stack C' of X containing C and such that each object of C' is a finite limit of objects of C. Hence the inclusion $C \longrightarrow C'$ induces an equivalence between the S-topos C-S and C'-S and this fact allows us to assume that C is left exact. Since the inclusion $i:C \longrightarrow F$, $F = f_*Ar(X)$, is left exact one has an S-morphism $n:X \longrightarrow C-S$, (2.4), whose inverse image functor $n^*:C-S \longrightarrow X$ is such that its composition with the Yoneda functor $\varepsilon:C \longrightarrow C-S$ is equal to the composite of

(1)
$$C \xrightarrow{i} F \xrightarrow{q} Ar(X) \xrightarrow{d} X$$
 , (2.4(2))

For any $c_{\varepsilon}|C|$ and any $X_{\varepsilon}|\underline{X}|$ one has $n_{\star}(X)(c) = Hom(\varepsilon(c), n_{\star}(X)) =$ Hom($n^{\star}\varepsilon(c), X$) = Hom(dqi(c), X) = Hom_S(i(c), X×f*(S)) where the last set of morphisms is taken in the fiber $\underline{X}/f^{\star}(S)$ of F with S = p(c), and the last equality sign is justified by the definition of F as a fibered product. Hence the formula

(2)
$$n_*: \underline{X} \longrightarrow C-\underline{S}$$
 , $n_*(X)(c) = Hom_S(i(c), X \times f^*(S))$, $S = p(c)$.

3.3.2. To prove that n_* is full and faithful we will first compose it with the inverse $a:C-\underline{S} \longrightarrow B_C(\underline{S})$ of (2.3(1))

(3)
$$\operatorname{an}_{\star}: \underline{X} \longrightarrow \operatorname{B}_{C}(\underline{S})$$
, $\operatorname{an}_{\star}(X)(c) = \operatorname{Hom}_{S}(i(c), X \times f^{\star}(S))$, $S = p(c)$,
 $c \in |C|$,

the above formula being justified by (2.3(2)), where $\underline{Hom}_{S}(u,v)$ stands for the sheaf (over S) of S-morphisms between the objects u and v of the fiber at S of the stack F. Let us prove that (3) is the effect on the fibers at the terminal object of <u>S</u> of a morphism of stacks (4) $m: F \longrightarrow ST(C^V, SH(\underline{S}))$

where ST(A,B) stands for the (split) <u>stack</u> of morphisms of stacks between A and B [internal Hom in the bicategory of stacks [4] p.57, 77], whose fiber at $S\varepsilon |\underline{S}|$ is the category of morphisms A/S \longrightarrow B/S of stacks over S/S. We obtain (4) by composition of

(5)
$$F \xrightarrow{Y} ST(F^V, SH(\underline{S})) \xrightarrow{j} ST(C^V, SH(\underline{S}))$$

where j is induced by composition with i:C \longrightarrow F and where y is a "relative Yoneda functor" defined by

(6)
$$y(a)(b) = Hom_{c}(b, a^{I})$$

where $f:T \longrightarrow S$ is a map in \underline{S} and $a\varepsilon |F_S|$, $b\varepsilon |F_T|$. One should note that the restriction of y to the terminal fiber of F is also the restriction of the composite $F \xrightarrow{\varepsilon} F - \underline{S} \xrightarrow{a} B_F(\underline{S})$, (2.1(3)), (2.3(2)). By localisation it follows that the restriction of y to each fiber is full and faithful hence y is such. On the other hand, since any object of F can be covered for the canonical topology of F by objects of i(C) and since i is full and faithful it is easy to show that j is also full and faithful and the conclusion follows.

Proposition 3.4. Fibered products exist in the bicategory of U-topos.

According to (3.2) and (3.3) any morphism of U-topos $\underline{X} \longrightarrow \underline{S}$ can be factored in $\underline{X} \xrightarrow{n} C-\underline{S} \xrightarrow{\pi} \underline{S}$ where n_{\star} is full and faithful and where C is a left exact small stack over \underline{S} . By (2.6) the pullback of π along any morphism of U-topos $f:\underline{S}' \longrightarrow \underline{S}$ exists. On the other hand the pull-back of n along any morphism of U-topos $y:\underline{Y} \longrightarrow C-\underline{S}$ exists because \underline{X} is a subtopos of $C-\underline{S}$ hence is defined by some topology J on $C-\underline{S}$ and it suffices to take as a pullback the subtopos of \underline{Y} defined by the finest topology

J' on \underline{Y} such that the inverse image functor $y^*:C-\underline{S} \longrightarrow \underline{Y}$ is continuous. The conclusion follows by transitivity of pullback in a bicategory.

Bibliography

- P. DELIGNE and D. MUMFORD, The irreducibility of the space of curves of given genus, Publications mathématiques de l'I.H.E.S., No. 36,1969, p. 75-110.
- [2] J. GIRAUD, Méthode de la descente, Mémoire de la Société Mathématique de France, 1964.
- [3] _____, Effacement d'une classe de cohomologie de degré 2, C.R. Ac. Sc. 265, 229-231, (1967).
- [4] _____, Cohomologie non abélienne, Springer, 1971.
- [5] A. GROTHENDIECK, Séminaire de Géométrie Algébrique de l'I.H.E.S., Cohomologie étale des schémas, 1964.
- [6] F.W. LAWVERE, Quantifiers and sheaves, Congrès International des Mathématiciens, Nice 1970.
- [7] D. MUMFORD, Picard group of moduli problems, Proc. Conf. on Arith. Alg. Geom. at Purdue, 1963.