CLASSIFYING TOPOS

by
Jean Giraud

The basic facts about the classifying topos of a stack of
groupoids were first stated in [3] and are exposed in detail in [4]
Ch. VIII. This construction is useful in cchomology theory and has
been introduced independently by D. Mumford to study the moduli of
elliptic curves [7]. Algebraic stacks of groupoids are used in
algebraic geometry cf. [1]. Here a simpler and more general approach
allows us to treat the case of a stack whose fibers are not supposed
to be groupoids. As a by-product we get the existence of fibered
products in the bicategory of topos. This result was first announced
by M. Hakim several years ago but was never published. I suspect that
any written proof would have to deal with rather subtle technical
difficulties about finite limits which are overcome here by the
results of §1 .

If § is a site we use the work stack for the french champ [4]
and prestack for prechamp (a prestack is merely a fibered category
over the underlying category of the site) and gplit stack for champ
scindé. Up to eguivalence a split stack can be viewed as a sheaf of
categories over S (or a category-object of the corresponding topos)
satisfying some extra condition namely the patching of objects. As
usual we choose and fix a universe U . For clarity it should be
recalled that a U-topos is a special case of U-site [5] and that any
category can be viewed as a site such that any presheaf is a sheaf and

any prestack is a stack.

§1. Left exact stacks.

A category is left exact if it admits finite limits. A functor
f:A—>B between left exact categories A and B is left exact if

it preserves finite limits. A site is gaid to be left exact if the
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underlying category is so. A stack C over a site S is said to be
left exact if its fibers are left exact and if for any map £:7T— 8
in § the inverse image functor induced by f between the fibers

of C 1is left exact.

Lemma 1.1. A stack C over a left exact site § is left exact if
and only if the underlying category and the structural functor p:C->$§8
are left exact.

The proof rests on the fact that a commutative square of C whose
projection is cartesian in § is cartesian as soon as two opposite

sides are S-cartesian.

Lemma 1.2. A morphism m:A-+ B between two left exact stacks is left
'(l)

the functor m :A.,— B

exact if and only if for any Se|S g iRy S

induced by m between the fibers at S 1is left exact.

Proposition 1.3. Let £:8' —* S be a morphism between two sites

(e.g. two topos) . Then the direct image (resp. inverse image) of a
left exact stack and of a left exact morphism of stacks over S'

(resp. S) is left exact.

1.3.1. The direct image of a stack being nothing but pull-back along
the underlying functor f£*:8 — 8' of f , preserves the fibers,
hence the left exactness. To treat the case of the inverse image by
f of a stack over § we will use the following caracterisation of

left-exactness.

1.3.2. First let I be a finite category. For any stack F over
S 1let F! be the prestack whose fiber at Sec|S| is the category

of functors from I to the fiber F One checks easily that this

g
is a stack provided with a morphism of stacks (constant diagrams)

(1) The set of objects of a category C is denoted by |C|
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(1) CF:F —ep F

Furthermore F is left exact if and only if for any finite category I

¢F admits a right adjoint in the bicategory of stacks. The if part

is obvious since such an adjoint A induces an adjoint to each
functor cFg , se|8] , induced by cF on the fibers at S and since
A is cartesian. The only if part is no more difficult than (1.2).
Since the property of having a right adjoint is preserved by morphisms
of bicategories and since the inverse image of stacks is such a

morphism [4] p.88, it remains to show the following.

Lemma 1.3.3. One has a natural equivalence e:f*(FI)——-\;f*(F)I such
that e.f*(cF) = cf*(F) .
According to [4] p.88, the inverse image of a stack F is given

by the formula

n £ (F) = af L (LF)

where LF is the free split stack associated to F [4] p.39, where
f-1 denotes the inverse image of LF as a category-object of the
topos E and where A stands for "associated stack". Since there

is a natural equivalence F —LF and L is a morphism of bicategor-
ies we get a natural equivalence of split stacks L(FI) ————)(LF)I .
Since the functor "inverse image of sheaves of sets" is left exact
one gets a natural isomorphism £ Y((LF)T) 22y (£°1(LF))T and

it remains to find, for any prestack G over §' a natural equiva-

lence A(GI}———% (AG)I . One has a commutative square

a

G ~———> AG
cG l l.cAG
1 I
G "‘"—f—?' (AG)
a
where a is the structural map of AG . According to [4] p.77 it
suffices to show that aI is "bicouvrant® {4] p.72 , which is an

easy consequence of the fact that a has this property. Q.E.D. .
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Corocllary 1.4. Let F and F' be left exact stacks on § and

§' , mF — f,{(F') be a morphism of stacks and m':f*{(F) —> F'
the morphism associated to m by the universal property of the inverse
image. Then m is left exact if and only if m' is .

This is a formal consequence of (1.3)

§2.. Classifying topos of a stack.

Proposition 2.1. Let S be a left exact U-site and C a prestack

over S whose fibers are equivalent to categories which belong to
U (C is said to be gmall) . Let us denote by J the coarsest
topclogy on C such that the projection p:C —> S is a comorphism
[5] III 3.1 , and by C~-8 the category of sheaves on C for J
with values in U .

(1) J is defined by the pretopology whose covering families
are those (mi:ci-~é ¢),ieIeU , such that each m; is S-cartesian

and such that p(mi),ieI ,is a covering family.

(2) C-s is a U-topos and the morphism m:C-§ —— § defined by
p is essential [i.e. n* has a left adjoint ﬂ!] . If C is left
exact then ™ is left exact.

(3) If § is a U-topos and C is a stack, then the Yoneda
functor €:C —+ C-5 is full and faithful and the composite

[ 7y
C + C-S - *»S is eqgual to p .

Proof.(l) is an easy consequence of the definition of a comor-
phism and of the observation made in the proof of (1.1). Let
Sa,aaAsg s be a family of generators of § and Ga,asA + be a sub-

set of ]Cs | which both belongs to U and contains an element of

a

each isomorphism class of objects of the fiber Cg . The union of
a

the Ga is a generator of the site (C,J) , hence this one is a

U-site and C-8 is a U-topos. Using (1) one sees easily that for
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any sheaf F on S§ , Fp is a sheaf on C hence n*{(F) = Fp ,
hence w* has a left adjoint hence 7w 1is essential. The last
assertion of (2) follows from the fact that when C is left exact, p
is the underlying functor of a morphism of sites 8§ —»C . The
first assertion of (3) follows readily from (1) and the patching
condition for morphisms in € . For any Se|S] , and any ca]CS’
one has

Hom(m, € (¢) ,8)=Hom(e (¢}, m* (8} ) =n*(8) (c)=Hom(p (c),8)

by adjunction, Yoneda and the formula *F = Fp , and this concludes

the proof.

2.2. Under the assumptions of (2.1) , C-S§ 1is called the classify-

ing topos of the (pre)stack C . Note that a morphism of stacks

m:C —>C' is a comorphism of sites and induces a morphism of topos
m-5:C-§ ~-3»C'-§ . If m is an equivalence, then so is n-§ .

If C is a split stack one can define a split stack ¢V whose fibers
are the opposites of the fibers of C . Note that the underlying

(o]

category of CV is not the opposite C of C . Let us consider

the category
N A"
(1) B.(8) = Stg(c (SH(8))

of morphisms of stacks F:CV———é SH(S) , where SH{S) is the split

stack whose fiber at Sc|S| is the category of sheaves on §/8

[equivalent to 8§/ since § is a topos]. One has a natural functor
(2) T*:8 —> B, (8) ¢ T*(8) () = e(sxplc)) ,

where t is the Yoneda functor of §/8

Proposition 2.3. If S 1is a U-topos and C a split stack one has

an equivalence of categories

(1 b:B (8) —> €-8 . b(F)(c) = Flc)(plc))
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: . n
and an isomorphism of functors bot® ey %

2.3.1. Note that this proposition proves that BC(§) is a U-topos
equivalent to C-S§ even when C is not split since one can replace
C by an equivalent split stack. Furthermore, by the universal
property of the associated stack, Bc(g) is equivalent to B,,(8)

when C is the stack associated to some prestack C' .

Furthermore, Lawvere and Tierney have introduced for any category-
object E of the topos § , the topos of objects of § provided
with operations of E . One can prove that this topos is equivalent
to BC(§) where C is the split prestack defined by E hence also
equivalent to C'-8§ , where C' is the stack generated by C . Thus

we have three constructions of the classifying topos.

2.3.2. Por any split stack D , any map £:T —>»$8 in S and

£

any se|D we denote by s the inverse image of s by f and by

sl
sf:sf———e s the cartesian map given by the splitting. To define b
completely one must define for any mi:c —c' in C an application
b(F) (m):b(F)(c')—b(F)(c) . Let £ =p(m) , £:8'—S . Since

C is split there is a canonical factorisation c¢' —Ezé cf-——jﬁg (o
B8ince F 1is cartesian one has a canonical isomorphism i:F(cf)—)F(c)f

which for the values at S' (or rather id of these sheaves

S')
induces a bijection j:F(cf)(S') ——s F{c) {f) and we take for b(F)(m)

the composite

) - '
Fiey (s) SEL proy () 3 riefy sy EBEVpcny sy,

where f:f-———*ids is the terminal map in S§/8 . It is easily
checked that b(F) is a functor, recalling that the underlying
category of CV is not the underlying category of c® . The sheaf
axiom for b(F) isg verified by using (2.1(1)): for a given family

(ci—a c) it is a conseguence of the fact that F{c)} is a sheaf and
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F a cartesian functor. The functoriality with respect to F is
obvious. To prove that b is an equivalence one constructs explicitly

a functor
(2) asc-s —> B,(8) , a(@)(c)(f) = 6(chH

where ce|F| and £:T —3 p(c) is a map in 8 .

Proposition 2.4. Let f:8'—

|

be a morphism of U-topos and let

C be a left exact stack over § . One has an equivalence of
categories

(1) Topg(8',C-8) ~—y Stexs(c,f*SH(g'))o , where the domain is the
category-of morphisms of g—topos n:S'—>» C-§ , where (£,SH(S') Iis
the direct image by f of the stack of sheaves over §8'[its fiber at
Se|s] is the category of sheaves over §'/f*(S)] and where the

codomain is the opposite of the category of left exact morphisms of

stacks C -— f£,SH(S') .

Since C is left exact and €:C—> C-§ full and faithful,

a morphism of topos n:S'—— C-§ is nothing but a left exact functor

n"lic —8' n"lan®e | Furthermore, since C 1is left exact

1 of ¢ whose value at 8el§]

there exists a cartesian section p~
is the terminal object of the fiber Cq and p'1 is a morxphism of

sites defining m:C-S —3» S since 7w*F = Fp for any sheaf F on

v R
S . Hence an isomorphism of morphisms of topos i:mn —> f is
nothing but an isomorphism i-l:nnlp-l-—ﬁ—% £* , In other words the

category Tops(§',C-§)° is eqguivalent to the category M of pairs
1 -1

-1 -1

(n"t:c—s',i T tp s £)  where n"! is continuous and left

exact. Let Ar(8') be the category whose objects are arrows of §S'
and let b:Ar(s')—>s' , b(X —sY¥) =Y . Since every cbject
ce|C| determines a terminal map c ——;pwl(p(c)) , a pair

(n"},i7Y)  can be viewed as a functor n':C —> Ar{S') such that
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bn' = f*p and which is left exact [the continuity condition disappears
by (2.1 (1))]. &ince b makes a stack over §' out of the category
Ar(8') , by the very definition of the direct image of a stack, n'

is nothing but a functor n":C— £,Ar(8') and, since n' is left

"

exact, n is §~cartesian and left exact, hence an object of

Stexy (C,Ar(8')). The conclusion follows since Ar(S') is eguivalent

gt
to SH(S') .

According to the proof, the morphism of topos n:§'— C-5
which corresponds to a left exact morphism of stacks n":C — £ Ax(S')

is characterized up to unique isomorphism by the equality n*e = dgn"

2 ¢ B far(s’) —3s ar(sn) —3 5 s,

where g 1is the first projection of f,Ar(s') = Ar(g')xs,g , d the

"domain functor" and e the Yoneda functor.

Corellary 2.5. If C is left exact one has an equivalence(l)

(1) Topg (8',C-8) —> Stexg, (£*(C) ,SH(S'))° .

This follows immediately from (2.4),(1.4) and the universal pro-
perty of the inverse image £f*{(C) of C . This gives the universal

property of C-8 in the bicategory of §-topos.

Corollary 2.6, Let C' = £*(C) . One has a commutative square of

morphisms of topos

(1 J, l

which is bicartesian.

(1) Stexs( , )} stands for "category of left exact morphisms of

stacks”.
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This means that for any moxphism of topos g:5"— §' the

functor given by composition with C-f
(2) TOpS.(§f'C'-§’) —> TOPS(Q",C-g)

is an equivalence. By the very definition of C' [4] p.87, one has
a commutative square

$=1 3 [

C
(3) pl p'
El

—.—E.*___..ﬁ '

(]

1]

where ¢-1 is cartesian. Furthermore ¢_1 is left exact by (1.3).
By (1.4) and the univsal property of ¢' = £*(C) , for any

g:8"—> 8' , the functor
(4) Stexg, (C',g,SH(S")) —>Stexy (C,£,9,5H(8")), u—>us™l , is

an equivalence. By {2.4) the proof is now an exercise about

universal properties in bicategories.

§3. Generating stack of a U-topos.

The guestion of defining a relative notion of generators has been
raised by Lawvere and Tierney. We propose here an answer in the
language of U-topos. It is clear that Prop.(3.3) is still valid when

working in their framework and that (3.2) is not.

Definition 3.1. Let £:X—3 § be a morphism of U-topos. A
generating stack of f is a full substack C of F = £,(Ar{X)) which
is small (2.1) and such that, for any Se|S| and any xs]FSI ’

there exists a covering family (Si —> 8) , ieI , in § and for
each iel a covering family (ciir——axi) in the fiber Fg = X/£*(s),
with ci'js{c§ » where x, is the inverse image of x by S— 5§ .

A generating stack C is said to be left exact if C and the
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inclusion functor i:C —» F are left exact.

Let us recall that the category of arrows of X provided with
the codomain functor Ar{X)—> X is a stack. Hence its direct
image F 1is a stack whose fiber at Sc|S| is the topos X/f*(S) and
g—éFsu
in § is nothing but pull-back along £*{u):f*(s')—> £*(s} .

the inverse image functor F :F associated to a map u:S'—>S

Hence F is a left exact stack and the condition that a full substack

C of F 1is left exact is that each fiber ¢ is stable by finite

8

limits in the fiber FS .

Proposition 3.2. Any S-topos admits a left exact generating stack.

Let us choose a generator (Si),ieleg, of § and for each ieI

a full subcategory Ci of FS stable by finite limits, generating
i

FS. and equivalent to a category which belongs to U . Let us
de;ine C as the full subcategory of F whose objects of projection
Se|g| are those xe|Fg] such that there exists a covering family
(ca:Sa————és) , such that each Sa is one of the Si and the

inverse image of x by ¢ is isomorphic to an object of Ci . This

a
condition being local on § , it is clear that C is a full sub-
stack of F and even a left exact one since F is left exact.
Furthermore C is small since for each Se|S| the set of classes of
equivalent covering families (Sa-——+ S) as above belongs to U .

Eventually C is a generating stack since any Se|§| can be covered

by the s, -

Proposition 3.3. Let S be a U-topos and C a generating stack of

an S~-topos f:X —>5 . Then C~8 is an §-topos and there exists
an S-morphism of topos n:X —> C-8 such that ng:X —»C-8 1is full

and faithful [in other words X is a subtopos of C-S] .
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3.3.1. We note first that since ¢ is small, C-§ is a U-topos .
Furthermore there exists a left exact generating stack C' of X
containing C and such that each object of C' is a finite limit
of objects of C , Hence the inclusion C ——>C' induces an equi-
valence between the S-topos C-§ and C'-S and this fact allows

us to assume that C is left exact. Since the inclusion i:( —— F,
F = f,Ar(X) , is left exact one has an S-morphism n:X — C-8 ,
(2.4) , whose inverse image functor n*:c—§~~—a X is such that its
composition with the Yoneda functor e:C — C-S is equal to the

composite of

(1) c tor 9yar 9, x . (2.4(2)) .

For any <t|C| and any Xe|X| one has n,(X){c) = Hom(e(c),n,(X))=

Hom({n*c (c),X) = Hom(dqi{c),X) = Homs(i(c),XXf*(S)) where the last
set of morphismsis taken in the fiber X/f*(8) of F with 8 = p(c),
and the last equality sign is justified by the definition of F as a

fibered product. Hence the formula

(2) n,:X — C-8 , n,(X){e) = Homg{i(c) ,Xx£*(8)) , S = plc) .

3.3.2. To prove that n, is full and faithful we will first compose

it with the inverse a:C-S3 —» B.(8) of (2.3(1))

(3) ang:X ———>BC(§) , ang (X) (e) = Homs(i(c),XXf*(S)) , 8 =plc) ,

ceic} ’

the above formula being justified by (2.3(2)) , where Homg(u,v)

stands for the sheaf {(over S ) of S-morphisms between the objects
u and v of the fiber at S5 of the stack F . Let us prove that
(3) is the effect on the fibers at the terminal object of § of a

morphism of stacks
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(4) m:F —> ST(CY,8H(S))

where ST(A,B) stands for the (split) stack of morphisms of stacks
between A and B [internal Hom in the bicategory of stacks [4] p.57,
771 , whose fiber at Se|S| is the category of morphisms A/8 —>B/S

of stacks over 8/S . We obtain (4) by composition of
y A 3 \4
(5) F —~—s ST(F ,SH(S§)) ——=—— ST(C",SH(S))

where j is induced by composition with 1i:C —> F and where y is

a "relative Yoneda functor" defined by

(6) y(a) (b) = Homg(b,a%)

where £:T ——>8 is amap in S and aelF be]FTl . One should

sl
note that the restriction of y to the terminal fiber of F is also
the restriction of the composite F-——3 F-S —23 Bp(8) ., (2.1(3)),
(2.3(2)). By localisation it follows that the restriciton of y

to each fiber is full and faithful hence y 1is such. On the other
hand, since any object of F can be covered for the canonical
topology of F by objects of i(C) and since i is full and faithful
it is easy to show that j 1is also full and faithful and the

conclusion follows.

Proposition 3.4. Fibered products exist in the bicategory of U~-topos.

According to (3.2) and (3.3) any morphism of U-topos X —> §
can be factored in X LN c-8 LN 8§ where n, is full and
faithful and where C is a left exact small stack over § . By
(2.6) the pullback of = along any morphism of U-topos £:8'—38
exists. On the other hand the pull-back of n along any morphism
of U-topos y:¥ —> C-S exists because X is a subtopos of C-8

hence is defined by some topology J on C-§ and it suffices to

take as a pullback the subtopos of ¥ defined by the finest topology
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J' on ¥ such that the inverse image functor y*:C-§— Y is
continuous. The conclusion follows by transitivity of pullback in a

bicategory.
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